
First-Order Model Checking
on Generalisations of
Pushdown Graphs
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Dipl.- Math. Alexander Kartzow aus Gießen
Juli 2011 — Darmstadt — D 17

Fachbereich Mathematik
Arbeitsgruppe Logik

First-Order Model Checking on Generalisations of Pushdown Graphs

Genehmigte Dissertation von Dipl.- Math. Alexander Kartzow aus Gießen

1. Gutachten: Prof. Dr. Martin Otto
2. Gutachten: Prof. Damian Niwiński
3. Gutachten: Prof. Dr. Stephan Kreutzer

Tag der Einreichung: 09.12.2010
Tag der Prüfung: 11.05.2011

Darmstadt — D 17

Acknowledgement

I am deeply grateful to my supervisor Martin Otto for his support. Beside his mathematical

advice, I especially appreciated his lessons in mathematical writing and his efforts for im-

proving my English. I thank my referees Damian Niwiński and Stephan Kreutzer for their

valuable comments on this work. Furthermore, I thank Achim Blumensath and Dietrich

Kuske for many helpful comments and the opportunity to discuss some of my ideas. I

am grateful to Alex Kreuzer and my wife Franziska for spell checking parts of this thesis.

Finally, I thank my wife and my family for the moral support and the DFG for the financial

support during the last years.

1

German Summary / Zusammenfassung

In dieser Arbeit untersuchen wir das Model-Checking-Problem für Pushdown-Graphen. Ein

Model-Checking-Algorithmus für eine Logik L und eine Klasse von Strukturen C ist ein

Algorithmus, der bei Eingabe eines Paares (A,ϕ) mit A ∈ C und ϕ ∈ L entscheidet, ob

die Struktur A die Formel ϕ erfüllt.

In dieser Arbeit konzentrieren wir uns größtenteils auf die Entwicklung von Model-

Checking-Algorithmen für die Logik erster Stufe (im folgenden FO abgekürzt) und ihrer Er-

weiterung um Erreichbarkeitsprädikate auf Klassen verallgemeinerter Pushdown-Graphen.

Ein Pushdown-Graph ist der Konfigurationsgraph eines Kellerautomaten. Kellerauto-

maten, die auch Pushdown-Systeme genannt werden, sind endliche Automaten erweitert

um die Speicherstruktur eines Stacks. Ein klassisches Resultat von Muller und Schupp

[53] beweist die Entscheidbarkeit des Model-Checking-Problems für die monadische Logik

zweiter Stufe (im folgenden MSO abgekürzt) auf der Klasse der Pushdown-Graphen. Ins-

besondere gibt es also auch einen Model-Checking-Algorithmus für die Logik erster Stufe

auf der Klasse der Pushdown-Graphen.

In den letzten Jahren haben Verallgemeinerungen der Pushdown-Graphen großes In-

teresse im Bereich der automatischen Verifikation von funktionalen Programmiersprachen

erlangt. Pushdown-Graphen wurden im wesentlichen auf zwei Arten erweitert.

Die erste Erweiterung führt zum Konzept eines Pushdown-Systems höherer Ordnung.

Hierbei wird der Stack eines Kellerautomaten ersetzt durch eine Struktur ineinander

geschachtelter Stacks. Die Verschachtelungstiefe dieser Stacks wird dabei als die Stufe

des Systems bezeichnet. Ein Pushdown-System der Stufe 2 hat also einen Stack aus

Stacks, ein System der Stufe 3 einen Stack aus Stacks aus Stacks und analog für jede Stufe

n ∈ N. Auf jeder Stufe i ≤ n dieser Schachtelung gibt es entsprechende Stack-Operationen

um den obersten Eintrag des Stufe i Stacks zu manipulieren. Mit diesem Ansatz wur-

den zwei Hierarchien verallgemeinerter Pushdown-Graphen definiert. Die Hierarchie der

“Higher-Order-Pushdown-Graphen” und die der “Collapsible-Pushdown-Graphen”. Die

beiden Klassen unterscheiden sich in den verwendeten Stack-Operationen. Die Pushdown-

Systeme, die Collapsible-Pushdown-Graphen erzeugen, erweitern die Pushdown-Systeme,

die Higher-Order-Pushdown-Graphen erzeugen, um eine neue Operation, die “Collapse”

genannt wird. Trotz der ähnlichen Definition dieser beiden Hierarchien von Graphen

haben die Hierarchien sehr unterschiedliche modelltheoretische Eigenschaften.

Die Hierarchie der Higher-Order-Pushdown-Graphen fällt mit der Caucal-Hierarchie

zusammen. Diese Klasse von Graphen ist definiert durch iteriertes Anwenden von MSO-

Interpretationen und Abwicklungen beginnend von der Klasse der endlichen Graphen. Da

sowohl Abwicklungen als auch MSO-Interpretationen die Entscheidbarkeit von monadis-

cher Logik zweiter Stufe erhalten, ist MSO-Model-Checking auf der Klasse der Higher-

Order-Pushdown-Graphen entscheidbar.

Die Klasse der Collapsible-Pushdown-Graphen hat dagegen ganz andere modelltheo-

retische Eigenschaften. Schon auf der zweiten Stufe dieser Hierarchie gibt es Graphen

mit unentscheidbarer MSO-Theorie. Hingegen ist der modale µ-Kalkül auf der Klasse der

Collapsible-Pushdown-Graphen entscheidbar. Dieses unterschiedliche Verhalten in Bezug

auf MSO und µ-Kalkül tritt nur bei wenigen natürlichen Strukturklassen auf.

3

Eine weitere Klasse mit dieser Eigenschaft erhalten wir durch die zweite Verallge-

meinerung von Pushdown-Graphen. Abwicklungen von Pushdown-Graphen haben sich

in der Software-Verifikation als nützliche Abstraktion von Programmabläufen heraus-

gestellt. Hierbei wird auf dem Stack vor allem der Aufruf von Funktionen und die Rückkehr

zum aufrufenden Programm verwaltet. Viele interessante Eigenschaften von Programmen

lassen sich so durch MSO-Model-Checking auf der Abwicklung eines Pushdown-Graphen

überprüfen und nachweisen. Allerdings ist es in diesem Modell nicht möglich, den Zus-

tand des Programms vor einem Funktionsaufruf mit dem Zustand am Ende dieser Funk-

tion zu vergleichen, denn in monadischer Logik zweiter Stufe kann man bei unbeschränkt

verschachteltem Aufruf von Funktionen die zusammenhgehörenden Positionen von Funk-

tionsaufruf und Funktionsende nicht definieren.

Um dieses Problem zu umgehen haben Alur et al. [2] die Klasse der “Nested-Pushdown-

Trees” eingeführt (Warnung: wir bezeichnen diese bewusst nicht als “Nested-Pushdown-

Bäume”, weil es keine Bäume sind). Ein Nested-Pushdown-Tree ist die Abwicklung

eines Pushdown-Graphen mit einer zusätzlichen Relation ,→. Diese verbindet eine Push-

Operation des Kellerautomaten mit der dazugehörigen Pop-Operation. Wenn man einen

Pushdown-Graphen also als abstraktes Modell des Programmablaufs eines Computerpro-

gramms sieht, wird der Funktionsaufruf über ,→ mit dem Ende der aufgerufenen Funk-

tion verbunden. Mit diesem Modell kann man also die oben erwähnten Nachteile der

Pushdown-Graphen überwinden. Alur et al. konnten zeigen, dass für die Klasse der

Nested-Pushdown-Trees das µ-Kalkül-Model-Checking entscheidbar ist. Jedoch gibt es

einen Nested-Pushdown-Tree mit unentscheidbarer MSO-Theorie.

Da die monadische Logik zweiter Stufe für Collapsible-Pushdown-Graphen und für

Nested-Pushdown-Trees unentscheidbar ist, stellt sich die natürliche Frage, welche Frag-

mente der monadischen Logik zweiter Stufe auf diesen Klassen entscheidbar sind.

In unserer Arbeit geben wir dafür die folgenden partiellen Antworten.

1. Auf der zweiten Stufe der Hierarchie der Collapsible-Pushdown-Graphen ist das FO-

Model-Checking-Problem entscheidbar. Genauer ist die Erweiterung von FO um reg-

uläre Erreichbarkeitsprädikate und Ramsey-Quantoren entscheidbar. Wir beweisen

dies, indem wir eine baumautomatische Repräsentation (vgl. Punkt 4) für jeden

Collapsible-Pushdown-Graphen der zweiten Stufe erzeugen.

2. Das FO-Model-Checking-Problem auf der Klasse der Nested-Pushdown-Trees ist

in zweifach exponentiellem Platz entscheidbar. Zusätzlich kann jeder Nested-

Pushdown-Tree durch eine FO-Interpretation aus einem Collapsible-Pushdown-

Graphen der Stufe 2 erzeugt werden. Mithilfe dieser Interpretation können wir auch

die Theorie der Logik erster Stufe erweitert um das Erreichbarkeitsprädikat für jeden

Nested-Pushdown-Tree entscheiden.

Neben diesen Resultaten über bekannte Erweiterungen von Pushdown-Graphen beinhaltet

diese Arbeit auch die folgenden Ergebnisse.

3. Durch die Kombination der Idee der geschachtelten Stacks mit der Definition der

Nested-Pushdown-Trees definieren wir eine neue Hierarchie der Nested-Pushdown-

Trees höherer Ordnung. Ein Nested-Pushdown-Tree der Stufe l ist die Abwicklung

eines Pushdown-Graphen der Stufe l erweitert um eine neue Relation ,→, die zusam-

mengehörende Push- und Pop-Operationen verbindet. Wir beweisen, dass diese neue

4 German Summary / Zusammenfassung

Hierarchie eng verwandt mit den Hierarchien der Higher-Order-Pushdown-Graphen

und der Collapsible-Pushdown-Graphen ist. Alle Abwicklungen von Higher-Order-

Pushdown-Graphen sind in der neuen Hierarchie enthalten. Außerdem lassen sich

alle Higher-Order-Nested-Pushdown-Trees durch FO-Interpretationen aus der Klasse

der Collapsible-Pushdown-Graphen erzeugen. Durch diese Interpretation kann man

Higher-Order-Nested-Pushdown-Trees der Stufe l als besonders einfache Collapsible-

Pushdown-Graphen der Stufe l + 1 betrachten. Wir zeigen dann, dass für die zweite

Stufe dieser neuen Hierarchie ein FO-Model-Checking-Algorithmus existiert.

4. Wir zeigen in dieser Arbeit auch, dass die Erweiterung der Logik erster Stufe um

Ramsey-Quantoren auf baumautomatischen Strukturen entscheidbar ist. Baumau-

tomatische Strukturen sind Strukturen, die sich durch endliche Baumautomaten

repräsentieren lassen. Ein Ramsey-Quantor ist von der Gestalt Ramn x̄(ϕ(x̄)). Eine

solche Formel wird von einer Struktur A erfüllt, wenn es eine unendliche Teilmenge

M ⊆ A gibt, so dass jedes n-Tupel aus M , von dem je zwei Elemente paarweise

verschieden sind, die Formel ϕ erfüllt. Unser Beweis, der in Zusammenarbeit mit

Dietrich Kuske entstand, verallgemeinert ein analoges Resultat für die Klasse der

wortautomatischen Strukturen.

