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Abstract

Conditions for the existence and uniqueness of weak solutions for a

class of nonlinear nonlocal degenerate parabolic equations are established.

The asymptotic behaviour of the solutions as time tends to infinity are

also studied. In particular, the finite time extinction and polynomial decay

properties are proved.
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1 Introduction

In this paper, we study parabolic problems with nonlocal nonlinearity of the
following type:















ut −

(
∫

Ω

u2(x, t)dx

)γ

∆u = f (x, t) , (x, t) ∈ Ω×]0, T ]

u (x, t) = 0 , (x, t) ∈ ∂Ω×]0, T ]
u(x, 0) = u0(x) , x ∈ Ω

(1)

where Ω is a bounded open domain in Rd, d ≥ 1, γ is a real constant, f and u0

are continuous integrable functions.
This type of problem was studied initially by Chipot and Lovat in [5], where
they proposed the equation

ut − a(

∫

Ω

u dx)∆u = f (2)

for modelling the density of a population, for example, of bacteria, subject to
spreading. This equation also appears in the study of heat propagation or in
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epidemic theory. In this paper the authors prove the existence and uniqueness
of a weak solution to this equation.
In [5], the authors studied the problem







ut − a(l(u))∆u = f(x, t) in Ω× (0, T )
u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

(3)

where Ω is a bounded open subset in Rd, d ≥ 1, with smooth boundary ∂Ω, T
is some arbitrary time and a is some function from R into (0,+∞). Both a and
f are continuous functions and l : L2(Ω) → R is a continuous linear form. The
existence, uniqueness and asymptotic behaviour of weak and strong solutions of
parabolic equations and systems with nonlocal diffusion terms have been widely
studied in the last two decades.
In 2000, Ackleh and Ke [1], studied the problem







ut =
1

a(
∫
Ω
u dx)

∆u+ f(u) in Ω×]0, T ]

u(x, t) = 0 on ∂Ω×]0, T ]
u(x, 0) = u0(x) in Ω

,

with a(ξ) > 0 for all ξ 6= 0, a(0) ≥ 0 and f Lipschitz-continuous satisfying
f(0) = 0. They proved the existence and uniqueness of a solution to this
problem and gave conditions on u0 for the extinction in finite time and for the
persistence of solutions. The asymptotic behaviour of the solutions as time
tends to infinity was studied by Zheng and Chipot [11] for nonlinear parabolic
equations with two classes of nonlocal terms, in a cylindrical domain. Recently,
Duque et al. [7] considered a nonlinear coupled system of reaction-diffusion on
a bounded domain with a more general nonlocal diffusion term working on two
linear forms l1 and l2:

{

ut − a1(l1(u), l2(v))∆u + λ1|u|
p−2u = f1(x, t) in Ω×]0, T ]

vt − a2(l1(u), l2(v))∆v + λ2|v|
p−2v = f2(x, t) in Ω×]0, T ]

. (4)

In this case, u and v could describe the densities of two populations that inter-
act through the functions a1 and a2. The death in species u is assumed to be
proportional to |u|p−2u by the factor λ1 ≥ 0 and in species v to be proportional
to |v|p−2v by the factor λ2 ≥ 0 with p ≥ 1. The supply of being by external
sources is denoted by f1 and f2. The authors proved the existence and unique-
ness of weak and strong global in time solutions and imposed conditions, on
the data, for these solutions to have the waiting time and stable localization
properties. Moreover, important results on polynomial and exponential decay
and vanishing of the solutions in finite time were also presented.
Robalo et al. [10] proved the existence and uniqueness of weak and strong global
in time solutions and gave conditions, on the data, for these solutions to have
the exponential decay property for a nonlocal problem with moving boundaries.
The numerical analysis and simulation of such problems were less studied (see,
for example, [4, 6, 2, 3, 9] and their references).
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In this work, we analyse a different diffusion term, dependent on the L2-norm
of the solution. In most of the previous papers, it is assumed that the diffusion
term is bounded, with 0 < m ≤ a(s) ≤ M < ∞, s ∈ R, so the problem is always
nondegenerate. Here, we study a case were the diffusion term could be zero or
infinity. This work is concerned with the proof of the existence, uniqueness
and asymptotic behaviour of the weak solutions. To the best of our knowledge,
for nonlocal reaction-diffusion equations with this type of diffusion term, these
results have not yet been established.
The paper is organized as follows. In Section 2, we formulate the problem and
the hypotheses on the data. In Section 3, we define an auxiliary problem and
prove the existence of weak solutions for the initial problem. Section 4 is de-
voted to the proof of the uniqueness of weak solutions. In Section 5, we study
the asymptotic behaviour of the weak solution. Finally, in Section 6, we draw
some conclusions.

