4,379 research outputs found

    Nonrepetitive colorings of lexicographic product of graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1il1\le i\le l. Given graphs GG and HH with V(H)=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. %Our main results are the following. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+k/23k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+k/23k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    Nonrepetitive colorings of lexicographic product of paths and other graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1il1\le i\le l. Given graphs GG and HH with V(H)=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+k/23k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+k/23k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    ACMS 18th Biennial Conference Proceedings

    Get PDF
    Association of Christians in the Mathematical Sciences 18th Biennial Conference Proceedings, June 1-4, 2011, Westmont College, Santa Barbara, CA

    First-Order Model Checking on Generalisations of Pushdown Graphs

    Get PDF
    We study the first-order model checking problem on two generalisations of pushdown graphs. The first class is the class of nested pushdown trees. The other is the class of collapsible pushdown graphs. Our main results are the following. First-order logic with reachability is uniformly decidable on nested pushdown trees. Considering first-order logic without reachability, we prove decidability in doubly exponential alternating time with linearly many alternations. First-order logic with regular reachability predicates is uniformly decidable on level 2 collapsible pushdown graphs. Moreover, nested pushdown trees are first-order interpretable in collapsible pushdown graphs of level 2. This interpretation can be extended to an interpretation of the class of higher-order nested pushdown trees in the collapsible pushdown graph hierarchy. We prove that the second level of this new hierarchy of nested trees has decidable first-order model checking. Our decidability result for collapsible pushdown graph relies on the fact that level 2 collapsible pushdown graphs are uniform tree-automatic. Our last result concerns tree-automatic structures in general. We prove that first-order logic extended by Ramsey quantifiers is decidable on all tree-automatic structures.Comment: phd thesis, 255 page

    On the maximum intersecting sets of the general semilinear group of degree 22

    Full text link
    Let pp be a prime and q=pkq = p^k. A subset FΓL2(q)\mathcal{F} \subset \operatorname{\Gamma L}_{2}(q) is intersecting if any two semilinear transformations in F\mathcal{F} agree on some non-zero vector in Fq2\mathbb{F}_q^2. We show that any intersecting set of ΓL2(q)\operatorname{\Gamma L}_{2}(q) is of size at most that of a stabilizer of a non-zero vector, and we characterize the intersecting sets of this size. Our proof relies on finding a subgraph which is a lexicographic product in the derangement graph of ΓL2(q)\operatorname{\Gamma L}_{2}(q) in its action on non-zero vectors of Fq2\mathbb{F}_q^2. This method is also applied to give a new proof that the only maximal intersecting sets of GL2(q)\operatorname{GL}_{2}(q) are the maximum intersecting sets
    corecore