5

Contents

1. Introduction 9
1.1. Verification and Model Checking . 9

1.2. Collapsible Pushdown Graphs and Nested Pushdown Trees 11

1.3. Goal and Outline of this Thesis . 13

2. Basic Definitions and Technical Results 17
2.1. Logics and Interpretations . 17

2.1.1. First-Order Logic, Locality and Ehrenfeucht-Fraïssé Games 17

2.1.2. Extensions of First-Order Logic . 26

2.1.3. Basic Modal Logic and Lµ . 30

2.1.4. Logical Interpretations . 31

2.2. Grids and Trees . 33

2.2.1. A Grid-Like Structure . 33

2.2.2. Words and Trees . 35

2.3. Generalised Pushdown Graphs . 36

2.3.1. Pushdown Graphs . 36

2.3.2. Nested Pushdown Trees . 40

2.3.3. Collapsible Pushdown Graphs . 42

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 54

2.4.1. Milestones and Loops . 55

2.4.2. Loops and Returns . 58

2.4.3. Computing Returns . 60

2.4.4. Computing Loops . 79

2.5. Automatic Structures . 86

2.5.1. Finite Automata . 86

2.5.2. Automatic Structures . 91

3. Main Results 95
3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 96

3.1.1. Encoding of Level 2 Stacks in Trees . 97

3.1.2. Recognising Reachable Configurations 106

3.1.3. Regularity of the Stack Operations . 113

3.1.4. Tree-Automaticity of Regular Reachability Predicates 119

3.1.5. Combination of FO and Lµ Model Checking 144

3.1.6. Lower Bound for FO Model Checking 146

3.1.7. Model Checking on Higher-Order Collapsible Pushdown Graphs . . . 147

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 148

3.2.1. Interpretation of NPT in CPG . 148

3.2.2. A Modularity Result for Games on Graphs of Small Diameter 153

3.2.3. ≃α-Pumping on NPT . 155

3.2.4. First-Order Model Checking on NPT is in 2-EXPSPACE 165

7

3.3. Higher-Order Nested Pushdown Trees . 168

3.3.1. Definition of Higher-Order Nested Pushdown Trees 168

3.3.2. Comparison with Known Pushdown Hierarchies 169

3.3.3. Towards FO Model Checking on Nested Pushdown Trees of Level 2 . 173

3.3.4. Relevant Ancestors . 176

3.3.5. A Family of Equivalence Relations on Words and Stacks 180

3.3.6. Small-Witness Property via Isomorphisms of Relevant Ancestors . . . 194

3.3.7. FO Model Checking Algorithm for Level 2 Nested Pushdown Trees . 208

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 210

3.4.1. Tree-Combs . 213

3.4.2. Reduction of the Ramsey Quantifier . 224

3.4.3. Soundness of the Reduction . 226

3.4.4. Correctness of the Reduction . 228

3.4.5. Recurrent Reachability on Automatic Structures 239

4. Conclusions 241

A. Undecidability of Lµ on the Bidirectional Half-Grid 243
A.1. Turing Machines . 243

A.2. Reduction to the Halting Problem . 244

8 Contents

1 Introduction

In this thesis, we investigate the first-order model checking problem for generalisations

of pushdown graphs. Our work is a contribution to the classification of all graphs that

have decidable first-order theories. The classes of graphs that we study are collapsible

pushdown graphs and nested pushdown trees. These classes of graphs have the follow-

ing interesting model-theoretic properties. The monadic second-order theory of a graph

from these classes is not decidable in general, while its modal µ-calculus theory is always

decidable. Most other classes of graphs do not share these properties. In most cases, a nat-

ural class of graphs will either have decidable monadic second-order and modal µ-calculus

theories or undecidable monadic second-order and modal µ-calculus theories. We start by

briefly recalling the history of generalisations of pushdown graphs. These classes of graphs

arise naturally in the field of software verification for higher-order functional programmes.

1.1 Verification and Model Checking

Verification of hard- and software is concerned with the problem of proving that a certain

piece of hard- or software fulfils the task for which it was designed. Since computer

systems are more and more used in safety critical areas, failure of a system can have

severe consequences. Thus, verification of these systems is very important. The most

successful approach to verification is the model checking paradigm introduced by Clarke

and Emerson [18]. In model checking, one derives an abstract structure A as a model

of some piece of hard- or software and one specifies the requirements of the system in a

formula ϕ from some logic L . The problem whether the system is correct then reduces

to the problem whether the abstract model A of the system satisfies the formula. This is

called a model checking problem. If the model satisfies the formula, we write A |= ϕ.

In this terminology, the L model checking problem on some class C of structures asks

on input a structure A ∈ C and a formula ϕ ∈ L whether A |= ϕ. Since the 1980’s,

model checking on finite structures has been developed and is nowadays used for real-

world hardware verification problems. For hardware, it is sufficient to consider finite

structures. Each piece of hardware has a finite amount of storage capacity whence it can

always be modelled as a finite state system. On the other hand, software verification

requires the use of infinite models as abstractions because the storage capacity of the

underlying hardware is a priori unbounded. Hence, software verification naturally leads

to model checking problems on infinite structures. Of course, model checking on infinite

structures is only possible for certain classes of structures. Since we expect an algorithm

to process the structures involved as input, we need finite descriptions of these infinite

structures. Hence, model checking on infinite structures is only interesting for classes

of finitely representable structures. A further restriction is imposed by the question of

decidability of the model checking problem. A very expressive logic on a large class of

finitely represented structures will result in an undecidable model checking problem (the

halting problem can be formulated as a special version of model checking on structures

representing Turing machines). Thus, there is a tradeoff between the choice of the class C

9

and the logic L . It is important to identify those pairs (C ,L) for which a model checking

algorithm exists, i.e., for which the L model checking on C is decidable.

Various techniques have been developed to finitely represent infinite structures. Accord-

ing to Bárány et al. [4], these may be classified into the following approaches.

• Algebraic representations: a structure is described as the least solution of some re-

cursive equation in some appropriate algebra of structures. An example of this class

are vertex replacement equational graphs [20].

• Transformational or logical representations: the structure is described as the result

of applying finitely many transformations to some finite structure. A transforma-

tion in this sense is, e.g., the tree-unfolding, the Muchnik-Iteration, or some logical

interpretation (see [9] for a survey).

• Internal representations: an isomorphic copy of the structure is explicitly described

using transducers or rewriting techniques. In most cases a set of words or trees is

used as the universe of the structure. The relations are then represented by rewriting

rules or by transducers that process tuples of elements from this set. Rewriting rules

often appear in the disguise of transitions of some computational model. In this case

the universe consists of configurations of some computational model. There is an

edge from one configuration to another configuration if one step of the computation

leads form the first to the second configuration.

There is no clear separation between the approaches because there are many classes of

structures that may be represented using techniques from different approaches.

In this thesis we will only deal with structures that have internal representations. We

investigate configuration graphs of different types of automata. The universe of such a

graph consists of the set of configurations of an automaton and the relations are given

by the transitions from one configuration to another. Automata that may be used for this

approach are, e.g., Turing machines, finite automata, pushdown systems or collapsible

pushdown systems. In this thesis we study configuration graphs of collapsible pushdown

systems. We will introduce these systems later in detail. A pushdown system can be seen

as a finite automaton equipped with a stack. A collapsible pushdown system uses a nested

stack, i.e., a stack of stacks of stacks of . . . of stacks instead of the ordinary stack. On each

stack level, the collapsible pushdown system can manipulate the topmost entry of its stack.

Another concept that plays a major role within this thesis is the concept of a tree gener-

ated by some pushdown system. This tree is obtained by applying a graph unfolding to the

configuration graph. This can be seen as a transformational representation of the graph

that starts from the underlying configuration graph. On the other hand, it can also be seen

as an internal representation: the nodes of a graph are represented by the set of runs of

the given automaton and the relations of the structure are defined by rewriting rules that

transform a run of length n into a run of length n+ 1 that extends the first run. If a graph

is the configuration graph of some automaton, we will refer to the unfolding of this graph

as the tree generated by this automaton. This notion becomes important when we discuss

nested pushdown trees. These are trees generated by pushdown systems expanded by a

so-called jump relation. We will present this concept at the end of the next section.

The second form of internal representation for infinite structures that we will use are

tree-automatic structures. A structure is tree-automatic if it can be represented as a reg-

10 1. Introduction

ular set of trees such that for each relation there is a finite tree-automaton that accepts

those tuples of trees from the universe that form a tuple of the relation. We provide a

more detailed introduction to tree-automatic structures as well as some notes concerning

the history of tree-automatic structures in Section 2.5. The class of tree-automatic struc-

tures is a nice class because first-order model checking is decidable on this class: there

are automata constructions that correspond to negation, conjunction and existential quan-

tification. Thus, for any tree-automatic structure and any first-order formula, one can

construct a tree-automaton that accepts an input (representing a tuple of parameters from

the structure) if and only if the structure satisfies the formula (where the free variables of

ϕ are assigned to the parameters represented by the input).

1.2 Collapsible Pushdown Graphs and Nested Pushdown Trees

The history of software verification is closely connected to two important results on model

checking. In 1969, Rabin [55] proved the decidability of monadic second-order logic

(MSO) on the infinite binary tree. In terms of model checking, his result states that the

MSO model checking is decidable for the class that only consists of one structure, namely,

the full binary tree. Sixteen years later, Muller and Schupp [53] showed the decidability

of the MSO model checking on pushdown graphs. This was a very important step towards

automated software verification because pushdown graphs proved to be very suitable for

modelling procedural programmes with calls of first-order recursive procedures. The func-

tion calls and returns are modelled using the stack. At a function call, the state of the

programme is pushed onto the stack and at a return the old context is restored using a pop

operation.

Collapsible pushdown systems can be seen as the result of the search for a similar result

for higher-order functional programming languages. Already in the 1970’s Maslov was the

first to consider so-called higher-order pushdown systems as accepting devices for word

languages. A higher-order pushdown system is a generalisation of a pushdown system

where one replaces the stack by a nested stack of stacks of stacks of . . . stacks. For each

stack level the higher-order pushdown system can use a push and a pop operation. In

the last years, these automata have become an important topic of interest because of two

results.

1. Carayol and Wöhrle [16] showed that the class of graphs generated by ǫ-contractions

of configuration graphs of higher-order pushdown systems coincide with the class of

graphs in the Caucal hierarchy. Caucal [17] defined this class as follows. The initial

level in the hierarchy contains all finite graphs. A graph in the next level is obtained

by applying an unfolding and an MSO-interpretation to a graph in the previous level.

Since both operations preserve the MSO decidability, MSO model checking on higher-

order pushdown graphs is decidable. In fact, the Caucal hierarchy is one of the largest

classes where the MSO model checking is known to be decidable.

2. Knapik et al. [41] studied higher-order pushdown systems as generators of trees.

They proved that the class of trees generated by higher-order pushdown systems

coincides with the class of trees generated by safe higher-order recursion schemes

(safe higher-order functional programmes). Safety is a rather syntactic condition on

the types of in- and outputs to functions that are used in a recursion scheme.

1.2. Collapsible Pushdown Graphs and Nested Pushdown Trees 11

The second result initiated a lot of study on the question whether there is some compu-

tational model whose generated trees form exactly the class of trees generated by arbitrary

higher-order recursion schemes and whether the trees generated by safe recursion schemes

form a proper subclass of the class of trees generated by arbitrary recursion schemes. For

instance, Aehlig et al. [1] showed that safety is no restriction for string languages defined

by level 2 recursion schemes. Hague et al. [27] introduced collapsible pushdown systems.

The concept of a collapsible pushdown system is a stronger variant of the concept of a

higher-order pushdown systems. They showed that these are as expressive as arbitrary

higher-order recursion schemes, i.e., a tree is generated by a level n recursion scheme if

and only if it is generated by some level n collapsible pushdown system. Furthermore,

they showed the decidability of modal µ-calculus (Lµ) model checking on collapsible

pushdown graphs. Recently, Kobayashi [43] designed an Lµ model checker for higher-

order recursion schemes and successfully applied this model checker to the verification of

higher-order functional programmes. Even though the connection to higher-order recur-

sion schemes turns collapsible pushdown systems into a very interesting class of structure

for model checking purposes, there are few things known about the structure of the trees

and graphs generated by these systems. For example, it is conjectured – but not proved

– that the class of trees generated by collapsible pushdown systems properly extends the

class of trees generated by higher-order pushdown systems. The same conjecture in terms

of recursion schemes says that there is a tree generated by some unsafe higher-order re-

cursion scheme that is not generated by any safe higher-order recursion scheme.

Concerning model checking, Hague et al. proved another interesting fact about the class

of graphs generated by collapsible pushdown systems: they presented a collapsible push-

down system of level 2 that has undecidable MSO theory. In terms of model checking, this

is a proof of the fact that MSO model checking on the class of collapsible pushdown graphs

is undecidable.

From a theoretical point of view, this turns collapsible pushdown graphs into an inter-

esting class of graphs. Besides the class of nested pushdown trees it is the only known

natural class of graphs that has decidable Lµ model checking but undecidable MSO model

checking. Thus, a better understanding of this class of graphs may also give insight into

the difference between Lµ and MSO. In fact, this thesis tries to identify larger fragments

of MSO that are still decidable on collapsible pushdown graphs. The most prominent frag-

ment of MSO is, of course, first-order logic (FO). The author was the first to investigate

first-order model checking on collapsible pushdown graphs. In STACS’10 [35], we proved

that the model checking problem for the extension of FO by reachability predicates on the

class of collapsible pushdown graphs of level 2 is decidable. In this thesis, we present a

slightly extended version of this result: if one enriches the graphs by Lµ-definable predi-

cates, model checking is still decidable. Furthermore, we may also enrich FO by Ramsey

quantifiers. Very recently, Broadbent [12] matched our result with a tight upper bound:

the first-order model checking on level 3 collapsible pushdown graphs is undecidable.