2 Statement of the problem

Let us consider the problem of finding the function u which satisfies the following
conditions:











∂u

∂t
− a(u)∆u = f (x, t) , (x, t) ∈ Ω×]0, T ]

u (x, t) = 0 , (x, t) ∈ ∂Ω×]0, T ]
u(x, 0) = u0(x) , x ∈ Ω

(5)

where Ω is a bounded open domain in Rd, d ≥ 1, a(u) =
(∫

Ω u2(x, t)dx
)γ

with
γ ∈ R, and f and u0 are continuous integrable functions.
If γ = 0, we have the heat equation which is widely known. For γ > 0, the
problem could degenerate if there is an extinction phenomenon, and for γ < 0,
if the extinction occurs, the problem becomes singular.
The definition of a weak solution to this problem is as follows:

Definition 1 (Weak solution). We say that the function u is a weak solution
of problem (5) if

u ∈ L2(0, T ;H
1(Ω)),

∂u

∂t
∈ L2(0, T ;L2(Ω)), (6)

the equality
∫

Ω

utw dx+ a(u)

∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx (7)

is valid for all w ∈ H1
0 (Ω) and t ∈]0, T [, and

u(x, 0) = u0(x), x ∈ Ω. (8)
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3 Existence of a weak solution

Since the problem may be degenerate, we consider the auxiliary problem










∂uε

∂t
− aε(uε)∆uε = f (x, t) , (x, t) ∈ Ω×]0, T ]

uε (x, t) = 0 , (x, t) ∈ ∂Ω×]0, T ]
uε(x, 0) = u0(x) , x ∈ Ω

(9)

where
aε(uε) =

(

min{a(uε),K
2}+ ε

)γ
, ε ∈]0, 1],

with K a finite parameter to be chosen later.
Since 0 < m(γ, ε,K) ≤ aε ≤ M(γ, ε,K) < ∞, for every ε > 0, Problem

(9) has a unique strong solution uε, which satisfies ∂uε

∂t
, ∆uε ∈ L2(Ω) (see [8]).

First, we define the parameter K and next, we obtain estimates, independent
of ε, for uε and its derivatives.

Lemma 2. Let uε be a weak solution of Problem (9). If u0 ∈ L2k(Ω) and
f ∈ L1(0, T ;L2k(Ω)), for k ∈ N, then

‖uε‖L2k(Ω) ≤ ‖u0‖L2k(Ω) +

∫ T

0

‖f‖L2k(Ω) dt ≤ C, (10)

where C does not depend on ε.

Proof. Multiplying the first equation of Problem (9) by u2k−1
ε and integrating

in Ω, we arrive at

1

2k

d

dt
‖uε‖

2k
L2k(Ω) + (2k − 1)aε(uε)

∫

Ω

u2k−2
ε |∇uε|

2 dx =

∫

Ω

fu2k−1
ε dx.

Applying the Hölder inequality and ignoring the second term ( since it is non-
negative ) on the left hand side, we obtain

1

2k

d

dt
‖uε‖

2k
L2k(Ω) ≤ ‖f‖L2k(Ω)‖uε‖

2k−1
L2k(Ω).

Simplifying the factor ‖uε‖
2k−1
L2k(Ω) and integrating in t, we have (10).

