39,079 research outputs found

    Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate

    Full text link
    Motivated by recent experiments with confined binary liquid mixtures near demixing, we study the universal critical properties of a system, which belongs to the Ising universality class, in the film geometry. We employ periodic boundary conditions in the two lateral directions and fixed boundary conditions on the two confining surfaces, such that one of them has a spatially homogeneous adsorption preference while the other one exhibits a laterally alternating adsorption preference, resembling locally a single chemical step. By means of Monte Carlo simulations of an improved Hamiltonian, so that the leading scaling corrections are suppressed, numerical integration, and finite-size scaling analysis we determine the critical Casimir force and its universal scaling function for various values of the aspect ratio of the film. In the limit of a vanishing aspect ratio the critical Casimir force of this system reduces to the mean value of the critical Casimir force for laterally homogeneous ++ and +- boundary conditions, corresponding to the surface spins on the two surfaces being fixed to equal and opposite values, respectively. We show that the universal scaling function of the critical Casimir force for small but finite aspect ratios displays a linear dependence on the aspect ratio which is solely due to the presence of the lateral inhomogeneity. We also analyze the order-parameter profiles at criticality and their universal scaling function which allows us to probe theoretical predictions and to compare with experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart clas

    The linear tearing instability in three dimensional, toroidal gyrokinetic simulations

    Get PDF
    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro kinetic turbulence code, GKW . The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate and frequency of the mode were investigated by varying the current profile, collisionality and the pressure gradients. Both collision-less and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absense of a pressure gradient is observed which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However the island rotation reverses direction at high collisionality. The growth rate is found to follow a η1/7\eta^{1/7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability using resistive MHD theory, however a modification due to toroidal coupling and pressure effects is seen

    The Constraints in Spherically Symmetric General Relativity II --- Identifying the Configuration Space: A Moment of Time Symmetry

    Get PDF
    We continue our investigation of the configuration space of general relativity begun in I (gr-qc/9411009). Here we examine the Hamiltonian constraint when the spatial geometry is momentarily static (MS). We show that MS configurations satisfy both the positive quasi-local mass (QLM) theorem and its converse. We derive an analytical expression for the spatial metric in the neighborhood of a generic singularity. The corresponding curvature singularity shows up in the traceless component of the Ricci tensor. We show that if the energy density of matter is monotonically decreasing, the geometry cannot be singular. A supermetric on the configuration space which distinguishes between singular geometries and non-singular ones is constructed explicitly. Global necessary and sufficient criteria for the formation of trapped surfaces and singularities are framed in terms of inequalities which relate appropriate measures of the material energy content on a given support to a measure of its volume. The strength of these inequalities is gauged by exploiting the exactly solvable piece-wise constant density star as a template.Comment: 50 pages, Plain Tex, 1 figure available from the authors

    Exact Solutions for the Intrinsic Geometry of Black Hole Coalescence

    Get PDF
    We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.Comment: 21 pages, 6 figures, revtex, to appear in Phys. Rev.

    Critical Casimir Forces in Colloidal Suspensions

    Full text link
    Some time ago, Fisher and de Gennes pointed out that long-ranged correlations in a fluid close to its critical point Tc cause distinct forces between immersed colloidal particles which can even lead to flocculation [C. R. Acad. Sc. Paris B 287, 207 (1978)]. Here we calculate such forces between pairs of spherical particles as function of both relevant thermodynamic variables, i.e., the reduced temperature t = (T-Tc)/Tc and the field h conjugate to the order parameter. This provides the basis for specific predictions concerning the phase behavior of a suspension of colloidal particles in a near-critical solvent.Comment: 29 pages, 14 figure

    Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance

    Full text link
    Mesoscopic particles immersed in a critical fluid experience long-range Casimir forces due to critical fluctuations. Using field theoretical methods, we investigate the Casimir interaction between two spherical particles and between a single particle and a planar boundary of the fluid. We exploit the conformal symmetry at the critical point to map both cases onto a highly symmetric geometry where the fluid is bounded by two concentric spheres with radii R_- and R_+. In this geometry the singular part of the free energy F only depends upon the ratio R_-/R_+, and the stress tensor, which we use to calculate F, has a particularly simple form. Different boundary conditions (surface universality classes) are considered, which either break or preserve the order-parameter symmetry. We also consider profiles of thermodynamic densities in the presence of two spheres. Explicit results are presented for an ordinary critical point to leading order in epsilon=4-d and, in the case of preserved symmetry, for the Gaussian model in arbitrary spatial dimension d. Fundamental short-distance properties, such as profile behavior near a surface or the behavior if a sphere has a `small' radius, are discussed and verified. The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B 51, 13717 (1995

    Sparse approximations of protein structure from noisy random projections

    Full text link
    Single-particle electron microscopy is a modern technique that biophysicists employ to learn the structure of proteins. It yields data that consist of noisy random projections of the protein structure in random directions, with the added complication that the projection angles cannot be observed. In order to reconstruct a three-dimensional model, the projection directions need to be estimated by use of an ad-hoc starting estimate of the unknown particle. In this paper we propose a methodology that does not rely on knowledge of the projection angles, to construct an objective data-dependent low-resolution approximation of the unknown structure that can serve as such a starting estimate. The approach assumes that the protein admits a suitable sparse representation, and employs discrete L1L^1-regularization (LASSO) as well as notions from shape theory to tackle the peculiar challenges involved in the associated inverse problem. We illustrate the approach by application to the reconstruction of an E. coli protein component called the Klenow fragment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS479 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film

    Get PDF
    Recent experiments by several groups have uncovered a novel fingering instability in the spreading of surface active material on a thin liquid film. The mechanism responsible for this instability is yet to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we have investigated the linear stability of a coupled set of equations describing the Marangoni spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these base flows can successfully heal perturbations of all wavenumbers. The details of this analysis suggest, however, a mechanism by which the spreading can be destabilized. We propose how the inclusion of additional forces acting on the surfactant coated spreading film might give rise to regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows
    • …
    corecore