127 research outputs found

    ๋ฌด์„ ํ†ต์‹ ๋ง์—์„œ ์ฒ˜๋ฆฌ์œจ ๊ฐœ์„ ์„ ์œ„ํ•œ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜์˜ ์ €๊ฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์ „ํ™”์ˆ™.๋ฌด์„ ํ†ต์‹ ๋ง(wireless networks)์€ ๋ฌด์„  ์ฑ„๋„์˜ ์ƒํƒœ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋งํฌ ์ ์‘(link adaptation) ๊ธฐ์ˆ ์„ ๊ธฐ๋ณธ์ ์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค. ๋งํฌ ์ ์‘ ๊ธฐ์ˆ ์„ ์œ„ํ•ด์„œ๋Š” ์ฑ„๋„ ์ƒํƒœ ์ •๋ณด๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์ˆ˜์ง‘ํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด์— ๋”ฐ๋ฅธ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜(signaling overhead)๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌด์„ ํ†ต์‹ ๋ง์—์„œ์˜ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ € ํ˜‘๋ ฅ ํ†ต์‹  ๋„คํŠธ์›Œํฌ(cooperative communication networks)์—์„œ์˜ ์ ์‘์ ์ธ ์ „์†ก ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ํ˜‘๋ ฅ ํ†ต์‹  ๋„คํŠธ์›Œํฌ๋Š” ACK(positive acknowledgement)/NACK(negative ACK)์™€ ๊ฐ™์€ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์ถ”์ •๋œ ์ฑ„๋„ ์ƒํƒœ์— ๊ธฐ๋ฐ˜์„ ๋‘์–ด ์ „์†ก ์†๋„๋ฅผ ์กฐ์ ˆํ•˜๋ฉด์„œ ๋ฆด๋ ˆ์ด(relay)์˜ ์‚ฌ์šฉ์—ฌ๋ถ€๋„ ํ•จ๊ป˜ ๊ฒฐ์ •ํ•œ๋‹ค. ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ์ •๋ณด๋Š” ์‹ค์ œ ์ฑ„๋„ ์ƒํƒœ์— ๋Œ€ํ•œ ๋ถ€๋ถ„์ ์ธ ์ •๋ณด๋งŒ์„ ์ œ๊ณตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์„ ๋ถˆํ™•์‹ค์„ฑ ๋งˆ์ฝ”๋ธŒ ์˜์‚ฌ ๊ฒฐ์ •(partially observable Markov decision process)์— ๋”ฐ๋ผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ์—์„œ์˜ ๊ธฐ๊ธฐ ๊ฐ„(D2D, device-to-device) ํ†ต์‹ ์„ ์œ„ํ•œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๊ณ  ์ค€ ๋ถ„์‚ฐ์ (semi-distributed)์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ค‘์•™ ์ง‘์ค‘์ (centralized)์œผ๋กœ ๊ธฐ์ง€๊ตญ์ด ์ž์› ๋ธ”๋ก์„ B2D(BS-to-user device) ๋งํฌ์™€ D2D ๋งํฌ์—๊ฒŒ ํ• ๋‹นํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ถ„์‚ฐ์ (distributed)์œผ๋กœ ๊ธฐ์ง€๊ตญ์€ B2D ๋งํฌ์— ํ• ๋‹น๋œ ์ž์› ๋ธ”๋ก๋“ค์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์†ก ์Šค์ผ€์ค„์„ ๊ฒฐ์ •(scheduling)ํ•˜๊ณ , ๊ฐ D2D ๋งํฌ์˜ ์ œ 1 ์‚ฌ์šฉ์ž ๊ธฐ๊ธฐ(primary user device)๋Š” ํ•ด๋‹น D2D ๋งํฌ์— ํ• ๋‹น๋œ ์ž์› ๋ธ”๋ก๋“ค์—์„œ์˜ ๋งํฌ ์ ์‘์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž์› ๊ด€๋ฆฌ ๊ตฌ์กฐ๋Š” ์ค‘์•™ ์ง‘์ค‘์  ๊ธฐ๋ฒ•์ฒ˜๋Ÿผ ๋†’์€ ๋„คํŠธ์›Œํฌ ์šฉ๋Ÿ‰์„ ๋‹ฌ์„ฑํ•  ๋ฟ ์•„๋‹ˆ๋ผ ๋ถ„์‚ฐ์  ๊ธฐ๋ฒ•์ฒ˜๋Ÿผ ๋‚ฎ์€ ์‹ ํ˜ธ์ „๋‹ฌ ๋ฐ ๊ณ„์‚ฐ(computational) ๋ถ€ํ•˜๋ฅผ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆํ•œ ์ž์› ๊ด€๋ฆฌ ๊ตฌ์กฐ์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž์› ํšจ์œจ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ž์› ๋ธ”๋ก ํ• ๋‹น ๋ฌธ์ œ๋“ค์„ ๋‘ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ์ž์› ํ• ๋‹น ์ •์ฑ…์— ๋Œ€ํ•˜์—ฌ ๋งŒ๋“ค๊ณ  ์ด ๋ฌธ์ œ๋“ค์„ ํ’€๊ธฐ ์œ„ํ•ด ํƒ์š•(greedy) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์—ด ์ถ”๊ฐ€ ๊ธฐ๋ฐ˜(column generation-based) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•๋“ค์ด ์„ค๊ณ„ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ณ  ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉด์„œ๋„ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Wireless networks usually adopt some link adaptation techniques to mitigate the performance degradation due to the time-varying characteristics of wireless channels. Since the link adaptation techniques require to estimate and collect channel state information, signaling overhead is inevitable in wireless networks. In this thesis, we propose two schemes to reduce the