Corolary 3. Let uε be a weak solution of Problem (5). If the conditions of
Lemma 2 are fulfilled for k = 2, then we have

aε(uε) =

(
∫

Ω

u2
ε dx+ ε

)γ

(11)

and
0 < (K2 + 1)γ ≤ aε(uε) ≤ εγ < ∞, if γ < 0,

0 < εγ ≤ aε(uε) ≤ (K2 + 1)γ < ∞, if γ > 0,

with

K = ‖u0‖L2(Ω) +

∫ T

0

‖f‖L2(Ω) dt < ∞.
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Lemma 4. Let uε be a weak solution of Problem (9). If u0 ∈ H1
0 (Ω) and

f ∈ L2(0, T ;H
1
0(Ω)), then

∫

Ω

|∇uε|
2 dx+

∫ T

0

aε

∫

Ω

(∆uε)
2 dxdt

≤ C

∫

Ω

|∇u0|
2 dx+ C

∫ T

0

∫

Ω

|∇f |2 dxdt ≤ C, (12)

where C does not depend on ε.

Proof. Multiplying the same equation as before by ∆uε and integrating in Ω,
we conclude that

1

2

d

dt

∫

Ω

|∇uε|
2 dx+ aε

∫

Ω

(∆uε)
2 dx = −

∫

Ω

f∆uε dx.

If we apply Green’s theorem to the right hand side, the last equation becomes

1

2

d

dt

∫

Ω

|∇uε|
2 dx + aε

∫

Ω

(∆uε)
2 dx =

∫

Ω

∇f · ∇uε dx.

Using the Hölder and Cauchy inequalities, we obtain

1

2

d

dt

∫

Ω

|∇uε|
2 dx+ aε

∫

Ω

(∆uε)
2 dx ≤

1

2

∫

Ω

|∇uε|
2 dx+

1

2

∫

Ω

|∇f |2 dx.

Hence, applying Gronwall’s lemma, we conclude that (12) is true.

Corolary 5. If the conditions of Lemma 4 are fulfilled and γ < 0, then
∫ T

0

∫

Ω

(∆uε)
2 dxdt ≤ C,

with uε a weak solution of Problem (9).

Corolary 6. If the conditions of Lemma 4 are fulfilled and γ > 0, then
∫ T

0

∫

Ω

(∆uε)
2 dxdt ≤ Cε−γ ,

with uε a weak solution of Problem (9).

To prove the bounds for the temporal derivative, we will consider the two
different cases: γ ≥ 0 and γ < 0.

Lemma 7. Let uε be a weak solution of Problem (9) with γ ≥ 0. If u0 ∈ H1
0 (Ω)

and f ∈ L2(0, T ;H
1
0(Ω)), then

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt

≤ C

(

∫

Ω

|∇u0|
2 dx+

∫ T

0

∫

Ω

|∇f |2 dxdt+

∫ T

0

∫

Ω

f2 dxdt

)

, (13)

where C does not depend on ε.
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Proof. Multiplying the first equation of Problem (9) by ∂uε

∂t
and integrating in

Ω× [0, T ], we arrive at the inequality

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt =

∫ T

0

aε

∫

Ω

∆uε

∂uε

∂t
dxdt+

∫ T

0

∫

Ω

f
∂uε

∂t
dxdt.

Applying Cauchy’s inequality to the right hand side, we obtain

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt ≤
1

4

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt+

∫ T

0

a2ε

∫

Ω

(∆uε)
2 dxdt

+
1

4

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt+

∫ T

0

∫

Ω

f2 dxdt,

that is,

1

2

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt ≤ (K2 + 1)2γ
∫ T

0

aε

∫

Ω

(∆uε)
2 dxdt+

∫ T

0

∫

Ω

f2 dxdt.

Using Lemma 4, we obtain

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt ≤ C

∫

Ω

|∇u0|
2 dx+C

∫ T

0

∫

Ω

|∇f |2 dxdt+2

∫ T

0

∫

Ω

f2 dxdt

and the result follows.

Lemma 8. If u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;L2(Ω)),

∫

Ω u0 dx > 0 and γ < 0, then
there exists a t∗ > 0 such that aε(uε) ≤ M < ∞ for t ∈ [0, t∗] with uε a weak
solution of Problem (9).

Proof. Multiplying the first equation of Problem (9) by ∂uε

∂t
and integrating in

Ω, we arrive at the equality

∫

Ω

(

∂uε

∂t

)2

dx− aε

∫

Ω

∆uε

∂uε

∂t
dx =

∫

Ω

f
∂uε

∂t
dx.