Moreover, Broadbent presented a fixed formula ϕ ∈ FO such that the question whether ϕ

is satisfied by some level 3 collapsible pushdown graph is undecidable. Furthermore, he

provided an example of a level 3 collapsible pushdown graph with undecidable FO-theory.

We now turn to the history of nested pushdown trees. Alur et al. [2] introduced the

concept of so-called jump edges in order to overcome the following weakness of model

checking on pushdown graphs. Recall that pushdown systems are useful abstractions of

12 1. Introduction

programmes which call first-order recursive functions. Function calls and returns are han-

dled by using push and pop operations. But interesting properties of some programme

may include statements about the situation before a function call happens in comparison

to the situation at the end of this function, i.e., at the return of this function. Unfortunately,

even strong logics like MSO cannot express such properties. They cannot “find” the exact

corresponding pop operation for a given push operation in general. As soon as a poten-

tially unbounded nesting of function calls may occur, MSO like many other logics cannot

keep track of the number of nestings in the call and return structure. But this would be

necessary for identifying the pop operation that corresponds to a given push.

Alur et al. wanted to make this correspondence of push and pop operations explicit.

Thus, a nested pushdown tree is defined to be the unfolding of a pushdown graph en-

riched by jump edges that connect each push operation with the corresponding pop op-

eration. Unfortunately, this expansion of trees generated by pushdown systems leads to

undecidability of the MSO model checking [2]. Anyhow, Alur et al. were able to prove

that Lµ model checking is still decidable on nested pushdown trees. Thus, the class of

nested pushdown trees is the second natural class of structures with undecidable MSO but

decidable Lµ model checking. We were able to provide an elementary FO model checking

algorithm for nested pushdown trees. This result was first presented in MFCS’09 [34].

The similar behaviour of the class of nested pushdown trees and collapsible pushdown

graphs with respect to model checking has an easy explanation. Nested pushdown trees

are first-order interpretable in collapsible pushdown graphs of level 2. Furthermore, the

interpretation is quite simple and uniform.

1.3 Goal and Outline of this Thesis

This thesis is concerned with various model checking problems. Our most important results

provide model checking algorithms for first-order logic (and slight extensions) on various

classes of structures. The main focus is on structures defined by higher-order (collapsible)

pushdown systems. On the one hand, we study the hierarchy of collapsible pushdown

graphs that was introduced by Hague et al. [27]. On the other hand, we study a new

hierarchy of higher-order nested pushdown trees. This hierarchy is the class obtained by the

straightforward generalisation of the concept of a nested pushdown tree to trees generated

by higher-order pushdown systems. We consider the expansions of these trees by jump-

edges that connect corresponding push and pop transitions (at the highest level of the

underlying higher-order pushdown system). This new hierarchy forms a class of graphs

that contains the class of trees generated by higher-order pushdown systems and that is

contained (via uniform FO-interpretations) in the class of collapsible pushdown graphs.

Thus, we hope that the study of this new hierarchy can reveal some insights into the

differences between these two hierarchies.

In this thesis, we obtain the following results on the model checking problems for these

hierarchies.

1. The second level of the collapsible pushdown hierarchy is tree-automatic and its

FO(REACH) model checking is decidable.

2. First-order model checking on nested pushdown trees is in 2-EXPSPACE.

1.3. Goal and Outline of this Thesis 13

3. First-order model checking on level 2 nested pushdown trees is decidable.

In order to prove these claims, we develop various new techniques.

All of these proofs rely on a structural analysis of runs of higher-order collapsible push-

down systems. This analysis provides a characterisation of the reachability of one config-

uration from another.

The second ingredient for our first result is a clever encoding of configurations in trees

which turns the set of reachable configurations into a regular set of trees.

The other two results use a new application of Ehrenfeucht-Fraïssé games to the model

checking problem. We analyse strategies in the Ehrenfeucht-Fraïssé game that are subject

to certain restrictions. The existence of such restricted winning strategies on a class of

structures can be used to provide a model checking algorithm on this class. The basic idea

is as follows: assume that Duplicator has a strategy that only requires to consider finitely

many elements in a structure. Model checking on this structure can then be reduced to

model checking on a finite substructure, namely, on the substructure induced by those

elements that are relevant for Duplicator’s strategy.

Using our analysis of runs of collapsible pushdown systems, we show that there are such

restricted strategies on the first two levels of the nested pushdown hierarchy.

Motivated by the tree-automaticity of level 2 collapsible pushdown graphs, we also study

the model checking problem on the class of all tree-automatic structures. We provide an

extension of the known first-order model checking algorithm to Ramsey quantifiers. These

are also called Magidor-Malitz quantifiers because these generalised quantifiers were first

introduced by Magidor and Malitz [50].

The proof of this result is given by an explicit automata-construction that corresponds

to this quantifier. For the string-automatic structures, such a proof was given by Rubin

[57] using the concept of word-combs. Rubin then proved that, on string-automatic struc-

tures, each set witnessing a Ramsey quantifier contains a word-comb. Using the theory

of ω-string-automata, he then uses word-combs to design a finite string-automaton corre-

sponding to the Ramsey quantifier. In joint work with Dietrich Kuske, we extended this

result to the tree-case. We define the concept of a tree-comb and use ω-tree-automata in

order to provide a finite tree-automata construction that corresponds to the Ramsey quan-

tifier on a tree-automatic structure. We stress that our result is a nontrivial adaption of

Rubin’s work. The technical difference between the string and the tree case is based on

the fact that strings have a uniquely defined length, while the lengths of paths in a tree are

not necessarily uniform.

Outline of this Thesis

In Chapter 2, we first review all basic concepts that are necessary for understanding

this thesis. Namely, we review different logics, logical interpretations and the concepts

of trees and words. We also revisit the theory of Ehrenfeucht-Fraïssé games and de-

velop a new model checking approach based on the analysis of restricted strategies in

these games. After these preliminaries, we introduce our objects of study. In Section 2.3,

we introduce higher-order pushdown systems, collapsible pushdown systems and nested

pushdown trees. After this, we provide some technical results on runs of collapsible push-

down systems in Section 2.4. These results concern the existence and computability of

certain runs of level 2 collapsible pushdown systems. The technical lemmas provided

14 1. Introduction

in this section play a crucial role in proving our results concerning level 2 (collapsible)

pushdown systems. In Section 2.5, we review the basic concepts and results on tree-

automatic structures. At the beginning of Chapter 3 we briefly present our main results in

the following order.

1. The second level of the collapsible pushdown hierarchy is tree-automatic and its

FO+REACH theory is decidable.

2. First-order model checking on nested pushdown trees is in 2-EXPSPACE.

3. First-order model checking on level 2 nested pushdown trees is decidable.

4. The model checking problem for FO extended by Ramsey quantifiers on tree-

automatic structures is decidable.

For each of these results there is one section in Chapter 3 providing the details of the proof

and some discussion on related topics. Note that we postpone the formal definition of the

hierarchy of higher-order nested pushdown trees to Section 3.3. In that section, we relate

this new hierarchy to the hierarchy of higher-order pushdown graphs and to the hierarchy

of collapsible pushdown graphs. Finally, Chapter 4 contains concluding remarks and some

open problems.

1.3. Goal and Outline of this Thesis 15

2 Basic Definitions and Technical Results

In the first part of this chapter, we review different kinds of logics and logical interpre-

tations that will play a role in this thesis. Most of this part is assumed to be known to

the reader and is merely stated for fixing notation. An exception to this rule is the part

on Ehrenfeucht-Fraïssé games. First, we briefly recall the definition and some well-known

facts about Ehrenfeucht-Fraïssé games. Afterwards, we introduce a new application of

these games to first-order model checking problems. We develop an approach for model

checking via the analysis of restricted strategies in the Ehrenfeucht-Fraïssé game played on

two identical copies of a fixed structure. If Duplicator has winning strategies that satisfy

certain restrictions on each structure of some class C , then we can turn these strategies

into an FO model checking algorithm on C .

In Section 2.2 we review the notions of grids and trees. Grids only play a minor role for

our results. We use a certain grid-like structure as a counterexample in an undecidability

proof. In contrast, trees play a crucial role for our first two main results.

Section 2.3 is an introduction to collapsible pushdown graphs and nested pushdown

trees. The main focus of this thesis is on model checking algorithms for the classes of these

graphs. As a preparation for the development of these algorithms, we present the most

important tool for our results in Section 2.4. In that section we give a detailed analysis

of the structure of runs of collapsible pushdown graphs of level 2. Finally, in Section

2.5 we recall the necessary notions concerning tree-automatic structures. Note that tree-

automatic structures play two different roles in this thesis: our first main result studies the

class of tree-automatic structures on its own. We provide a model checking algorithm for

first-order logic extended by Ramsey quantifiers (also called Magidor-Malitz quantifiers)

on this class. Our algorithm extends the known first-order model checking algorithm on

tree-automatic structures.

In the second main result, we use tree-automaticity as a tool. We show that collapsible

pushdown graphs of level 2 are tree-automatic. Thus, they inherit the decidability of the

first-order model checking problem from the general theory of tree-automatic structures.

2.1 Logics and Interpretations

In this section we briefly recall the definitions of the logics we are concerned with. These

are classical first-order logic and its extensions by monadic second-order quantifiers, cer-

tain generalised quantifiers, reachability predicates, or least fixpoint operators. Further-

more, we present basic modal logic and the modal µ-calculus (denoted by Lµ), which is

the extension of modal logic by least fixpoint operators. The last part of this section also

fixes our notation concerning logical interpretations.

2.1.1 First-Order Logic, Locality and Ehrenfeucht-Fraïssé Games

Vocabularies and Structures

For reasons of convenience, we only introduce relational vocabularies and relational

structures because we are only concerned with such structures. A vocabulary (or signa-

17

ture) σ = ((Ri)i∈I) consists of relation symbols Ri. Each relation symbol Ri has a fixed

arity ar(Ri) ∈ N.

A σ-structure A is a tuple (A, (RA
i
)i∈I) where A is a set called the universe of A, and

RA
i
⊆ Aar(Ri) is a relation of arity ar(Ri) for each i ∈ I . We denote structures with the letters

A, B, C, and so on. We silently assume that the universe of A is a set A, the universe of B

is a set B, etc.

We introduce the following notation concerning elements of the universe of a structure.

For some structure A, we use the notation a ∈ A for stating that a is some element of the

universe A of A. Furthermore, we use a sloppy notation for tuples of elements. We write

ā := a1, a2, . . . , an ∈ A for ā := (a1, a2, . . . , an) ∈ An.

First-Order Logic

Let σ be a vocabulary. We denote by FO(σ) first-order logic over the vocabulary σ.

Formulas of FO(σ) are composed by iterated use of the following rules:

1. for x , y some variable symbols, x = y is a formula in FO(σ),

2. for Ri ∈ σ a relation of arity r := ar(Ri) and variable symbols x1, x2, . . . x r ,

Ri x1x2 . . . x r is a formula in FO(σ),

3. for ϕ,ψ ∈ FO(σ), ϕ ∧ψ, ϕ ∨ψ, and ¬ϕ are formulas in FO(σ),

4. for ϕ ∈ FO(σ) and x a variable symbol, ∃xϕ and ∀xϕ are formulas in FO(σ).

Let ϕ ∈ FO(σ) be a formula. We write Var(ϕ) for the set of variable symbols occurring

in ϕ. The semantics of first-order formulas is defined as follows. Let A be a σ-structure

with universe A and I : Var(ϕ) → A some function (called the variable assignment or

interpretation) we write A, I |= ϕ, and say A, I is a model of ϕ (or A, I satisfies ϕ), if one

of the following holds.

1. ϕ is of the form x = y where x , y are variable symbols and I(x) = I(y).

2. ϕ is of the form Ri x1x2 . . . x r and (I(x1), I(x2), . . . I(x r)) ∈ RA
i
.

3. ϕ is of the form ψ∨χ for ψ,χ ∈ FO(σ) and A, I↾Var(ψ) |=ψ or A, I↾Var(χ) |= χ .

4. ϕ is of the form ψ∧χ for ψ,χ ∈ FO(σ) and A, I↾Var(ψ) |=ψ and A, I↾Var(χ) |= χ .

