62 research outputs found

    Lens antenna arrays: an efficient framework for sparse-aware large-MIMO communications

    Get PDF
    The recent increase in the demand for higher data transmission rates in wireless communications has entailed many implementation issues that can only be resolved by going through a full paradigm shift. Making use of the millimetric spectrum bands is a very attractive solution to the shortage of radio resources but, to garner all their potential, new techniques must be developed. Most of them are contained in the Massive Multiple Input Multiple Output (M-MIMO) framework: the idea of using very large antenna arrays for cellular communications. In this thesis, we propose the usage of Lens Antenna Arrays (LAA) to avoid the unbearable power and infrastructure costs posed by traditional M-MIMO architectures. This novel communication system exploits the angular-dependent power focusing capabilities of an electromagnetic lens to discern between waves with different angles of arrival and departure, without explicit signal processing. The work presented in this document motivates the use of LAAs in mmWave communications, studies some of their mathematical properties and proposes their application in noncoherent schemes. Numerical results validate the performance of this novel kind of systems and confirm their strengths in both multi-user and block fading settings. LAAs that use noncoherent methods appear to be very suitable for vehicular communications and densely populated cellular networks.En los últimos tiempos, el incremento en la demanda de mayor velocidad de transmisión de datos en redes de comunicación inalámbricas ha conllevado varios problemas de implementación que solo se podrán resolver a través de un cambio total de paradigma. Utilizar bandas milimétricas del espectro es una solución muy atractiva a la escasez de recursos de radio pero, para poder extraer todo su potencial, es necesario desarrollar nuevas técnicas. La mayor parte de éstas pasa por la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea de usar matrices de antenas muy grandes para comunicaciones celulares. En esta tesis, proponemos el uso de matrices de antenas con lente, o Lens Antenna Arrays (LAA), para evitar los inasumibles costes energéticos y de instalación propios de las arquitecturas M-MIMO tradicionales. Este novedoso sistema de comunicaciones explota las capacidades de concentración de energía con dependencia angular de las lentes electromagnéticas para distinguir entre ondas con distintas direcciones de llegada y de salida, sin procesado de la señal explícito. El trabajo presentado en este documento motiva el uso de los LAAs en comunicaciones en bandas milimétricas (mmWave), estudia varias propiedades matemáticas y propone su aplicación en esquemas no coherentes. Resultados numéricos validan su ejecución y confirman sus fortalezas en entornos multiusuario y con desvanecimiento en bloque. Los LAAs que utilizan métodos no coherentes parecen ser idóneos para comunicaciones vehiculares y para redes celulares altamente pobladas.En els darrers temps, l'increment en la demanda de major velocitat de transmissió de dades en xarxes de comunicació inalàmbriques ha comportat diversos problemes d'implementació que tan sols es podran resoldre a través d'un canvi total de paradigma. Utilitzar les bandes mil·limètriques de l'espectre és una solució molt atractiva a l'escassetat de recursos de ràdio però, per tal d'extreure'n tot el seu potencial, és necessari desenvolupar noves tècniques. La majoria d'aquestes passa per la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea d'utilitzar matrius d'antenes molt grans per a comunicacions cel·lulars. En aquesta tesi, proposem l'ús de matrius d'antenes amb lent, o Lens Antenna Arrays (LAA), per tal d'evitar els inassumibles costos energètics i d'instal·lació propis d'arquitectures M-MIMO tradicionals. Aquest innovador sistema de comunicacions explota les capacitats de concentració d'energia amb dependència angular de les lents electromagnètiques per tal de distingir entre ones amb diferents direccions d'arribada i de sortida, sense processament de senyal explícit. El treball presentat en aquest document motiva l'ús dels LAAs per comunicacions en bandes mil·limètriques (mmWave), n'estudia diverses propietats matemàtiques i proposa la seva aplicació en esquemes no coherents. Resultats numèrics en validen l'execució i confirmen les seves fortaleses en entorns multi-usuari i amb esvaïment en bloc. Els LAAs que utilitzen mètodes no coherents semblen ser idonis per a comunicacions vehiculars i per a xarxes cel·lulars altament poblades

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201

    Exploiting the increasing correlation of space constrained massive MIMO for CSI relaxation

    Get PDF
    In this paper, we explore low-complexity transmission in physically-constrained massive multiple-input multiple-output (MIMO) systems by means of channel state information (CSI) relaxation. In particular, we propose a strategy to take advantage of the correlation experienced by the channels of neighbour antennas when deployed in tightly packed antenna arrays. The proposed scheme is based on collecting CSI for only a subset of antennas during the pilot training stage and, subsequently, using averages of the acquired CSI for the remaining closely-spaced antennas. By doing this, the total number of radio frequency (RF) chains, for both CSI acquisition and data transmission, and the baseband signal processing are reduced, hence simplifying the overall system operation. At the same time, this impacts the quality of the channel estimation produced after the CSI acquisition process. To characterize this tradeoff, we explore the impact that the number of antennas with instantaneous CSI has on the performance, signal processing complexity, and energy efficiency of time-division duplex (TDD) systems. The analytical and simulation results presented in this paper show that the application of the proposed strategy in size-constrained antenna arrays is able to significantly enhance the energy efficiency against systems with full CSI availability, while approximately preserving their average performance