Applying Green’s theorem to the second term on the left hand side and Cauchy’s
inequality to the right hand side, we obtain

1

aε

∫

Ω

(

∂uε

∂t

)2

dx +
d

dt

∫

Ω

|∇uε|
2 dx ≤

1

aε

∫

Ω

f2 dx.

Integrating in t and using the bounds of a, we conclude that

∫ T

0

(
∫

Ω

u2
ε dx

)|γ| ∫

Ω

(

∂uε

∂t

)2

dxdt +

∫

Ω

|∇uε|
2 dx

≤

∫

Ω

|∇u0|
2 dx+ C

∫ T

0

∫

Ω

f2 dxdt. (14)

6



Now we consider the functional

b(t) =

(
∫

Ω

u2
ε dx

)β

,

with β = |γ|+1
2 . Differentiating b, we obtain

|b′(t)| = 2β

∣

∣

∣

∣

∫

Ω

uε

∂uε

∂t
dx

∣

∣

∣

∣

(
∫

Ω

u2
ε dx

)β−1

≤ 2β

(

∫

Ω

(

∂uε

∂t

)2

dx

)
1
2 (∫

Ω

u2
ε dx

)β− 1
2

.

Thus, using (14) we conclude that

∫ T

0

|b′(t)|2 dt ≤ 4β2

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dx

(
∫

Ω

u2
ε dx

)|γ|

dt ≤ C1,

where C1 depends on
∫

Ω
|∇u0|

2 dx and
∫ T

0

∫

Ω
f2 dxdt.

On the other hand,

b(t) = b(0) +

∫ t

0

b′(t) dt ≥ b(0)−

∫ T

0

|b′(t)| dt ≥ b(0)− t
1
2

(

∫ T

0

|b′(t)|2 dt

)
1
2

.

Hence, considering t∗ = b2(0)
C1

, we have that b(t) ≥ C > 0, for all t ∈ [0, t∗].
Finally,

aε(uε) ≤
1

(∫

Ω
u2
ε dx

)|γ|
=

∫

Ω u2
ε dx

b2
≤ M < ∞, for all t ∈ [0, t∗].

Lemma 9. Let uε be a weak solution of Problem (9) with γ < 0. If u0 ∈ H1
0 (Ω)

and f ∈ L2(0, T ;L2(Ω)), then there exists a t∗ > 0 such that, for T ≤ t∗,

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt +

∫

Ω

|∇uε|
2 dx ≤ C

∫

Ω

|∇u0|
2 dx+ C

∫ T

0

∫

Ω

f2 dxdt,

(15)
where C does not depend on ε, but may depend on M and K.

Proof. Multiplying the first equation of Problem (9) by ∂uε

∂t
and integrating in

Ω, we arrive at the equality
∫

Ω

(

∂uε

∂t

)2

dx− aε

∫

Ω

∆uε

∂uε

∂t
dx =

∫

Ω

f
∂uε

∂t
dx.

Applying Green’s theorem to the second term on the left hand side and Cauchy’s
inequality to the right hand side, we obtain

1

2

∫

Ω

(

∂uε

∂t

)2

dx+
aε

2

d

dt

∫

Ω

|∇uε|
2 dx ≤

1

2

∫

Ω

f2 dx,

7



which is
1

aε

∫

Ω

(

∂uε

∂t

)2

dx +
d

dt

∫

Ω

|∇uε|
2 dx ≤

1

aε

∫

Ω

f2 dx.

Integrating in t and using the bounds of a, we conclude that

∫ T

0

∫

Ω

(

∂uε

∂t

)2

dxdt +

∫

Ω

|∇uε|
2 dx ≤ C

∫

Ω

|∇u0|
2 dx + C

∫ T

0

∫

Ω

f2 dxdt,

for T < t∗.

Theorem 10. If γ ≥ 0, u0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;H

1
0 (Ω)), then Problem

(5) has a weak solution, in the sense of Definition 1.

Proof. By Lemmas 2, 4 and 7, we can conclude that there exists a function u

and subsequences such that

uε → u weakly in L2(Ω×]0, T ]),

∇uε → ∇u weakly in L2(Ω×]0, T ]),

∂uε

∂t
→ ∂u

∂t
weakly in L2(Ω×]0, T ]),

uε → u a.e. in Ω×]0, T ].