5. ϕ is of the form ¬ψ for ψ ∈ FO(σ) and A, I 6|=ψ.

6. ϕ is of the form ∃xψ and there is some a ∈ A such that A, Ix 7→a |= ψ where

Ix 7→a : Var(ψ)→ A with Ix 7→a(y) :=

(

I(y) for y 6= x ,

a for y = x .

7. ϕ is of the form ∀xψ and A, Ix 7→a |=ψ for all a ∈ A.

We denote by Free(ϕ) ⊆ Var(ϕ) the set of variables occurring free in ϕ. A variable

x does not occur free if it only occurs under the scope of quantifiers ∃x or ∀x . If

Free(ϕ)⊆ {x1, x2, . . . , xn} we use the notation

A, a1, a2, . . . , an |= ϕ(x1, x2, . . . , xn)

18 2. Basic Definitions and Technical Results

for A, I |= ϕ if I maps x i to ai. Furthermore, if x1, x2, . . . , xn are clear from the context,

we also use the notation A |= ϕ(a1, a2, . . . , an).

In the following, we write FO instead of FO(σ) whenever σ is clear from the context

or if a statement does not depend on the concrete σ. We may assign to each formula

in FO its quantifier rank. This is the maximal nesting depth of existential and universal

quantifications in this formula. We write FOρ for the restriction of FO to formulas of

quantifier rank up to ρ.

Let A and B be structures. For n parameters ā ∈ A and n parameters b̄ ∈ B, we write

A, ā ≡ρ B, b̄ for the fact that A |= ϕ(ā) if and only if B |= ϕ(b̄) for all ϕ ∈ FOρ with free

variables among x1, x2, . . . , xn.

We conclude the section on first-order logic by recalling two important concepts for the

analysis of first-order theories. Firstly, we present the concepts of Gaifman locality and

Gaifman graphs. Afterwards, we present Ehrenfeucht-Fraïssé games which are a classical

tool for the analysis of ≡ρ. In this thesis, we develop a nonstandard application of these

games for the design of model checking algorithms.

Gaifman-Locality

First-order logic has a local nature, i.e., first-order formulas can only express properties

about local parts of structures. For example, reachability along a path of some relation E

is not first-order expressible. Gaifman introduced the notions of Gaifman graphs and local

neighbourhoods in order to give a precise notion of the local nature of first-order logic.

Let us start by recalling these notions.

Definition 2.1.1. Let σ = (R1, R2, . . . , Rn) be a finite relational signature and let A be a

σ-structure. The Gaifman graph G (A) is the graph (A, E) where A is the universe of A and

E ⊆ A2 is the relation defined as follows. E connects two distinct elements of A if they

appear together in a tuple of some relation of A, i.e., (a1, a2) ∈ E for a1 6= a2 if and only if

there is an 1≤ i ≤ n and tuples x̄ , ȳ , z̄ ∈ A such that

A |= Ri x̄ a1 ȳa2z̄ or

A |= Ri x̄ a2 ȳa1z̄.

For a1, a2 ∈ A we say a1 and a2 have distance n in A, written dist(a1, a2) = n, if their

distance in G (A) is n. Analogously, we use the terminology dist(a1, a2) ≤ n with the

obvious meaning. Note that dist(x1, x2)≤ n is first-order definable for each fixed n ∈ N.1

We define the n-local neighbourhood of some tuple ā = a1, a2, . . . , an ∈ A inductively by

N0(ā) := {a1, a2, . . . , an} and

Nn+1(ā) := {a ∈ A : ∃a′ ∈ Nn(ā) such that dist(a, a′)≤ 1}.

When we say that “first-order logic is Gaifman-local”, we refer to the fact that for each

quantifier rank ρ, there is a natural number n such that for each formula ϕ ∈ FOρ the ques-

tion whether a structure A is a model of ϕ only depends on the n-local neighbourhoods

of the elements in the structure A. More precisely, any first-order formula is a boolean

combination of local formulas and local sentences which we introduce next.

1 Note that the restriction to finite vocabulary is essential for this statement.

2.1. Logics and Interpretations 19

Definition 2.1.2. Let σ be a finite vocabulary and let ϕ ∈ FO be some formula with free

variables x̄ . We write ϕn for the relativisation of ϕ to the n-local neighbourhood of x̄ . ϕn is

obtained from ϕ by replacing each quantifier ∃y(ψ) by

∃y(dist(y, x̄)≤ n∧ψ)

and each quantifier ∀y(ψ) by

∀y(dist(y, x̄)≤ n→ψ).

This means that for each variable assignment I that maps x̄ 7→ ā ∈ A, A, I |= ϕn(x̄) if and

only if A↾Nn(ā)
, I |= ϕ.

We call ϕ(x) an n-local formula if ϕ(x) ≡ ϕn(x) and we call it local if it is n-local for

some n ∈ N.

We call a sentence local if it is of the form

∃x1 . . .∃xn

∧

1≤i< j≤n

dist(x i, x j)> 2l ∧
∧

1≤i≤n

ψl(x i)

for some formula ψ and some l ∈ N. Such a sentence asserts that there are n elements far

apart from one another each satisfying the l-local formula ψl .

Using this notation we can state Gaifman’s Lemma.

Lemma 2.1.3 ([25]). Each first-order formula is equivalent to a boolean combination of

local sentences and local formulas.

This lemma has an interesting consequence. For each quantifier rank ρ ∈ N there is a

natural number n ∈ N such that the following hold: if ā ∈ A and a, a′ ∈ A are such that

dist(a, ā) > 2ρ+ 1 and dist(a′, ā) > 2ρ+ 1 and there is an isomorphism Nρ(a) ≃ Nρ(a
′)

mapping a to a′, then A, ā, a ≡ρ A, ā, a′.

In Section 3.2.2, we develop a lemma of a similar style. But in contrast to Gaifman’s

Lemma, this new lemma is tailored towards an application on graphs of small diameter.

Due to the small diameter, all elements a and ā satisfy dist(a, ā)≤ 2n+1 whence we cannot

use Gaifman’s Lemma itself. Nevertheless, in that section we need a lemma that provides

≡ρ-equivalence for certain tuples ā, a and ā, a′ in certain graphs of small diameter. We

obtain this lemma using Ehrenfeucht-Fraïssé games which we introduce in the following.

Ehrenfeucht-Fraïssé Games and First-Order Model Checking

The equivalence ≡ρ of first-order logic up to quantifier rank ρ has a nice characterisa-

tion via Ehrenfeucht-Fraïssé games. Based on the work of Fraïssé [24], Ehrenfeucht [22]

introduced these games which have become one of the most important tools for proving

inexpressibility of properties in first-order logic. This tool is especially important in the

context of finite model theory where other methods, e.g. compactness, fail. The game

is played by two players, who are called Spoiler and Duplicator. They play on two σ-

structures A1 and A2. The players alternatingly choose elements in the two structures. At

the end of the game, Duplicator has won if there is a partial isomorphism between the

elements chosen in each of the structures. Thus, Spoiler’s goal is to choose elements in

such a way that no choice of Duplicator yields a partial isomorphism between the elements

chosen so far. The precise definitions are as follows.

20 2. Basic Definitions and Technical Results

Definition 2.1.4. Let A1 and A2 be σ-structures. For

ā1 = a1
1
, a1

2
, . . . , a1

m
∈ Am

1
and

ā2 = a2
1
, a2

2
, . . . , a2

m
∈ Am

2

we write ā1 7→ ā2 for the map that maps a1
i

to a2
i

for all 1≤ i ≤ m.

In the n-round Ehrenfeucht-Fraïssé game on A1, a1
1
, a1

2
, . . . , a1

m
and A2, a2

1
, a2

2
, . . . , a2

m
for

a
j

i
∈ A j there are two players, Spoiler and Duplicator, which play according to the following

rules. The game is played for n rounds. The i-th round consists of the following steps

1. Spoiler chooses one of the structures, i.e., he chooses j ∈ {1, 2}.

2. Then he chooses one of the elements of his structure, i.e., he chooses some a
j

m+i
∈ A j.

3. Now, Duplicator chooses an element in the other structure, i.e., for k := 3− j, she

chooses some ak
m+i
∈ Ak.

Having executed n rounds, Spoiler and Duplicator defined tuples

ā1 := a1
1
, a1

2
, . . . , a1

m+n
∈ Am+n

1
and

ā2 := a2
1
, a2

2
, . . . , a2

m+n
∈ Am+n

2
.

Duplicator wins the play if f : ā1 7→ ā2 is a partial isomorphism, i.e., if f satisfies the

following conditions.

1. a1
i
= a1

j
if and only if a2

i
= a2

j
for all 1≤ i ≤ j ≤ m+ n and

2. for each Ri ∈ σ of arity r the following hold: if i1, i2, . . . ir are numbers between 1

and m+ n, A1, ā1 |= Ri x i1
x i2

. . . x ir
if and only if A2, ā2 |= Ri x i1

x i2
. . . x ir

.

Definition 2.1.5. Let A1, A2 be structures and ā1 ∈ An, ā2 ∈ A2. We write A1, ā1 ≃ρ A2, ā2

if Duplicator has a winning strategy in the ρ-round Ehrenfeucht-Fraïssé game on A1, ā1

and A2, ā2.

Our interest in Ehrenfeucht-Fraïssé games stems from the following relationship of ≃ρ
and ≡ρ (recall that ≡ρ is equivalence with respect to FO formulas up to quantifier rank

ρ).

Lemma 2.1.6 ([24],[22]). For all σ-structures A1, A2, and for all tuples ā1 ∈ An
1
, and

ā2 ∈ An
2
,

A1, ā1 ≃ρ A2, ā2 iff A1, ā1 ≡ρ A2, ā2,

i.e., Duplicator has a winning strategy in the ρ round Ehrenfeucht-Fraïssé game on A1, ā1

and A2, ā2 if and only if A1, ā1 and A2, ā2 are indistinguishable by first-order formulas of

quantifier rank ρ.

2.1. Logics and Interpretations 21

Remark 2.1.7. We want to give some brief comments on the proof.

If A1, ā1 6≡ρ A2, ā2, then there is a formula ϕ in negation normal form (i.e., negation only

occurs in negated atomic formulas) such that A1, ā1 |= ϕ but A2, ā2 6|= ϕ. By induction

on the structure of ϕ one can prove that there is a winning strategy for Spoiler. Basically,

for every subformula starting with an existential quantification, Spoiler chooses a witness

for this quantification in A and for each universal quantification, he chooses an element

in B witnessing the negation of the subformula. Due to the fact that the second structure

does not satisfy ϕ, Duplicator must eventually respond with an element not satisfying the

existential claim made by Spoiler. By clever choice of further elements, Spoiler can then

point out this difference and Duplicator will loose the game.

On the other hand, if the two structures cannot be distinguished by quantifier rank ρ

formulas, then Duplicator just has to preserve the equivalence of the quantifier rank m

types of the elements chosen in both structures, where m is the number of rounds left to

play. Note that the resulting partial map is a partial isomorphism if and only if it preserves

all quantifier-free formulas. Thus, Duplicator wins the game using the strategy indicated

above.

Ehrenfeucht-Fraïssé games are usually used to show that first-order logic cannot express

certain properties. We stress that our main application of these games is nonstandard.

Nevertheless, we first present an example of this classical application. In Section 3.3 we

use the result of this example.

Example 2.1.8. We present a proof that there are only finitely many types of coloured

finite successor structures that are distinguishable by FOρ. This example will also il-

lustrate how the concept of Gaifman locality can be fruitfully applied to the analysis of

Ehrenfeucht-Fraïssé games.2 In general, the analysis of Ehrenfeucht-Fraïssé games is diffi-

cult because one has to consider too many possible choices for Spoiler. But if the structure

of the local neighbourhoods is simple, this can be used to analyse Duplicator’s strategies

in the game.

A finite successor structure is up to isomorphism a structure of the form

A := ({1, 2, . . . n}, succ, P1, P2, . . . , Pm)

for some n, m ∈ N where succ = {(k, k + 1) : 1 ≤ k < n} is the successor relation on the

natural numbers up to n and P1, . . . , Pm are unary predicates (which we call colours). We

are going to show that for fixed m ∈ N there are at most (ρ + 2ρ)(2
m+1)2

ρ+1+1
successor

structures with m colours that are pairwise not ≃ρ-equivalent.

