14,139 research outputs found

    On the existence of a convex point subset containing one triangle in the plane

    Get PDF
    AbstractLet g(k) be the smallest integer such that every planar point set in general position with at least g(k) interior points has a convex subset with precisely k interior points. In this paper, we show that g(3)=8 if the point sets have no empty convex hexagons

    Completely empty pyramids on integer lattices and two-dimensional faces of multidimensional continued fractions

    Full text link
    In this paper we develop an integer-affine classification of three-dimensional multistory completely empty convex marked pyramids. We apply it to obtain the complete lists of compact two-dimensional faces of multidimensional continued fractions lying in planes with integer distances to the origin equal 2, 3, 4 ... The faces are considered up to the action of the group of integer-linear transformations. In conclusion we formulate some actual unsolved problems associated with the generalizations for n-dimensional faces and more complicated face configurations.Comment: Minor change

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    Polynomial cubic differentials and convex polygons in the projective plane

    Full text link
    We construct and study a natural homeomorphism between the moduli space of polynomial cubic differentials of degree d on the complex plane and the space of projective equivalence classes of oriented convex polygons with d+3 vertices. This map arises from the construction of a complete hyperbolic affine sphere with prescribed Pick differential, and can be seen as an analogue of the Labourie-Loftin parameterization of convex RP^2 structures on a compact surface by the bundle of holomorphic cubic differentials over Teichmuller space.Comment: 64 pages, 5 figures. v3: Minor revisions according to referee report. v2: Corrections in section 5 and related new material in appendix

    On Polygons Excluding Point Sets

    Get PDF
    By a polygonization of a finite point set SS in the plane we understand a simple polygon having SS as the set of its vertices. Let BB and RR be sets of blue and red points, respectively, in the plane such that B∪RB\cup R is in general position, and the convex hull of BB contains kk interior blue points and ll interior red points. Hurtado et al. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points RR. We show that there is a minimal number K=K(l)K=K(l), which is polynomial in ll, such that one can always find a blue polygonization excluding all red points, whenever k≥Kk\geq K. Some other related problems are also considered.Comment: 14 pages, 15 figure

    Holes or Empty Pseudo-Triangles in Planar Point Sets

    Full text link
    Let E(k,ℓ)E(k, \ell) denote the smallest integer such that any set of at least E(k,ℓ)E(k, \ell) points in the plane, no three on a line, contains either an empty convex polygon with kk vertices or an empty pseudo-triangle with ℓ\ell vertices. The existence of E(k,ℓ)E(k, \ell) for positive integers k,ℓ≥3k, \ell\geq 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565--576, 2007]. In this paper, following a series of new results about the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of E(k,5)E(k, 5) and E(5,ℓ)E(5, \ell), and prove bounds on E(k,6)E(k, 6) and E(6,ℓ)E(6, \ell), for k,ℓ≥3k, \ell\geq 3. By dropping the emptiness condition, we define another related quantity F(k,ℓ)F(k, \ell), which is the smallest integer such that any set of at least F(k,ℓ)F(k, \ell) points in the plane, no three on a line, contains a convex polygon with kk vertices or a pseudo-triangle with ℓ\ell vertices. Extending a result of Bisztriczky and T\'oth [Discrete Geometry, Marcel Dekker, 49--58, 2003], we obtain the exact values of F(k,5)F(k, 5) and F(k,6)F(k, 6), and obtain non-trivial bounds on F(k,7)F(k, 7).Comment: A minor error in the proof of Theorem 2 fixed. Typos corrected. 19 pages, 11 figure
    • …
    corecore