Since a is continuous, we have that

aε(uε) → a(u) a.e. in Ω×]0, T ].

Passing to the limit in

∫

Ω

∂uε

∂t
w + aε(uε)∇uε∇w − fw dx = 0,

we obtain
∫

Ω

∂u

∂t
w + a(u)∇u∇w − fw dx = 0.

Hence u is a weak solution of Problem (5).

Theorem 11. If γ < 0, u0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;H

1
0 (Ω)), then there exists

a t∗ such that Problem (5) has a weak solution for T ≤ t∗, in the sense of
Definition 1.

Proof. By Lemmas 2, 4, 9 and using the arguments of Theorem 10. the result
follows easily.
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4 Uniqueness of a weak solution

In order to prove the uniqueness of a weak solution of Problem (5), we need to
obtain positive real bounds for the diffusive term, and the Lipschitz-continuity
in u.

Lemma 12. If γ ≥ 0,
∫

Ω
u0 dx > 0 and the conditions of Lemma 7 are fulfilled,

then there exists a t∗ > 0 such that a(u) ≥ m > 0 for t ∈ [0, t∗], with u a weak
solution of Problem (5).

Proof. By Lemma 7, we have that

∫

Ω

u dx =

∫

Ω

u0 dx+

∫ t

0

d

dt

∫

Ω

u dxdt =

∫

Ω

u0 dx+

∫ t

0

∫

Ω

∂u

∂t
dxdt

≥

∫

Ω

u0 dx− t
1
2 |Ω|

1
2

(

∫ t

0

∫

Ω

(

∂u

∂t

)2

dxdt

)
1
2

≥

∫

Ω

u0 dx− t
1
2 |Ω|

1
2C,

with C depending on
∫

Ω
|∇u0| dx,

∫ t

0

∫

Ω
f2 dxdt and

∫ t

0

∫

Ω
|∇f |2 dxdt. Thus, if

t∗ satisfies

t∗ <

(∫

Ω
u0 dx

)2

C|Ω|
,

then the solution of Problem (5) is such that

∫

Ω

u dx > 0.

So,
(
∫

Ω

u2 dx

)γ

> 0, t < t∗.

Before proving the uniqueness of the weak solution, we present the following
lemma, which proves the Lipschitz-continuity of the diffusion term.

Lemma 13. If

0 < m ≤

∫

Ω

v2 dx,

∫

Ω

w2 dx ≤ M < ∞,

then
|a(v)− a(w)| ≤ C‖v − w‖,

where C may depend on γ , m and M .

9



Proof. Denoting p =
∫

Ω
v2 dx and q =

∫

Ω
w2 dx, we have

pγ − qγ = γ

∫ p

q

τγ−1 dτ.

If γ ≥ 1, then τγ−1 ≤ Mγ−1 and |pγ − qγ | ≤ γMγ−1|p− q|.
If γ < 1, then τγ−1 ≤ mγ−1 and |pγ − qγ | ≤ |γ|mγ−1|p− q|, where

|p− q| ≤

∫

Ω

|v2 − w2| dx =

∫

Ω

|v − w| |v + w| dx

≤

(
∫

Ω

|v − w|2 dx

)
1
2
(
∫

Ω

|v + w|2 dx

)
1
2

≤ C

(
∫

Ω

|v − w|2 dx

)
1
2

and this completes the proof.

Theorem 14. If u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;H

1
0(Ω)) and

∫

Ω
u0 dx > 0, then

there exists a t∗ > 0 such that Problem (5) has a unique weak solution, in the
sense of Definition 1, for t ≤ t∗.

Proof. Suppose that there exist two solutions u1 and u2. Let u = u1 − u2, then
∫

Ω

∂u

∂t
w dx+

∫

Ω

(a(u1)∇u1 − a(u2)∇u2) · ∇w dx = 0

or, equivalently,
∫

Ω

∂u

∂t
w dx +

∫

Ω

a(u1)∇u · ∇w dx =

∫

Ω

(a(u2)− a(u1))∇u2 · ∇w dx.