In order to prove this claim, we consider a successor structure A with m colours and n

elements. We will make use of the 2l-local neighbourhood N2l (a) of the elements a ∈ A.

Note that N2l (a) is a successor structure with exactly 2l+1 + 1 many elements unless

a ≤ 2l or a ≥ n− 2l . Since there are at most 2m many possibilities to colour a node with

m colours, there are at most (2m + 1)2
l+1+1 many distinct 2l-local neighbourhoods up to

isomorphism. The base 2m+1 is due to the fact that elements may be undefined (if a ≤ 2l

or a ≥ n− 2l) or coloured in one of the 2m possibilities.

We claim that the number of occurrences of each 2ρ-local neighbourhood type counted

up to threshold 2ρ +ρ determines the ≃ρ-type of a successor structure.

2 Our example is in fact an application of Hanf’s Lemma (cf. [28]).

22 2. Basic Definitions and Technical Results

In order to prove this, we use Ehrenfeucht-Fraïssé games. Before we explain Duplicator’s

strategy, note the following facts.

1. Counting the occurrences of each 2l-local neighbourhood type up to some threshold

t ∈ N determines the occurrences of 2l−1-neighbourhood types up to threshold t.

Furthermore, the 2l-local neighbourhood of an element a ∈ A determines the 2l−1-

local neighbourhood of the elements a− 2l−1, a− 2l−1+ 1, . . . , a+ 2l−1− 1, a+ 2l−1.

2. For any k < l, the union of the 2l−k−1-local neighbourhoods of k elements contains

at most k(2l−k + 1) = k+ 2ln(k)+l−k ≤ k+ 2l < l + 2l many elements.

3. The 2l-local neighbourhood types of the 2l first and the 2l last elements of a successor

structure A occur exactly once in A because they are determined by the number of

elements that exist to their left, respectively, right.

Let A and B be structures that have, up to threshold 2ρ + ρ, the same number of

occurrences of each 2ρ-local neighbourhood type.

Duplicator has the following strategy in the ρ round Ehrenfeucht-Fraïssé game. Without

loss of generality, Spoiler chooses at first some element a1 ∈ A. Duplicator may respond

with any element b1 ∈B such that N2ρ−1(a) and N2ρ−1(b) are isomorphic.

For the following ρ−1 rounds, we distinguish between local and global moves of Spoiler.

Assume that in the i-th round the game is in position (a1, a2, . . . , ai−1) 7→ (b1, b2, . . . , bi−1)

such that the following holds.

1. For each 1≤ j ≤ i − 1, N2ρ−(i−1)(a j) and N2ρ−(i−1)(b2) are isomorphic.

2. Up to threshold 1+2ρ−(i−1), the distance of a j from ak agrees with the distance of b j

from bk, i.e., a j is the n-th successor of ak for some n ≤ 2ρ−(i−1) if and only if b j is

the n-th successor of bk.

Due to symmetry we may assume that Spoiler chooses some ai ∈ A. We call this move

local, if there is some j < i such that the distance between ai and a j is at most 2ρ−i. In this

case, Duplicator chooses the element bi that has the same distance to b j as ai to a j. Since

the 2ρ−(i−1)-local neighbourhood of a j and b j coincide, the 2ρ−i-local neighbourhood of

ai and bi agree. Furthermore, note that the distances of ai from each ak and the distances

of bi from the corresponding bk agree up to threshold 2ρ−i.

If Spoiler chooses some ai ∈ A such that the distance between ai and a j for all j < i is

more than 2ρ−i, we call the move global. In this case, Duplicator chooses an element bi

such that N2ρ−i(ai) ≃ N2ρ−i(bi) and such that the distance from bi to any b j is more than

2ρ−i for all j < i. Such an element bi exists due to the following facts.

1. The 2ρ−i-local neighbourhoods of a1, a2, . . . , ai−1 contain less than ρ+ 2ρ many ele-

ments.

2. For each j < i, N2ρ−(i−1)(a j) ≃ N2ρ−(i−1)(b j). Thus, the 2ρ−i-local neighbourhoods

of the elements of distance at most 2ρ−i from one of the a j are isomorphic to the

corresponding elements that are close to b j. Hence, for each isomorphism-type of a

2ρ−i-local neighbourhood the number of elements that realise this type and that are

close to one of the a j coincide with the number of elements that realise this type and

that are close to one of the b j. Let k be the number of elements a close to one of the

a j such that N2ρ−i(a)≃N2ρ−i(ai).

2.1. Logics and Interpretations 23

3. Since ai is far away from all a j, there are at least k+ 1 ≤ ρ + 2ρ many elements of

neighbourhood type N2ρ−i(a) in A. Due to our assumptions on A and B and on the

neighbourhoods of the elements chosen so far, there are at least k+1 elements of the

neighbourhood type N2ρ−i(a) in B of which exactly k have distance at most 2ρ−i of

one of the b j. Thus, there is an element bi ∈B such that N2ρ−i(bi) ≃ N2ρ−i(ai) that

is far away from all the b j for j < i.

It is straightforward to see that, after ρ rounds, we end up with a partial map

f : (a1, a2, . . . , aρ) 7→ (b1, b2, . . . , bρ) such that

1. for each 1 ≤ j ≤ ρ, N1(a j) ≃ N1(b j) whence the colours of a j and the colours of b j

are equal, and

2. up to threshold 2, the distance of a j from ak agrees with the distance of b j from bk,

i.e., f and f −1 preserve the successor relation.

Thus, f is a partial isomorphism and Duplicator wins the game.

Note that counting 2ρ-local neighbourhoods up to threshold ρ + 2ρ assigns to each

successor structure with m colours a function (2m+ 1)2
ρ+1+1 → (ρ + 2ρ). We have seen

that if these functions agree for two structures A and B, then Duplicator wins the ρ round

Ehrenfeucht-Fraïssé game on these two structures whence A ≡ρ B. Thus, there are at

most (ρ+ 2ρ)(2
m+1)2

ρ+1+1
many m-coloured successor structures that can be distinguished

by quantifier rank ρ first-order formulas.

We will use the result of the previous example in Section 3.3.5. But beside this classi-

cal application of Ehrenfeucht-Fraïssé games, a nonstandard application of Ehrenfeucht-

Fraïssé games plays a much more important role in this thesis. This application gives rise to

FO model checking algorithms on certain classes of structures. Ferrante and Rackoff[23]

were the first to mention the general approach of using Ehrenfeucht-Fraïssé analysis for

the the decidability of FO theories.

We consider the game played on two copies of the same structure, i.e., the game on

A, ā1 and A, ā2 with identical choice of the initial parameter ā1 = ā2 ∈ A. At a first glance,

this looks quite uninteresting because Duplicator has of course a winning strategy in this

setting: he can copy each move of Spoiler. But we want to look for winning strategies

with certain constraints. In our application the constraint will be that Duplicator is only

allowed to choose elements that are represented by short runs of certain automata, but

the idea can be formulated more generally.

Definition 2.1.9. Let C be a class of structures. Assume that SA(m) ⊆ Am is a subset of

the m-tuples of the structure A for each A ∈ C and each m ∈ N. Set S := (SA(m))m∈N,A∈C .

We call S a constraint for Duplicator’s strategy and we say Duplicator has an S-preserving

winning strategy if she has a strategy for each game played on two copies of A for some

A ∈ C with the following property. Let ā1 7→ ā2 be a position reached after m rounds

where Duplicator used her strategy. If ā2 ∈ S(m), then Duplicator’s strategy chooses an

element a2
m+1

such that ā2, a2
m+1
∈ SA(m+1) for each challenge of Spoiler in the first copy

of A.

Remark 2.1.10. We write S(m) for SA(m) if A is clear from the context.

24 2. Basic Definitions and Technical Results

Recall the following fact: if Duplicator uses a winning strategy in the n round game, her

choice in the (m+1)-st round is an element a2
m+1

such that A, ā1, a1
m+1
≡n−m−1 A, ā2, a2

m+1
.

This implies that if Duplicator has an S-preserving winning strategy, then for every for-

mula ϕ(x1, x2, . . . , xm+1) ∈ FOn−m−1 and for all ā ∈ Am with ā ∈ S(m) the following holds:

there is an element a ∈ A such that ā, a ∈ S(m+ 1) and A, ā, a |= ϕ

iff there is an element a ∈ A such that A, ā, a |= ϕ

iff A, ā |= ∃xm+1ϕ.

Replacing existential quantification with universal quantification we obtain directly that

this statement is equivalent to

for all a ∈ A such that ā, a ∈ S(m+ 1) we have A, ā, a |= ϕ

iff A, ā |= ∀xϕ(ȳ , x).

Algorithm: ModelCheck(A, ā,ϕ(x̄))

Input: a structure A ,a formula ϕ ∈ FOρ, an assignment x̄ 7→ ā

if ϕ is an atom or negated atom then
if A, ā |= ϕ(x̄) then accept else reject;

if ϕ = ϕ1 ∨ϕ2 then

if ModelCheck(A, ā,ϕ1) = accept then accept else
if ModelCheck(A, ā,ϕ2)= accept then accept else reject;

if ϕ = ϕ1 ∧ϕ2 then
if ModelCheck(A, ā,ϕ1)= ModelCheck(A, ā,ϕ2)= accept then accept else reject;

if ϕ = ∃xϕ1(x̄ , x) then
check whether there is an a ∈ A such that ModelCheck(A, āa,ϕ1)= accept;

if ϕ = ∀x iϕ1 then
check whether ModelCheck(A, āa,ϕ1)= accept holds for all a ∈ A;

Algorithm 1: The general FO-model checking as pseudo-code

Now, we want to make use of this observation in a general approach to first-order model

checking. The pseudo-algorithm in Algorithm 1 is a correct description of first-order model

checking as it just proceeds by syntactic induction on the first-order formula in order to

determine whether the given structure is a model of the given formula. But of course,

in general this is no algorithm. As soon as A is infinite and a quantification occurs in ϕ,

this pseudo-algorithm would not terminate because it would have to check infinitely many

variable assignments. Nevertheless, it is correct in the sense that if we consider a class

of structures where we could check these infinitely many variable assignments in finite

time, then it would correctly determine the answer to the model checking problem. Using

S-preserving strategies, we want to turn the pseudo-algorithm into a proper algorithm for

certain classes of structures. For this purpose, we first introduce the following notation.

Definition 2.1.11. Given a class C of finitely represented structures, we call a constraint

S for Duplicator’s strategy finitary on C , if for each A ∈ C we can compute a function fA
such that for all n ∈ N

2.1. Logics and Interpretations 25

• SA(n) is finite,

• for each ā ∈ SA(n), we can represent ā in space fA(n), and

• ā ∈ SA(n) is effectively decidable.

Using such a finitary constraint, we can rewrite the model checking algorithm from

above into Algorithm 2. The condition of a finitary constraint is exactly what is needed

to guarantee termination of this algorithm. Furthermore, our observation on S-preserving

constraints implies that this algorithm is correct for all structures from a class C where

Duplicator has an S-preserving winning strategy for every A ∈ C . We apply this idea in

Sections 3.2 and 3.3. There, we represent elements of certain structures A by runs of some

automaton. The sets SA(n) consist of runs that have length bounded by some function fA
that is computable from the automaton representing A.

Algorithm: SModelCheck(A, ā,ϕ(x̄))

Input: a structure A , a formula ϕ ∈ FOρ, an assignment x̄ 7→ ā for tuples x̄ , ā of arity

m such that ā ∈ S(m)

if ϕ is an atom or negated atom then
if A, ā |= ϕ(x̄) then accept else reject;

if ϕ = ϕ1 ∨ϕ2 then

if SModelCheck(A, ā,ϕ1) = accept then accept else
if SModelCheck(A, ā,ϕ2)= accept then accept else reject;

if ϕ = ϕ1 ∧ϕ2 then
if SModelCheck(A, ā,ϕ1)= SModelCheck(A, ā,ϕ2)= accept then accept else

reject;
if ϕ = ∃xϕ1(x̄ , x) then

check whether there is an a ∈ A such that ā, a ∈ S(m+ 1) and

SModelCheck(A, āa,ϕ1)= accept;
if ϕ = ∀x iϕ1 then

check whether SModelCheck(A, āa,ϕ1)= accept holds for all a ∈ A such that

ā, a ∈ S(m+ 1);

Algorithm 2: FO-model checking on S-preserving structures

2.1.2 Extensions of First-Order Logic

In many cases the expressive power of FO is too weak. For example, due to the local nature

of first-order logic, simple reachability questions cannot be formalised in FO. In order to

overcome this weakness, there have been proposed a lot of different extensions tailored

for different applications. In the following, we present those extensions that we use later.

