366 research outputs found

    Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae Search

    Get PDF

    Kinematic Performance Measures and Optimization of Parallel Kinematics Manipulators: A Brief Review

    Get PDF
    This chapter covers a number of kinematic performance indices that are instrumental in designing parallel kinematics manipulators. These indices can be used selectively based on manipulator requirements and functionality. This would provide the very practical tool for designers to approach their needs in a very comprehensive fashion. Nevertheless, most applications require a more composite set of requirements that makes optimizing performance more challenging. The later part of this chapter will discuss single-objective and multi-objectives optimization that could handle certain performance indices or a combination of them. A brief description of most common techniques in the literature will be provided

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Fractional order dynamical systems and its applications

    Get PDF
    This article illustrates several applications of fractional calculus (FC) in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the following fields: Controller tuning; Electrical systems; Traffic systems; Digital circuit synthesis; Evolutionary computing; Redundant robots; Legged robots; Robotic manipulators; Nonlinear friction; Financial modeling.N/

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods

    Full text link
    [EN] This paper presents an efficient algorithm for the reconfiguration of a parallel kinematic manipulator with four degrees of freedom. The reconfiguration of the parallel manipulator is posed as a nonlinear optimization problem where the design variables correspond to the anchoring points of the limbs of the robot on the fixed platform. The penalty function minimizes the forces applied by the actuators during a specific trajectory. Some constraints are imposed to avoid forward singularities and guarantee the feasibility of the active generalized coordinates for a certain trajectory. The results are compared with different optimization approaches with the aim of avoiding getting trapped into a local minimum and undergoing forward singularities. The comparison covers evolutionary algorithms, heuristics optimizers, multistrategy algorithms, and gradient-based optimizers. The proposed methodology has been successfully tested on an actual parallel robot for different trajectories.This research was funded by the Spanish Ministry of Education, Culture and Sports, grant number DPI2017-84201-R.Llopis-Albert, C.; Valero Chuliá, FJ.; Mata Amela, V.; Pulloquinga-Zapata, J.; Zamora-Ortiz, P.; Escarabajal-Sánchez, RJ. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability. 12(14):1-18. https://doi.org/10.3390/su12145803S1181214Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. doi:10.1177/1729881419839596Jamwal, P. K., Xie, S. Q., Hussain, S., & Parsons, J. G. (2014). An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64-75. doi:10.1109/tmech.2012.2219065Niu, X., Yang, C., Tian, B., Li, X., & Han, J. (2019). Modal Decoupled Dynamics Feed-Forward Active Force Control of Spatial Multi-DOF Parallel Robotic Manipulator. Mathematical Problems in Engineering, 2019, 1-13. doi:10.1155/2019/1835308Chablat, D., Kong, X., & Zhang, C. (2018). Kinematics, Workspace, and Singularity Analysis of a Parallel Robot With Five Operation Modes. Journal of Mechanisms and Robotics, 10(3). doi:10.1115/1.4039400Gao, Z., & Zhang, D. (2011). Workspace Representation and Optimization of a Novel Parallel Mechanism with Three-Degrees-of-Freedom. Sustainability, 3(11), 2217-2228. doi:10.3390/su3112217Hu, B., Shi, D., Xie, T., Hu, B., & Ye, N. (2020). Kinematically identical manipulators derivation for the 2-RPU+UPR parallel manipulator and their constraint performance comparison. Journal of Mechanisms and Robotics, 1-13. doi:10.1115/1.4047540Schappler, M., Tappe, S., & Ortmaier, T. (2019). Modeling