Making w = u, we obtain

1

2

d

dt

∫

Ω

u2 dx+ a(u1)

∫

Ω

|∇u|2 dx = (a(u2)− a(u1))

∫

Ω

∇u2 · ∇u dx.

Then

1

2

d

dt

∫

Ω

u2 dx+ a(u1)

∫

Ω

|∇u|2 dx ≤ |a(u2)− a(u1)|

∫

Ω

|∇u2 · ∇u| dx.

By Lemma 12 and Corollary 3, there exists t∗ > 0 such that a(u1) ≥ m > 0, for
t ∈ [0, t∗]. So we have that

d

dt

∫

Ω

u2 dx+m

∫

Ω

|∇u|2 dx ≤
1

4m
|a(u2)−a(u1)|

2

∫

Ω

|∇u2|
2 dx+m

∫

Ω

|∇u|2 dx.

In the last section, we proved that
∫

Ω

|∇u2|
2 dx ≤ C,

10



and, in Lemma 13, we proved that

|a(u2)− a(u1)|
2 ≤ ‖u2 − u1‖

2 =

∫

Ω

u2 dx.

Thus
d

dt

∫

Ω

u2 dx ≤ C

∫

Ω

u2 dx,

and, since u(x, 0) = 0, u(x, t) = 0 for t ≤ t∗.

Remark 15. If we substitute the Dirichlet condition u(x, t) = 0, by the Newman
condition ∂u

∂n
= 0, in the boundary, then the solution of this new problem satisfies

∫

Ω

u dx =

∫

Ω

u0 dx+

∫ t

0

∫

Ω

f dxdt = g(t),

where g(t) is defined by the initial data. Using the inequality

∣

∣

∣

∣

∫

Ω

u dx

∣

∣

∣

∣

≤ C(Ω)

(
∫

Ω

u2 dx

)
1
2

,

we can prove that

a(u) =

(
∫

Ω

u2 dx

)γ

≥

(

1

C(Ω)

∫

Ω

u dx

)2γ

=

(

g(t)

C(Ω)

)2γ

, for γ > 0,

and

a(u) =

(
∫

Ω

u2 dx

)γ

≤

(

1

C(Ω)

∫

Ω

u dx

)2γ

=

(

g(t)

C(Ω)

)2γ

, for γ < 0.

Supposing that u0 and f are such that g(t) > 0 for t > 0, then the existence and
uniqueness could be proved in [0, T ], for T > 0.

5 Asymptotic behaviour

The weak solutions of Problem (5) exhibit different behaviours for different
values of γ. If γ > 0, then we have a decay of the energy of the solution. If
γ < 0, then the solution vanishes in a finite time.

Theorem 16. If f = 0 and γ > 0, then the weak solution u of Problem (5)
satisfies

∫

Ω

u2 dx ≤

∫

Ω u2
0 dx

(

1 + 2C2γ
(∫

Ω
u2
0 dx

)γ
t
)

1
γ

,

where C2 is the Poincaré constant.
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Proof. Multiplying the first equation of Problem (5) by u and integrating in Ω,
we arrive at

1

2

d

dt

∫

Ω

u2 dx+

(
∫

Ω

u2 dx

)γ ∫

Ω

|∇u|2 dx = 0.

By the Poincaré inequality, we prove that

1

2

d

dt

∫

Ω

u2 dx+ C2

(
∫

Ω

u2 dx

)γ+1

≤ 0.

Hence y =
∫

Ω u2 dx satisfies the differential inequality

y′ + 2C2y
γ+1 ≤ 0.

Solving this inequality, we obtain

y ≤
y0

(1 + 2γC2y
γ
0 t)

1
γ

,

which is the desired estimate.

Let us define the positive part of a function h as

[h]+ =

{

h, h ≥ 0
0, h < 0

.

Theorem 17. If f = 0 and γ < 0, then the weak solution u of Problem (5)
satisfies

∫

Ω

u2 dx ≤

[

(
∫

Ω

u2
0 dx

)|γ|

− 2|γ|C2 t

]
1

|γ|

+

,

where C2 is the Poincaré constant.