Monadic Second-Order Logic

Perhaps the most classical extension of first-order logic is monadic second-order logic

(abbreviated MSO). The formulas of this logic are defined using the same rules as for FO

but additionally adding quantification over subsets. For this, we fix a set X1, X2, . . . of set

variable symbols. We extend the formation rules of first-order logic by the following two

rules.

26 2. Basic Definitions and Technical Results

• X i x is an MSO formula for any variable symbol x and any set variable symbol X i.

• If ϕ is an MSO formula then ∃X iϕ and ∀X iϕ are also MSO formulas.

For the semantics, we extend the variable assignment I to the set of set variable symbols

occurring in a formula ϕ. Now, I maps each symbol X i to a subset of the structure A. We

then set

• A, I |= X i x if I(x) ∈ I(X i),

• A, I |= ∃Xϕ if there is some M ⊆ A such that A, IX 7→M |= ϕ where IX 7→M is identical to

I but maps X to M , and

• A, I |= ∀Xϕ if A, IX 7→M |= ϕ for all M ⊆ A.

MSO is the most expressive logic that we are going to consider. But this expressive power

comes at a prize. The MSO model checking on collapsible pushdown graphs and nested

pushdown trees is undecidable. Thus, we look for weaker extensions of first-order logic

that are still decidable in our setting.

Monadic Least Fixpoint Logic

Another approach for extending first-order logic is the use of fixpoint-operators. Here,

we present the monadic least fixpoint logic (MLFP). Consider an MSO formula ϕ without

quantification over sets, with a free variable x and a free set variable X that only occurs

positively, i.e., that only occurs under an even scope of negations. For each structure A,

each variable assignment I , and M ⊆ A, we write I M for IX 7→M , the variable assignment

that is identical to I but maps the set variable X to M ⊆ A. Now, ϕ defines a monotone

operator

f ϕ : 2A→ 2A

f ϕ(M) := {a ∈ A : A, I M
x 7→a
|= ϕ}.

Due to the theorem of Knaster and Tarski [42], f ϕ has a unique least fixpoint M ⊆ A, i.e.,

there is a minimal set Mϕ ⊆ A such that f ϕ(Mϕ) = Mϕ. MLFP is the extension of FO by

the rule that [lfpx ,Xϕ](y) is an MLFP formula where ϕ is a formula as described above

and where y is a free variable. The semantics of ψ = [lfpx ,Xϕ](y) is defined by A, I |= ψ

iff I(y) ∈ Mϕ.

It is clear that the expressive power of MLFP is between the expressive power of FO

and that of MSO. Each MLFP formula can be translated into an equivalent MSO formula

because the least fixpoint of ϕ(x , X) is defined by the formula

ψ(Z) :=
�

∀Y∀y (Y y↔ ϕ(y, Y))
�

→ Z ⊆ Y

were X ⊆ Y is an abbreviation for ∀x(X x → Y x). Thus, [lfpx ,Xϕ](y) can be translated

into ∃Z(ψ(Z) ∧ Z y). The expressive power of MLFP is strictly greater than that of FO

because fixpoints can be used to formalise reachability queries. For example, the fixpoint

induced by the formula ϕ(x , X) := P x ∨ ∃y(Ex y ∧ X y) contains all elements for which

an E-path to an element in P exists. Due to the local nature of first-order logic, this is not

expressible with an FO formula.

2.1. Logics and Interpretations 27

The least fixpoint operator is a very strong extension of FO in the sense that MLFP is

much more expressive than FO. As in the case of MSO, MLFP is too powerful on those

structures we are interested in. We will show that the MLFP-theory of a certain collapsible

pushdown graph of level 2 is undecidable.

Thus, in order to find logics with a decidable model checking problems on collapsible

pushdown graphs, we look at logics with strictly weaker expressive power than that of

MLFP.

FO + Reachability Predicates

During the last decade another extension of first-order logic has been studied and suc-

cessfully applied for model checking. If one looks at verification problems, the most impor-

tant properties that one wants to verify often involve reachability of certain states. Thus,

for classes of graphs where MSO and MLFP are undecidable, one may study the weakest

extension of first-order logic that allows to express reachability questions. We call this

logic FO(REACH) and we introduce it formally in the following definition.

Definition 2.1.12. Let σ = (E1, E2, . . . , En) be a relational signature and Ei a binary rela-

tion symbol for each 1 ≤ i ≤ n. Let FO(REACH) denote the smallest set generated by the

formation rules of first-order logic plus the rule that REACHx y is an FO(REACH) formula

for each pair of variables x , y .

FO(REACH) inherits its semantics mainly from FO. If we consider A as a graph with

edge relation E :=
⋃

1≤ j≤n EA
j

where each edge is labelled with a nonempty subset of

{1, 2, . . . , n} then REACH is interpreted as the transitive closure of the edge relation E.

Similar to FO extended by reachability we now introduce FO extended by regular reach-

ability. Let σ,A and E be defined as before. For simplicity, we assume that each edge in

A is labelled by exactly one label from {1, 2, . . . , n}, i.e., for all a, a′ ∈ A, (a, a′) ∈ Ei and

(a, a′) ∈ E j implies i = j.

We write FO(Reg) for the extension of FO by atomic formulas REACHL x y for each

regular language L ⊆ {1, 2, . . . , n}∗ and all variable symbols x , y .

For a, b ∈ A, REACHLab holds if there is a path a = a1, a2, a3, . . . , ak = b such that

(ai, ai+1) ∈ E for all 1 ≤ i < k and the word formed by the labels of the edges along this

path form a word of L.

FO + Generalised Quantifiers

Lastly, we present the extensions of first-order logic by generalised quantifiers. The idea

of generalised quantifiers was first introduced by Mostowski [52] and then further devel-

oped to full generality by Lindström [49]. We briefly recall the general notion. Afterwards,

we present the generalised quantifiers that occur in this thesis: the infinite existential

quantifier ∃∞; the modulo counting quantifiers ∃(k,n); and the Ramsey- or Magidor-Malitz

quantifier Ramn, first introduced by Magidor and Malitz [50].

Definition 2.1.13 ([49]). Let σ be some vocabulary. A collection of σ-structures Q which

is closed under isomorphisms is called a generalised quantifier.

28 2. Basic Definitions and Technical Results

Let Q be some generalised quantifier. FO(Q) denotes the extension of first-order logic by

this quantifier. The formulas of FO(Q) are defined using the formation rules of FO and the

following rule. If ϕi(x
i
1
, x i

2
, . . . x i

ai
, ȳ) is a formula in FO(Q) for each 1≤ i ≤ n, then

Qx1
1
, . . . x1

a1
, x2

1
, . . . , x2

a2
, . . . , xn

1
, . . . , xn

an
(ϕ1)(ϕ2) . . . (ϕn)

is a formula of FO(Q).

The semantics of this formula is defined as follows. Let A be some structure and I some

variable assignment. We set

RI
i
:= {ā ∈ Aai : A, I x̄ i 7→ā |= ϕi} where

x̄ i = x i
1
, x i

2
, . . . , x i

ai
.

Now, we define the semantics of the quantifier by

A, I |=Qx1
1
, . . . x1

a1
, x2

1
, . . . , x2

a2
, . . . , xn

1
, . . . , xn

an
(ϕ1)(ϕ2) . . . (ϕn) if (A, RI

1
, RI

2
, . . . , RI

n
) ∈Q.

Example 2.1.14.

1. Let ∃ consist of all structures A = (A, P) for P a unary predicate ; 6= P ⊆ A. The

generalised quantifier defined by ∃ is the usual existential quantifier.

2. Analogously, let ∀ consist of all structures A= (A, P) for P the unary predicate P = A.

The generalised quantifier defined by ∀ is the usual universal quantifier.

3. The infinite existential quantifier ∃∞ is defined by the collection of structures

A = (A, P) where P ⊆ A is infinite. Some structure B with some variable assign-

ment I satisfies B, I |= ∃∞xϕ if there are infinitely many pairwise distinct elements

b1, b2, b3 · · · ∈ B such that B, Ix→bi
|= ϕ for all i ∈ N.

4. The modulo counting quantifier ∃(k,m) is defined by the collection of structures

A= (A, P) where P ⊆ A and |P| = k mod m. Some structure B with some vari-

able assignment I satisfies B, I |= ∃(k,m)xϕ if there are k mod m many pairwise

distinct bi ∈ B such that B, Ix→bi
|= ϕ.

5. Finally, we introduce the Ramsey quantifier of arity i. Let us say that a set S ⊆ An

contains an infinite box if there is an infinite subset A′ ⊆ A such that S contains

all n-tuples of pairwise distinct elements from A′. Let Ramn contain all structures

A = (A, P) where P ⊆ An contains an infinite box. This means that Ram1 = ∃∞ and

Ram2x y(Ex y) is the formula that states that there is an infinite clique with respect

to the binary relation E.

For a more detailed introduction to generalised quantifiers we refer the reader to the

survey of Väänänen [62].

Definition 2.1.15. We denote by FO(∃mod) the extension of FO by modulo counting quan-

tifiers. By FO((Ramn)n∈N) we denote the extension of FO by Ramsey quantifiers. Analo-

gously, FO(∃mod, (Ramn)n∈N) denotes the extension of FO by both types of quantifiers.

2.1. Logics and Interpretations 29

Remark 2.1.16. Note that ∃∞ is expressible in FO(∃mod): ∃∞x(ϕ(x)) is equivalent to

¬(∃0,2x(ϕ(x)) ∨ ∃1,2x(ϕ(x))). Thus, we will use the quantifier ∃∞ as an abbreviation

in FO(∃mod).

We come back to the generalised quantifiers ∃mod and Ramn in Section 3.4. We will

show that first-order logic extended by these quantifiers is decidable on tree-automatic

structures.

2.1.3 Basic Modal Logic and Lµ

Beside the classical logics like FO, MSO, and their extensions there is a another class

of logics of great importance in the field of model checking: Basic modal logic and its

extensions.

Almost a century ago, C. I. Lewis [48] introduced a modal operator for the first time.

Since then, modal operators and modal logics have been studied intensively and found

applications in very different fields like philosophy, mathematics, linguistics, computer

science, and economic game theory. For an introduction to modal logics we refer the

reader to the introductory chapters of [6].

This thesis is mainly concerned with model checking for classical logics. Neverthe-

less, we use some results concerning model checking for basic modal logic and modal

µ-calculus. Thus, we will briefly recall the basic definitions and introduce our notation.

We fix a signature σ = (E1, E2, . . . , En, P1, P2, . . . , Pm) of binary relations Ei and unary

relations Pj called propositions.

Definition 2.1.17. Modal logic over the signature σ consists of the formulas generated by

iterated use of the following rules.

1. True and False are modal formulas.

2. p j is a modal formula for 1≤ j ≤ m.

3. For ϕ,ψ modal formulas, their conjunction, disjunction and negation are modal for-

mulas, i.e., ϕ ∧ψ,ϕ ∨ψ,¬ϕ are modal formulas.

4. If ϕ is a modal formula, then 〈Ei〉ϕ and [Ei]ϕ are modal formulas.

In the modal terminology, one calls σ-structures Kripke structures. A Kripke structure A

together with a distinguished element a ∈ A is called a pointed Kripke structure. The

semantics of modal formulas is inductively defined according to the following rules.

1. A, a |= True and A, a 6|= False for all pointed Kripke structures A, a.

2. For 1≤ j ≤ m, A, a |= p j if a ∈ Pj.

3. For formulas of the form ϕ∧ψ, ϕ∨ψ, and ¬ϕ we use the standard interpretation of

the logical connectives.

4. For ϕ = 〈Ei〉ψ, we set A, a |= ϕ if there is some a′ ∈ A such that (a, a′) ∈ Ei and

A, a′ |= ψ. For ϕ = [Ei]ψ, we set A, a |= ϕ if A, a′ |= ψ for all a′ ∈ A such that

(a, a′) ∈ Ei.

