1,978 research outputs found

    On a nonlocal degenerate parabolic problem

    Get PDF
    Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the finite time extinction and polynomial decay properties are proved

    Convergence of the Crank-Nicolson-Galerkin finite element method for a class of nonlocal parabolic systems with moving boundaries

    Get PDF
    The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite elements methods are investigated

    Homogenization of Parabolic Equations with a Continuum of Space and Time Scales

    Get PDF
    This paper addresses the issue of the homogenization of linear divergence form parabolic operators in situations where no ergodicity and no scale separation in time or space are available. Namely, we consider divergence form linear parabolic operators in Ω⊂Rn\Omega \subset \mathbb{R}^n with L∞(Ω×(0,T))L^\infty(\Omega \times (0,T))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω×(0,T))L^2(\Omega\times (0,T)) into a space of functions which at small (time and space) scales are close in H1H^1 norm to a functional space of dimension nn. It follows that once one has solved these equations at least nn times it is possible to homogenize them both in space and in time, reducing the number of operation counts necessary to obtain further solutions. In practice we show under a Cordes-type condition that the first order time derivatives and second order space derivatives of the solution of these operators with respect to caloric coordinates are in L2L^2 (instead of H−1H^{-1} with Euclidean coordinates). If the medium is time-independent, then it is sufficient to solve nn times the associated elliptic equation in order to homogenize the parabolic equation

    Numerical Methods for the Fractional Laplacian: a Finite Difference-quadrature Approach

    Full text link
    The fractional Laplacian (−Δ)α/2(-\Delta)^{\alpha/2} is a non-local operator which depends on the parameter α\alpha and recovers the usual Laplacian as α→2\alpha \to 2. A numerical method for the fractional Laplacian is proposed, based on the singular integral representation for the operator. The method combines finite difference with numerical quadrature, to obtain a discrete convolution operator with positive weights. The accuracy of the method is shown to be O(h3−α)O(h^{3-\alpha}). Convergence of the method is proven. The treatment of far field boundary conditions using an asymptotic approximation to the integral is used to obtain an accurate method. Numerical experiments on known exact solutions validate the predicted convergence rates. Computational examples include exponentially and algebraically decaying solution with varying regularity. The generalization to nonlinear equations involving the operator is discussed: the obstacle problem for the fractional Laplacian is computed.Comment: 29 pages, 9 figure
    • …
    corecore