signaling overhead in wireless networks. First, we design an adaptive transmission scheme for cooperative communication networks. The cooperative network with the proposed scheme chooses the transmission rate and decides to involve the relay in transmission, adapting to the channel state estimated from limited feedback information (e.g., ACK/NACK feedback). Considering that the limited feedback information provides only partial knowledge about the actual channel states, we design a decision-making algorithm on cooperative transmission by using a partially observable Markov decision process (POMDP) framework. Next, we also propose a two-stage semi-distributed resource management framework for the device-to-device (D2D) communication in cellular networks. At the first stage of the framework, the base station (BS) allocates resource blocks (RBs) to BS-to-user device (B2D) links and D2D links, in a centralized manner. At the second stage, the BS schedules the transmission using the RBs allocated to B2D links, while the primary user device of each D2D link carries out link adaptation on the RBs allocated to the D2D link, in a distributed fashion. The proposed framework has the advantages of both centralized and distributed design approaches, i.e., high network capacity and low signaling/computational overhead, respectively. We formulate the problems of RB allocation to maximize the radio resources efficiency, taking account of two different policies on the spatial reuse of RBs. To solve these problems, we suggest a greedy algorithm and a column generation-based algorithm. By simulation, it is shown that the proposed schemes achieve their design goal properly and outperform existing schemes while reducing the signaling overhead.1 Introduction 1 1.1 Background and Motivation 1 1.2 Approaches to Reduce Signaling Overhead 5 1.3 Proposed Schemes 7 1.3.1 Adaptive Transmission Scheme for Cooperative Communication 7 1.3.2 Resource Management Scheme for D2D Communication in Cellular Networks 8 1.4 Organization 10 2 Adaptive Transmission Scheme for Cooperative Communication 11 2.1 System Model 11 2.2 Cooperative Networks with Limited Feedback 12 2.2.1 Operation of the Proposed Cooperative Network 12 2.2.2 Finite-State Markov Channel Model 15 2.2.3 Packet Error Probability 16 2.2.4 Channel Feedback Schemes 18 2.3 Adaptive Transmission Scheme for Cooperative Communication 19 2.3.1 POMDP Formulation 19 2.3.2 Solution to POMDP 22 3 Resource Management Scheme for D2D Communication in Cellular Networks 25 3.1 System Model 25 3.1.1 Network Model 25 3.1.2 Radio Resource Model 27 3.2 Proposed Resource Management Framework 28 3.2.1 Framework Overview 28 3.2.2 Two-Stage Resource Management 29 3.2.3 Advantages of the Proposed Framework 31 3.3 Conditions for Simultaneous Transmission of B2D and D2D Links 33 3.3.1 Analysis of Interference on B2D and D2D Links 33 3.3.2 Conditions for Simultaneous Transmission of B2D and D2D Links 36 3.4 Resource Block Allocation 38 3.4.1 Resource Block Allocation with Conservative Reuse Policy 39 3.4.2 Resource Block Allocation with Aggressive Reuse Policy 44 4 Performance Evaluation 52 4.1 Adaptive Transmission Scheme for Cooperative Communication 52 4.1.1 Simulation Model 52 4.1.2 Simulation Results 53 4.2 Resource Management Scheme for D2D Communication in Cellular Networks 62 4.2.1 Simulation Model 62 4.2.2 Simulation Results 64 5 Conclusion 75 Bibliography 77 Abstract 85Docto