Parallel Robot Kinematics for 3T2R and 3T3R Tasks Using Reciprocal Sets of Euler Angles. Robotics, 8(3), 68. doi:10.3390/robotics8030068Chen, Z., Xu, L., Zhang, W., & Li, Q. (2019). Closed-form dynamic modeling and performance analysis of an over-constrained 2PUR-PSR parallel manipulator with parasitic motions. Nonlinear Dynamics, 96(1), 517-534. doi:10.1007/s11071-019-04803-2Zhang, D., & Wei, B. (2017). Interactions and Optimizations Analysis between Stiffness and Workspace of 3-UPU Robotic Mechanism. Measurement Science Review, 17(2), 83-92. doi:10.1515/msr-2017-0011Wu, G., & Zou, P. (2016). Comparison of 3-DOF asymmetrical spherical parallel manipulators with respect to motion/force transmission and stiffness. Mechanism and Machine Theory, 105, 369-387. doi:10.1016/j.mechmachtheory.2016.07.017Meng, W., Xie, S. Q., Liu, Q., Lu, C. Z., & Ai, Q. (2017). Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training. IEEE/ASME Transactions on Mechatronics, 22(1), 173-184. doi:10.1109/tmech.2016.2618771Yang, Z., & Zhang, D. (2019). ENERGY OPTIMAL ADAPTION AND MOTION PLANNING OF A 3-RRS BALANCED MANIPULATOR. International Journal of Robotics and Automation, 34(5). doi:10.2316/j.2019.206-0171Zhang, D., & Gao, Z. (2012). Optimal Kinematic Calibration of Parallel Manipulators With Pseudoerror Theory and Cooperative Coevolutionary Network. IEEE Transactions on Industrial Electronics, 59(8), 3221-3231. doi:10.1109/tie.2011.2166229Lou, Y., Zhang, Y., Huang, R., Chen, X., & Li, Z. (2014). Optimization Algorithms for Kinematically Optimal Design of Parallel Manipulators. IEEE Transactions on Automation Science and Engineering, 11(2), 574-584. doi:10.1109/tase.2013.2259817Dumlu, A., & Erenturk, K. (2014). Trajectory Tracking Control for a 3-DOF Parallel Manipulator Using Fractional-Order PIλDμ\hbox{PI}^{\lambda}\hbox{D}^{\mu} Control. IEEE Transactions on Industrial Electronics, 61(7), 3417-3426. doi:10.1109/tie.2013.2278964Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. doi:10.4995/muse.2018.9867Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660Briot, S., Arakelian, V., Bonev, I. A., Chablat, D., & Wenger, P. (2008). Self-Motions of General 3-RPR Planar Parallel Robots. The International Journal of Robotics Research, 27(7), 855-866. doi:10.1177/0278364908092466Karimi, A., Masouleh, M. T., & Cardou, P. (2016). Avoiding the singularities of 3-RPR parallel mechanisms via dimensional synthesis and self-reconfigurability. Mechanism and Machine Theory, 99, 189-206. doi:10.1016/j.mechmachtheory.2016.01.006Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications—A Survey. Modern Mechanical Engineering, 02(03), 57-64. doi:10.4236/mme.2012.23008Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10). doi:10.1007/s40430-019-1934-1Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics, 9(6). doi:10.1115/1.4037800Vallés, M., Araujo-Gómez, P., Mata, V., Valera, A., Díaz-Rodríguez, M., Page, Á., & Farhat, N. M. (2017). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines, 46(4), 425-439. doi:10.1080/15397734.2017.1355249Koziel, S., & Yang, X.-S. (Eds.). (2011). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. doi:10.1007/978-3-642-20859-1Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimization and Engineering, 18(4), 815-848. doi:10.1007/s11081-017-9366-1Page, A., De Rosario, H., Mata, V., Hoyos, J. V., & Porcar, R. (2006). Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Medical and Biological Engineering and Computing, 44(12), 1113-1119. doi:10.1007/s11517-006-0124-3Arora, J. S., Chahande, A. I., & Paeng, J. K. (1991). Multiplier methods for engineering optimization. International Journal for Numerical Methods in Engineering, 32(7), 1485-1525. doi:10.1002/nme.1620320706Modefrontier Toolhttps://www.esteco.com.202

    Automated NDT inspection for large and complex geometries of composite materials

    Get PDF
    Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection.Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection
    corecore