30 2. Basic Definitions and Technical Results

The expressive power of modal logic is strictly contained in that of first-order logic. This

can be seen immediately when applying the so-called standard translation. The basic idea

is that 〈Ei〉ϕ is translated into a formula ∃x(Ei y x ∧ ϕ̂(x)) where ϕ̂(x) is the standard

translation of ϕ. [Ei]ϕ is translated using the duality of 〈Ei〉 and [Ei], i.e., replacing

[Ei]ϕ by ¬〈EI〉¬ϕ. By clever reuse of variable names, it suffices to use 2 variables in

this translation. The popularity of modal logic in model checking stems from its algorith-

mic tractability. Each satisfiable modal formula has a model which is a finite tree. Since

trees are algorithmically well-behaved, one can develop very efficient algorithms for model

checking of modal formulas. But this comes at the cost that the expressive power of modal

logic is quite low. Thus, there have been many proposals how to extend the expressive

power of modal logic while keeping the good algorithmic behaviour. One of the most

powerful extensions of modal logic is the modal µ-calculus. This is the extension of modal

logic by fixpoint operators analogously to the extension MLFP of first-order logic.

Definition 2.1.18. In order to define the modal µ-calculus, we fix set variables X , Y, Z , . . .

The modal µ-calculus (denoted as Lµ) over the signatureσ is the set of formulas generated

by the following rules.

1. We may use all the rules that are used to generate the formulas of modal logic.

2. Additionally, X is a formula for each set variable X .

3. Finally, if X occurs only positively in an Lµ-formula ϕ, i.e., under the scope of an

even number of negations, then µX .ϕ(X) is a formula of Lµ.

Fix a σ-structure A, a variable assignment I : V → A and a point a ∈ A. We say A, I , a |= X

for X ∈ V if a ∈ I(X). For ϕ = µX .ψ(X), we say A, I , a |= ϕ if a ∈ Mψ for Mψ ⊆ A the least

fixpoint of the operator that maps any subset B ⊆ A to {a ∈ A : A, IX 7→B, a |= ψ(X)}. The

rules for all other formulas are inherited from the semantics of modal logic in the obvious

way.

Lµ can be embedded into MLFP, i.e., for each Lµ-formula there is an equivalent MLFP

formula. One extends the standard translation of modal logic to FO by the obvious transla-

tion of fixpoints in Lµ to fixpoints in MLFP. Lµ is a very powerful modal logic. Its expressive

power encompasses many modal logics like linear time logic (LTL), computation tree logic

(CTL) or CTL∗.

2.1.4 Logical Interpretations

Logical interpretations are a formal framework to identify a structure that “lives” in an-

other structure. This concept is used widely in mathematics. For instance, if one investi-

gates the multiplicative group of a field, this is in fact the interpretation of a group within

a field. This is one of the easiest examples of an interpretation. The following exam-

ple from linear algebra illustrates a slightly more involved application of the concept of

interpretations.

Example 2.1.19. Let (V,+, ·) be some n-dimensional vectorspace. It is commonly known

that the endomorphisms of V with concatenation ◦ and pointwise addition form a ring

2.1. Logics and Interpretations 31

End(V). This ring is isomorphic to the ring of n× n-dimensional matrices with addition

and multiplication.

In this representation, End(V) is interpretable in V : The domain of this interpretation

are all n2-tuples from V where the k-th element of this tuple is considered as the entry

in the

k

n

£

-th row and the (k mod n)-th column. Addition and composition of the en-

domorphisms can then be reduced to computations on these n2-tuples. Addition of two

morphisms corresponds to pointwise addition of the n2-tuples and composition can be

reduced using the known formulas for matrix multiplication.

In logical terms, this is an n2-dimensional first-order interpretation of the ring End(V)

in the vectorspace V .

We call an interpretation logical if it is defined using formulas from some logic. The idea

of using logical interpretations goes back to Tarski who used this concept to obtain unde-

cidability results. Since then, the use of interpretations for decidability or undecidability

proofs for the theories of certain structures has been a fruitful approach. For a detailed

survey on logical interpretations we recommend the article of Blumensath et al. [9]. We

briefly introduce our notation concerning interpretations and the important results that

we are going to use.

Given some structure A, we can use formulas of some logic L to define a new structure

B from A. The idea is to obtain the domain of B as an L definable subset of An. Then

we define relations in this new structure via formulas in the signature of the old structure.

If we obtain some structure B in this way from another structure A, we say that B is

interpretable in A. If B is interpretable in A this can be used to reduce the model checking

problem on input B to the model checking problem on A. In this thesis we will use FO-

interpretations and one-dimensional MSO-interpretations. Let us start with introducing

FO-interpretations formally.

Definition 2.1.20. Let σ := (E1, E2, . . . , En) and τ := (F1, F2, . . . , Fm) be relational sig-

natures. For n ∈ N, an (n-dimensional-σ-τ) FO-interpretation is given by a tuple of

FO(σ)-formulas I := (ϕ,ψF1
,ψF2

, . . . ,ψFn
) where ϕ has n free variables and each ψFi

has ri · n free variables where ri is the arity of Fi.

The interpretation I induces two maps: one from σ-structures to τ-structures and an-

other from τ-formulas to σ-formulas.

Let StrI be the map that maps a σ-structure A := (A, EA
1

, . . . , EA
n
) to the τ-structure

B := (B, FB
1

, . . . , FB
m
) where

B :=
�

ā ∈ An : A |= ϕ(ā)
	

and

FB

i
:=
¦

(ā1, ā2, . . . , āri
) ∈ An·ri : ā1, ā2, . . . , āri

∈ B and A |=ψFi
(ā1, ā2, . . . , āri

)
©

.

Let FrmI be the map that maps an FO(τ) formula α to the formula FrmI(α) which is

obtained by the following rules:

• If α= Fi x
1x2 . . . x k for variable symbols x i, then set

FrmI(α) :=ψFi
(x1

1
, x1

2
, . . . , x1

n
, x2

1
, . . . , x2

n
, . . . , x k

1
, . . . x k

n
)

where n is the dimension of I .

32 2. Basic Definitions and Technical Results

• Boolean connectives are preserved, i.e., if α= α1 ∨α2 then

FrmI(α) = FrmI(α1)∨ FrmI(α2)

and analogously for ¬ and ∧.

• If α= ∃xα1, then FrmI(α) := ∃x1∃x2 . . .∃xn(ϕ(x1, x2, . . . , xn)∧ FrmI(α1)).

If α= ∀xα1, then FrmI(α) := ∀x1∀x2 . . .∀xn(ϕ(x1, x2, . . . , xn)→ FrmI(α1)).

The well-known connection between StrI and FrmI is given in the following lemma.

Lemma 2.1.21. Let I be an n-dimensional-σ-τ FO-interpretation, A some σ-structure and

ϕ some FO(τ) sentence. Then

StrI(A) |= ϕ iff A |= FrmI(ϕ).

The proof is by induction on the structure of ϕ.

For FO model checking purposes, interpretations can be used as follows. Fix an inter-

pretation I and two classes C1 and C2 of structures. Assume that there is a computable

function Str−1
I

that maps each A ∈ C1 to a structure B ∈ C2 such that StrI(B) = A. Then

we can reduce the model checking problem for C1 to the model checking problem for C2.

For A ∈ C1, we decide whether A |= ϕ as follows: Firstly, we compute B := Str−1
I
(A).

Secondly, we solve the model checking problem B |= FrmI(ϕ).

Similar to FO-interpretations we can define MSO-interpretations: simply replace the

FO formulas in I by MSO formulas. Again, these can be used to reduce the MSO model

checking on one class of structures to another class, but only if the interpretation is one-

dimensional. If we use an n-dimensional MSO-interpretation for n > 1, the resulting

transformation FrmI translates MSO formulas into second-order formulas as quantification

over unary relations is turned into quantification over n-ary relations. As long as we stick to

one-dimensional MSO-interpretations, the transformation FrmI turns an MSO(τ) formula

into an MSO(σ) formula and analogously to the previous lemma one obtains the following

statement.

Lemma 2.1.22. Let I be a 1-dimensional-σ-τ MSO-interpretation, S some σ-structure and

ϕ some MSO(τ) sentence. Then

StrI(A) |= ϕ iff A |= FrmI(ϕ).

2.2 Grids and Trees

2.2.1 A Grid-Like Structure

Grid-like structures often play a crucial role in undecidability results for model checking

problems. In this section, we introduce a certain grid-like structure, namely, the bidirec-

tional half-grid. It is a version of the upper half of the N×N grid with an edge-relation for

each direction, i.e., there are relations for the left, right, upward, and downward successor.

2.2. Grids and Trees 33

. . .

. . .

. . .

. . .

. . .

Figure 2.1.: The bidirectional half-grid.

Definition 2.2.1. The half-grid is the structure H := (H,→,←,↓,↑) where

H := {(i, j) ∈ N×N : i ≤ j},

→:=
¦
�

(i, j), (k, l)
�

∈ H2 : i = k, j = l − 1
©

,

←:=
¦
�

(i, j), (k, l)
�

∈ H2 : i = k, j = l + 1
©

,

↓:=
¦
�

(i, j), (k, l)
�

∈ H2 : i = k− 1, j = l
©

, and

↑:=
¦
�

(i, j), (k, l)
�

∈ H2 : i = k+ 1, j = l
©

,

See Figure 2.1 for a pictures of H.

Many MSO model checking results can be reduced to the question of tree-likeness or

grid-likeness of the underlying graphs. On the one hand, if a class of structures consists

only of structures that are similar to trees, e.g, structures with small tree-width, then the

MSO model checking is effectively decidable. On the other hand, if a class contains a grid-

like structure then the MSO model checking is undecidable. We do not want to go into the

details what grid-likeness means exactly. But for our purposes, the crucial observation is

that the upper half of a grid is, of course, grid-like whence H has undecidable MSO-theory.

In fact, we can even show undecidability of the Lµ-theory of this structure.

Lemma 2.2.2. Lµ model checking is undecidable on the bidirectional half-grid H.

Remark 2.2.3. Note that we consider Lµ on the naked half-grid, i.e., without any additional

propositions. Although this result is not very surprising for people familiar with Lµ, we

have not found any proof of this lemma in the literature. The interested reader may find a

detailed proof of this result in Appendix A where we reduce the halting problem for Turing

machines to Lµ model checking on H.

Since Lµ may be seen as a fragment of MLFP and of MSO, the following corollaries

follow immediately.

Corollary 2.2.4. MLFP and MSO are undecidable on H.

These results play a crucial role in Section 3.1.5, where we investigate the Lµ-theory of

FO-interpretations of collapsible pushdown graphs.

34 2. Basic Definitions and Technical Results

2.2.2 Words and Trees

If Σ is a finite set (called alphabet) then Σ∗ denotes the set of finite words over the alphabet

Σ. For words w1, w2 ∈ Σ
∗, we write w1 ≤ w2 if w1 is a prefix of w2. We write w1 < w2 for

w1 ≤ w2 and w1 6= w2. We denote by w1 ◦ w2 (or simply w1w2) the concatenation of w1

and w2. Furthermore, we write w1 ⊓ w2 for the greatest common prefix of w1 and w2. If

|w|= n, we set w−i for 0≤ i ≤ n to be the prefix of w of length n− i.

We now turn to trees. In this thesis we only consider binary trees. Most of the time we

are concerned with finite trees, but in Section 3.4 we have to treat infinite trees as well.

We use the word “tree” only for finite trees unless we explicitly say otherwise.

We call a set D ⊆ {0, 1}∗ a tree domain, if D is prefix closed, i.e., for each d ∈ D and

d ′ ∈ Σ∗ we have d ′ ∈ D if d ′ ≤ d.

A Σ-labelled tree is a mapping T : D→ Σ for D some tree domain. T is called finite, if D

is finite; otherwise T is an infinite tree.

For d ∈ D we denote the subtree rooted at d by (T)d . This is the tree defined by

(T)d(e) := T (de). For T1, T2 trees, we write T1 � T2 if T1 is an initial segment of T2,

i.e., if dom(T1)⊆ dom(T2) and T2↾dom(T1)
= T1.

We denote the depth of the tree T by dp(T) :=max {|t| : t ∈ dom(T)}.

For T some tree with domain D, let D+ denote the set of minimal elements of the com-

plement of D, i.e.,

D+ = {e ∈ {0, 1}∗ \ D : all proper ancestors of e are contained in D}.

In particular, note that ;+ = {ǫ}. Under the same assumptions, we write D⊕ for D ∪ D+.

Note that D⊕ is the extension of the tree domain D by one layer.