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once

    Modeling and Performance Analysis of Relay-based Cooperative OFDMA Networks

    Get PDF
    Next generation wireless communication networks are expected to provide ubiquitous high data rate coverage and support heterogeneous wireless services with diverse quality-of-service (QoS) requirements. This translates into a heavy demand for the spectral resources. In order to meet these requirements, Orthogonal Frequency Division Multiple Access (OFDMA) has been regarded as a promising air-interface for the emerging fourth generation (4G) networks due to its capability to combat the channel impairments and support high data rate. In addition, OFDMA offers flexibility in radio resource allocation and provides multiuser diversity by allowing subcarriers to be shared among multiple users. One of the main challenges for the 4G networks is to achieve high throughput throughout the entire cell. Cooperative relaying is a very promising solution to tackle this problem as it provides throughput gains as well as coverage extension. The combination of OFDMA and cooperative relaying assures high throughput requirements, particularly for users at the cell edge. However, to fully exploit the benefits of relaying, efficient relay selection as well as resource allocation are critical in such kind of network when multiple users and multiple relays are considered. Moreover, the consideration of heterogeneous QoS requirements further complicate the optimal allocation of resources in a relay enhanced OFDMA network. Furthermore, the computational complexity and signalling overhead are also needed to be considered in the design of practical resource allocation schemes. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for relay-based cooperative OFDMA networks supporting heterogeneous QoS requirements. Specifically, this dissertation investigates how to effectively and efficiently allocate resources to satisfy QoS requirements of 4G users, improve spectrum utilization and reduce computational complexity at the base station. The problems and our research achievements are briefly outlined as follows. Firstly, a QoS aware optimal joint relay selection, power allocation and subcarrier assignment scheme for uplink OFDMA system considering heterogeneous services under a total power constraint is proposed. The relay selection, power allocation and subcarrier assignment problem is formulated as a joint optimization problem with the objective of maximizing the system throughput, which is solved by means of a two level dual decomposition and subgradient method. The computational complexity is finally reduced via the introduction of two suboptimal schemes. The performance of the proposed schemes is demonstrated through computer simulations based on OFDMA network. Numerical results show that our schemes support heterogeneous services while guaranteeing each user's QoS requirements with slight total system throughput degradation. Secondly, we investigate the resource allocation problem subject to the satisfaction of user QoS requirements and individual total power constraints of the users and relays. The throughput of each end-to-end link is modeled considering both the direct and relay links. Due to non-convex nature of the original resource allocation problem, the optimal solution is obtained by solving a relaxed problem via two level dual decomposition. Numerical results reveal that the proposed scheme is effective in provisioning QoS of each user's over the conventional resource allocation counterpart under individual total power constraints of the users and relays . Lastly, decentralized resource allocation schemes are proposed to reduce the computational complexity and CSI feedback overhead at the BS. A user centric distributed (UCD) scheme and a relay centric distributed (RCD) scheme are proposed, where the computation of the centralized scheme is distributed among the users and relays, respectively. We also proposed suboptimal schemes based on simplified relay selection. The suboptimal schemes can be combined with the distributed schemes to further reduce of signalling overhead and computational complexity. Numerical results show that our schemes guarantee user's satisfaction with low computational complexity and signalling overhead, leading to preferred candidates for practical implementation. The research results obtained in this dissertation can improve the resource utilization and QoS assurance of the emerging OFDMA networks.4 month