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Analysis of the sum rate for massive MIMO using 10 GHz measurements

    Get PDF
    Orientador: Gustavo FraidenraichTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho apresenta um conjunto de contribuições para caracterização e modelagem de canais reais de rádio abordando aspectos relacionados com as condições favoráveis de propagação para sistemas massive MIMO. Discutiremos como caracterizar canais de rádio em um ambiente real, processamento de dados e análise das condições favoráveis de propagação. Em uma segunda parte, focamos na determinação teórica de alguns aspectos da tecnologia de massive MIMO utilizando propriedades de distribuições matriciais Wishart. Inicialmente, apresentamos uma contribuição sobre a aplicação do algoritmo ESPRIT, para estimar parâmetros de um conjunto de dados multidimensional. Obtivemos dados por varredura em frequência de um Analisador Vetorial de Rede e os adaptamos para o algoritmo ESPRIT. Mostramos como remover a influência do ganho de padrão de antenas e como utilizar um gerador de modelo de canal baseado nas medidas reais de canal de rádio. As medidas foram feitas na frequência de 10.1 GHz com largura de faixa de 500 MHz. Utilizando um gerador de modelo de canal, fomos além do universo das simulações por distribuições Gaussianas. Introduzimos o conceito de propagação favorável e analisamos condições de linha-de-visada usando arranjos lineares uniformes e arranjos retangulares uniformes de antena. Como novidade da pesquisa, mostramos os benefícios de explorar um número extra de graus de liberdade devido à escolha dos formatos de arranjo de antenas e ao aumento do número de elementos. Esta propriedade é observada ao analisarmos a distribuição dos autovalores de matrizes Gramianas. Em seguida, estendemos o mesmo raciocínio para as matrizes de canal geradas a partir de informações reais e verificamos se as propriedades ainda permaneceriam válidas. Na segunda parte deste trabalho, incluímos mais de uma antena no terminal móvel e calculamos a probabilidade de indisponibilidade para várias configurações de antenas e número arbitrário de usuários. Esboçamos inicialmente a formulação para a informação mútua e, em seguida, calculamos os resultados exatos em uma situação com dois usuários e duas antenas, tanto na estação base (EB) como nos terminais de usuário(TU). Visto que as formulações para a derivação exata dos casos com mais antenas e mais usuários mostrou-se muito intrincada, propusemos uma aproximação Gaussiana para simplificar o problema. Esta aproximação foi validada por simulações Monte Carlo para diferentes relações sinal/ruídoAbstract: This thesis presents a set of contributions for channel modeling and characterization of real radio channels delineating aspects related with the favorable propagation for massive MIMO systems. We will discuss about how to proceed for characterizing radio channels in an real environment , data processing, and analysis of favorable conditions. In a second part, we focused on determination of some theoretical aspects of the Massive MIMO technology using properties of Wishart distribution matrices. We initially present a contribution on the application of ESPRIT algorithm for estimating a multidimensional set of measured data. We have obtained data by frequency sweep carried out by a vector network analyzer(VNA) and adapted it to fit in the ESPRIT algorithm. We show how to remove antenna pattern gain using virtual antenna arrays and how to use a channel model generator based on radio channel measurements of real environments. The measurements were conducted at the frequency of 10.1 GHz and 500 MHz bandwidth. By using a channel model generator, we have explored beyond the simulation of Gaussian Distributions. We will introduce the concept of favorable propagation and analyze the line-of-sight conditions using ULA and URA array shapes. As a research novelty, we will show the benefits of exploiting an extra degree of freedom due to the choice of the antenna shapes and amount of antenna elements. We observe these properties through the distribution of the Gramian Matrices. Next, we extend the same rationale to channel matrices generated from real channels and we verify that the properties are still valid. In a second part of the research work, we included more than one antenna in the mobile terminals and calculated the outage probability for several antenna configurations and arbitrary number users. We introduce a formulation for mutual information and then we calculate exact results in a case with two users with two antennas in both Base Station (BS) and User Terminals (UT). Since the formulations to the exact derivation for cases with more antennas and users seems to be intricate, we propose a Gaussian approximation solution to simplify the problem. We validated this approximation with Monte Carlo simulations for different signal-to-noise ratiosDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica248416/2013-8CNPQCAPE
    corecore