Proof. Multiplying the first equation of Problem (5) by u and integrating in Ω,
we arrive at

1

2

d

dt

∫

Ω

u2 dx+

(
∫

Ω

u2 dx

)γ ∫

Ω

|∇u|2 dx = 0.

By the Poincaré inequality, we prove that

1

2

d

dt

∫

Ω

u2 dx+ C2

(
∫

Ω

u2 dx

)γ+1

≤ 0.

Hence y(t) =
∫

Ω u2 dx satisfies the differential inequality

y′ + 2C2y
γ+1 ≤ 0.

Solving this inequality, we obtain

y ≤
[

y
|γ|
0 − 2|γ|C2 t

]
1

|γ|

+
,

which is the desired estimate.

12



Theorem 18. If

‖f‖L2(Ω) ≤
A

(1 +Bt)
2γ+1

2γ

,

with

A < C2

(
∫

Ω

u2
0 dx

)

2γ+1

2

, B = 2γC2

(
∫

Ω

u2
0 dx

)γ

−
2γA

(∫

Ω u2
0 dx

)
1
2

(16)

and C2 the Poincaré constant, then the weak solution u of Problem (5) with
γ > 0, satisfies

∫

Ω

u2 dx ≤

∫

Ω u2
0 dx

(1 +Bt)
1
γ

.

Proof. Multiplying the first equation of Problem (5) by u and integrating in Ω,
we obtain

1

2

d

dt

∫

Ω

u2 dx+

(
∫

Ω

u2 dx

)γ ∫

Ω

|∇u|2 dx =

∫

Ω

fu dx.

By the Poincaré and Cauchy inequalities, we can prove that

1

2

d

dt

∫

Ω

u2 dx+ C2

(
∫

Ω

u2 dx

)γ+1

≤

(
∫

Ω

f2 dx

)
1
2
(
∫

Ω

u2 dx

)
1
2

.

Hence y =
∫

Ω
u2 dx satisfies the differential inequality

1

2
y′ + C2y

γ+1 ≤ C3(t)y
1
2 ,

where C3(t) =
(∫

Ω
f2 dx

)
1
2 . Setting z = y

1
2 , we arrive at

z′ + C2z
2γ+1 ≤ C3(t). (17)

Considering A and B as defined in (16), the solution of the ordinary differential
equation

w′ + C1w
2γ+1 =

A

(1 +Bt)
2γ+1

2γ

is the function
w =

w0

(1 +Bt)
1
2γ

,

which is an upper bound for the solutions of (17). Reverting to y, we then
obtain the desired estimate.

Theorem 19. If

‖f‖L2(Ω) ≤ A [1−Bt]
− 2γ+1

2γ

+ ,
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with

A < C2

(
∫

Ω

u2
0 dx

)

2γ+1

2

, B =
2γA

(∫

Ω u2
0 dx

)
1
2

− 2γC2

(
∫

Ω

u2
0 dx

)γ

(18)

and C2 the Poincaré constant, then the weak solution u of Problem (5), with
γ < 0, satisfies

∫

Ω

u2 dx ≤

∫

Ω

u2
0 dx [1−Bt]

1
|γ|

+ .

Proof. Multiplying the first equation of Problem (5) by u, integrating in Ω
and arguing in the same way as in the proof of Theorem 18, we prove that

z =
(∫

Ω u2 dx
)

1
2 satisfies the differential inequality

z′ + C2z
2γ+1 ≤ C3(t), (19)

where C3(t) =
(∫

Ω
f2 dx

)
1
2 . Considering A and B as defined in (18) and the

ordinary differential equation

w′ + C2w
2γ+1 = A [1−Bt]

− 2γ+1

2γ

+ , (20)

it is easy to verify that

w = w0[1 +Bt]
− 1

2γ

+

is a solution of Equation (20) and an upper bound for the solutions of (19).
Reverting to y, the proof is concluded.

6 Conclusions

We proved the existence of a global in time weak solution for a nonlocal degen-
erate parabolic problem with γ ≥ 0, and the existence and uniqueness of a local
in time weak solution for the problem with γ < 0. We also obtained conditions
on γ, f and u0 which ensure that that the solutions decay in time or become
extinct in finite time.
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