    Resource Allocation for Broadband Wireless Access Networks with Imperfect CSI

    Get PDF
    The high deployment and maintenance costs of last mile wireline networks (i.e., DSL and cable networks) have urged service providers to search for new cost-effective solutions to provide broadband connectivity. Broadband wireless access (BWA) networks, which offer a wide coverage area and high transmission rates in addition to their fast and low-cost deployment, have emerged as an alternative to last mile wireline networks. Therefore, BWA networks are expected to be deployed in areas with different terrain profiles (e.g., urban, suburban, rural) where wireless communication faces different channel impairments. This fact necessitates the adoption of various transmission technologies that combat the channel impairments of each profile. Implementation scenarios of BWA networks considered in this thesis are multicarrier-based direct transmission and single carrier-based cooperative transmission scenarios. The performance of these transmission technologies highly depends on how resources are allocated. In this thesis, we focus on the development of practical resource allocation schemes for the mentioned BWA networks implementation scenarios. In order to develop practical schemes, the imperfection of channel state information (CSI) and computational power limitations are among considered practical implementation issues. The design of efficient resource allocation schemes at the MAC layer heavily relies on the CSI reported from the PHY layer as a measure of the wireless channel condition. The channel estimation error and feedback delay renders the reported CSI erroneous. The inaccuracy in CSI propagates to higher layers, resulting in performance degradation. Although this effect is intuitive, a quantitative measure of this degradation is necessary for the design of practical resource allocation schemes. An approach to the evaluation of the ergodic mutual information that reflects this degradation is developed for single carrier, multicarrier, direct, and cooperative scenarios with inaccurate CSI. Given the CSI estimates and estimation error statistics, the presented evaluation of ergodic mutual information can be used in resource allocation and in assessing the severity of estimation error on performance degradation. A point-to-multipoint (PMP) network that employs orthogonal frequency division multiple access (OFDMA) is considered as one of the most common implementation scenarios of BWA networks. Replacing wireline networks requires not only providing the last mile connectivity to subscribers but also supporting their diverse services with stringent quality of service (QoS) requirements. Therefore, the resource allocation problem (i.e., subcarriers, rate and power allocation) is modeled as a network utility maximization (NUM) one that captures the characteristics of this implementation scenario. A dual decomposition-based resource allocation scheme that takes into consideration the diversity of service requirements and inaccuracy of the CSI estimation is developed. Numerical evaluations and simulations are conducted to validate our theoretical claims that the scheme maximizes resource utilization, coordinates with the call admission controller to guarantee QoS, and accounts for CSI inaccuracy. Cooperation has recently received great attention from the research community and industry because of its low cost and fast deployment in addition to the performance improvement it brings to BWA networks. In cooperative scenarios, subscribers cooperate to relay each other's signals. For this implementation scenario of BWA networks, a robust and constrained Kalman filter-based power allocation scheme is proposed to minimize power consumption and guarantee bit error probability (BEP) requirements. The proposed scheme is robust to CSI inaccuracy, responsive to changes in BEP requirements, and optimal in allocating resources. In summary, research results presented in this thesis contribute to the development of practical resource allocation schemes for BWA networks

    Efficient Device to Device Communications Underlaying Heterogeneous Networks

    Get PDF
    Device-to-Device communications have the great potential to bring significant performance boost to the conventional heterogeneous network by reusing cellular resources. In cellular networks, Device-to-Device communication is defined as two user equipments in a close range communicating directly with each other without going through the base station, thus offloading cellular traffic from cellular networks. In addition to improve network spectral efficiency, D2D communication can also improve energy efficiency and user experience. However, the co-existence of D2D communication on the same spectrum with cellular users can cause severe interference to the primary cellular users. Thus the performance of cellular users must be assured when supporting underlay D2D users. In this work, we have investigated cross-layer optimization, resource allocation and interference management schemes to improve user experience, system spectral efficiency and energy efficiency for D2D communication underlaying heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this research work aims to design wireless system level algorithms to utilize the spectrum and energy resources efficiently in the next generation wireless heterogeneous network

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication

    Optimum Power Allocation for Cooperative Communications

    Get PDF
    Cooperative communication is a new class of wireless communication techniques in which wireless nodes help each other relay information and realize spatial diversity advantages in a distributed manner. This new transmission technique promises significant performance gains in terms of link reliability, spectral efficiency, system capacity, and transmission range. Analysis and design of cooperative communication wireless systems have been extensively studied over the last few years. The introduction and integration of cooperative communication in next generation wireless standards will lead to the design of an efficient and reliable fully-distributed wireless network. However, there are various technical challenges and open issues to be resolved before this promising concept becomes an integral part of the modern wireless communication devices. A common assumption in the literature on cooperative communications is the equal distribution of power among the cooperating nodes. Optimum power allocation is a key technique to realize the full potentials of relay-assisted transmission promised by the recent information-theoretic results. In this dissertation, we present a comprehensive framework for power allocation problem. We investigate the error rate performance of cooperative communication systems and further devise open-loop optimum power allocation schemes to optimize the performance. By exploiting the information about the location of cooperating nodes, we are able to demonstrate significant improvements in the system performance. In the first part of this dissertation, we consider single-relay systems with amplify-and-forward relaying. We derive upper bounds for bit error rate performance assuming various cooperation protocols and minimize them under total power constraint. In the second part, we consider a multi-relay network with decode-and-forward relaying. We propose a simple relay selection scheme for this multi-relay system to improve the throughput of the system, further optimize its performance through power allocation. Finally, we consider a multi-source multi-relay broadband cooperative network. We derive and optimize approximate symbol error rate of this OFDMA (orthogonal frequency division multiple access) system

    Distributed radio resource management in LTE-advanced networks with type 1 relay

    Get PDF
    Long Term Evolution (LTE)-Advanced is proposed as a candidate of the 4th generation (4G) mobile telecommunication systems. As an evolved version of LTE, LTE- Advanced is also based on Orthogonal Frequency Division Multiplexing (OFDM) and in addition, it adopts some emerging technologies, such as relaying. Type I relay nodes, de_ned in LTE-Advanced standards, can control their cells with their own reference signals and have Radio Resource Management (RRM) functionalities. The rationale of RRM is to decide which resources are allocated to which users for optimising performance metrics, such as throughput, fairness, power consumption and Quality of Service (QoS). The RRM techniques in LTE-Advanced networks, including route selection, resource partitioning and resource scheduling, are facing new challenges brought by Type 1 relay nodes and increasingly becoming research focuses in recent years. The research work presented in this thesis has made the following contributions. A service-aware adaptive bidirectional optimisation route selection strategy is proposed to consider both uplink optimisation and downlink optimisation according to service type. The load between di_erent serving nodes, including eNBs and relay nodes, are rebalanced under the _xed resource partitioning. The simulation results show that larger uplink throughputs and bidirectional throughputs can be achieved, compared with existing route selection strategies. A distributed two-hop proportional fair resource allocation scheme is proposed in order to provide better two-hop end-to-end proportional fairness for all the User Equipments (UEs), especially for the relay UEs. The resource partitioning is based on the cases of none Frequency Reuse (FR) pattern, full FR pattern and partial FR patterns. The resource scheduling in access links and backhaul links are considered jointly. A proportional fair joint route selection and resource partitioning algorithm isproposed to obtain an improved solution to the two-hop Adaptive Partial Frequency Reusing (APFR) problem with one relay node per cell. In addition, two special situations of APFR, full FR and no FR, are utilised to narrow the iterative search range of the proposed algorithm and reduce its complexity
    • โ€ฆ
    corecore