Sometimes it is useful to define trees inductively by describing the subtrees rooted at 0

and 1. For this purpose we fix the following notation. Let T̂0 and T̂1 be Σ-labelled trees

and σ ∈ Σ. Then we write T := T̂0← σ→ T̂1 for the Σ-labelled tree T with the following

three properties

1. T (ǫ) = σ, 2. (T)0 = T̂0, and 3. (T)1 = T̂1.

We call (T)0 the left subtree of T and (T)1 the right subtree of T .

We denote by TreeΣ the set of all finite Σ-labelled trees and by Treeω
Σ

the set of all infinite

Σ-labelled trees. We set Tree≤ωΣ := TreeΣ ∪ Treeω
Σ

to be the set of all finite or infinite Σ-

labelled trees. We call the elements of TreeΣ trees without referring to finiteness. This

convention is useful because we use infinite trees only in Section 3.4. In that section we

always clarify whether we talk about finite or infinite trees. The elements of Treeω
Σ

are

called infinite trees

For T ∈ Tree≤ωΣ a finite or infinite tree, we write T2 for its lifting to the domain {0, 1}∗

by padding with a special symbol 2, i.e.,

T2 : {0, 1} → Σ∪ {2}, T2(d) :=

(

T (d) if d ∈ dom(T),

2 otherwise.

Note that we consider a Σ-word w as a Σ-tree tw with domain {0i : 0 ≤ i ≤ |w| − 1}

where tw(0
i−1) is labelled by the i-th letter of w.

2.2. Grids and Trees 35

2.3 Generalised Pushdown Graphs

In this section we introduce the objects of our study, namely, the class of collapsible push-

down graphs and the class of nested pushdown trees. Both classes generalise the class of

pushdown graphs. It will turn out that nested pushdown trees may be seen as a subclass of

the collapsible pushdown graphs which has a nicer algorithmic behaviour than the class of

all collapsible pushdown graphs. We start by recalling the well-known basics on pushdown

systems. Then we present nested pushdown trees (NPT) and in the last part we present

collapsible pushdown graphs (CPG).

2.3.1 Pushdown Graphs

A pushdown system is a finite automaton extended by a stack. These systems were first

developed in formal language theory. Used as word- or tree acceptors, pushdown systems

recognise exactly the context-free languages.

We are interested in the model checking properties of graphs generated by generalisa-

tions of pushdown system. The graph of a pushdown system is the graph of all reachable

configurations where the edge-relation is induced by the transition relation of the push-

down system.

We briefly recall the definitions and present some classical results on pushdown systems.

Definition 2.3.1. A pushdown system is a tuple S = (Q,Σ,Γ, qI ,∆) satisfying the following

conditions. Q is finite and it is called the set of states. It contains the initial state qI ∈ Q.

Σ is finite and is called the set of stack symbols. There is a special symbol ⊥ ∈ Σ which is

called the bottom-of-stack symbol. Γ is finite and it is called the input alphabet.

∆ ⊆Q×Σ× Γ×Q×OP

is the transition relation where

OP := {pop1, id} ∪
�

pushσ : σ ∈ Σ \ {⊥}
	

.

The elements of OP are called stack operations. Each stack operation induces a function

Σ+→ Σ∗ as follows.

• Let w, w′ ∈ Σ+ be words and σ ∈ Σ a letter such that w = w′σ. Then pop1(w) := w′.

• id is the identity on Σ+.

• Let w ∈ Σ+. For each σ ∈ Σ \ {⊥}, we set pushσ(w) := wσ.

A configuration of S is a tuple (q, s) ∈ Q ×Σ+. Let δ = (q,σ,γ, q′, op) ∈ ∆. We call δ

a γ-labelled transition. δ connects the configuration (q, s) with the configuration (q′, s′) if

s = op(s′). We set (q, s) ⊢γ (q′, s′) if there is a γ-labelled transition δ ∈ ∆ that connects

(q, s) with (q′, s′).

We call ⊢:=
⋃

γ∈Γ ⊢
γ the transition relation of S

The configuration graph of S (also called the graph generated by S) consists of all

configurations that are reachable from the initial configuration (q0,⊥) via a path along ⊢.

36 2. Basic Definitions and Technical Results

Remark 2.3.2. We call a graph A a pushdown graph if it is the graph generated by some

pushdown system S .

Without loss of generality, we assume that there is no transition of the form

(q,⊥,γ, q′, pop1) ∈∆. This means that we never remove the bottom-of-stack symbol from

the stack. Thus, we never have to deal with an empty stack.

Definition 2.3.3. Let S be a pushdown system. Let C be the set of configurations of

S and ⊢ its transition relation A run ρ of S is a sequence of configurations that are

connected by transitions, i.e., a sequence c0 ⊢
γ1 c1 ⊢

γ2 c2 ⊢
γ3 . . . ⊢γn cn.

We call ρ(i) := ci the configuration of ρ at position i. We call ρ a run from ρ(0) to ρ(n)

and say that the length of ρ is ln(ρ) := n.

We write Runs(S) for the set of all runs of S .

For runs ρ1,ρ2 of a pushdown system we write ρ1 � ρ2 for the fact that ρ1 is an initial

segment of ρ2. We write ρ1 ≺ ρ2 if ρ1 is a proper initial segment, i.e., ρ1 � ρ2 and

ln(ρ1)< ln(ρ2).

For runs ρ = c0 ⊢
γ1 c1 ⊢

γ2 c2 ⊢
γ3 . . . ⊢γn cn and ρ′ = c′

0
⊢γ
′
1 c′

1
⊢γ
′
2 c′

2
⊢γ
′
3 . . . ⊢γ

′
m c′

m
where

cn = c′
0

we define

π := ρ ◦ρ′ := c0 ⊢
γ1 c1 ⊢

γ2 c2 ⊢
γ3 . . . ⊢γn cn ⊢

γ′
1 c′

1
⊢γ
′
2 c′

2
⊢γ
′
3 . . . ⊢γ

′
m c′

m

and we call ρ◦ρ′ the composition of ρ and ρ′. We also say that π decomposes as π= ρ◦ρ′.

Remark 2.3.4. Note that a run does not necessarily start in the initial configuration. This

convention is useful for the analysis of decompositions of runs because every restriction

ρ↾[i, j] of a run ρ with 0≤ i ≤ j ≤ ln(ρ) is again a run.

In the following, we will often identify a run ρ of length n with a function from

{0, 1, 2, . . . , n} to C that maps i to ρ(i). This is a sloppy notation because there may

be two different transitions (q,σ,γ, q′, op) and (q,σ,γ′, q′, op) with γ 6= γ′ that give rise

to two runs (q, w) ⊢γ (q′, op(w)) and (q, w) ⊢γ (q′, op(w)). In this case we would iden-

tify both runs with the same function f where f (0) = (q, w) and f (1) = (q′, op(w)). For

simplicity, we will always assume that the configurations of a run already determine the

whole run.

Perhaps the most important theorem concerning pushdown systems and formal lan-

guages is the so-called uvxyz-theorem or pumping lemma of Bar-Hillel et al. [3]. It is a

classical tool for proving that a language is not context-free. The uvxyz-theorem states

the following. Given a context-free language L there is a natural number n ∈ N such that

for all words from w ∈ L of length at least n, there is a decomposition w = uv x yz such

that uv
i x y iz ∈ L for all i ∈ N. There are elegant proofs of this theorem using context-free

grammars.

In Chapter 3.2, we are interested in the runs of pushdown systems. Especially, we need

to find a short run that is similar to a given long run. Thus, we are interested in a version

of the uvxyz-theorem where we look at the run corresponding to a word w. We want to

find a decomposition such that we can remove certain parts from the run and obtain a

valid run (corresponding to some word uxz where w = uv x yz).

In this form, the proof of the lemma is slightly more complicated than in the version

of context free languages. Thus, we start by giving an auxiliary lemma. It says that the

run of a pushdown system does not depend on a prefix of the stack that is never read. A

generalised version of this lemma for higher-order pushdown systems can be found in [8].

2.3. Generalised Pushdown Graphs 37

Definition 2.3.5. Let w ∈ Σ∗. Let ρ be a run of a pushdown system. We set (qi, wi) := ρ(i)

for all i ∈ dom(ρ). If w ≤ wi for all i ∈ dom(ρ), we write wÅρ and say that ρ is prefixed

by w.

Lemma 2.3.6. Let ρ be a run of some pushdown system S and let w ∈ Σ∗ be some word such

that wÅρ. For each i ∈ dom(ρ), let v i denote the suffix of ρ(i) such that ρ(i) = (qi, wv i)

for some state qi ∈Q.

If w′ ∈ Σ∗ ends with the same letter as w then the function

ρ[w/w′] : dom(ρ)→Q×Σ∗

ρ[w/w′](i) := (qi, w′v i)

is a run of S .

The proof of this lemma is straightforward: just observe that any stack operation com-

mutes with the prefix replacement. The claim follows by induction on dom(ρ). We are

now prepared to state the uvxyz-theorem in a version for pushdown systems.

Lemma 2.3.7 ([3]). Let S be some pushdown system. There is a constant n ∈ N such that

for every run ρ of length greater than n that starts in the initial configuration at least one of

the following holds.

1. There is a decomposition ρ = ρ1 ◦ρ2 ◦ρ3, words w1 < w2, and a state q ∈ Q such that

ρ2(0) = (q, w1), ρ3(0) = (q, w2), ln(ρ2)≥ 1, and ρ′ := ρ1 ◦ρ3[w2/w1] is a run of S .

2. There is a decomposition ρ = ρ1 ◦ρ2 ◦ρ3 ◦ρ4 ◦ρ5, words w1 < w2 with equal topmost

letter and states q, q′ ∈ Q such that ρ2(0) = (q, w1), ρ3(0) = (q, w2), ρ4(0) = (q
′, w2),

ρ5(0) = (q
′, w1), ln(ρ2) + ln(ρ4)≥ 1, and ρ′ := ρ1 ◦ρ3[w2/w1] ◦ρ5 is a run of S .

3. There is a decomposition ρ = ρ1 ◦ρ2 ◦ρ3 with ln(ρ2) ≥ 1 such that ρ′ := ρ1 ◦ρ3 is a

run of S .

Proof. We assume that n ∈ N is some large natural number (what large means can be

obtained from the proof). Let ρ be some run such that m := ln(ρ) > n. In order to prove

this claim, we look for configurations in the run that share the same state and share the

same topmost element on their stack. There are the following cases.

1. The run ends with a large stack: assume that ρ ends in a stack w with |w|> |Σ×Q|.

For each i ≤ |w|, let wi be the prefix of w of length i. Let ni ≤ ln(ρ) be maximal such

that the stack at ρ(ni) is wi. Set (qi, wi) := ρ(ni). By pigeon-hole principle there are

j < k < ln(ρ) such that q j = qk and top1(w j) = top1(wk). Since nk is maximal, the

run

ρ′ := ρ↾[0,n j]
◦ρ↾[nk,ln(r)][wk/w j]

is well defined and satisfies the lemma.

2. The run passes a large stack but ends in a small one: assume that ρ ends in some

word of length at most |Σ×Q|. Furthermore, assume that ρ passes a word of length

greater than |Σ×Q|+ |Q×Q×Σ|.

38 2. Basic Definitions and Technical Results

Let imax ∈ dom(ρ) be a position such that the word at ρ(imax) has maximal length in

ρ.

By assumption, it follows that for ρ(imax) =: (qmax, wmax),

|wmax|> |Σ×Q|+ |Q×Q×Σ|.

For each i ≤ |wmax|, let wi be the prefix of wmax of length i. For each

|Σ×Q| ≤ i ≤ |Σ×Q|+ |Q×Q×Σ|,

let ni ≤ imax be maximal such that ρ(ni) = (qi, wi) for some qi ∈ Q. Analogously, let

mi ≥ imax be minimal such that ρ(mi + 1) = (q̂i, pop1(wi)) for some q̂i ∈Q.

Note that wi is the stack at ρ(mi) and wiÅρ↾[ni ,mi]
due to the definition of ni and

mi.

By the pigeon-hole principle, there are |Σ×Q| ≤ j < k ≤ |Σ×Q|+ |Q×Q×Σ| such

that q j = qk, q̂ j = q̂k and top1(w j) = top1(wk).

Then the run ρ′ := ρ↾[0,n j]
◦ρ↾[nk,mk]

[wk/w j] ◦ρ↾[m j ,ln(ρ)]
satisfies the lemma.

3. The run never visits a large stack, i.e., a stack of size greater than |Q×Σ|+|Q×Q×Σ|.

Since there are only finitely many stacks of size smaller than this bound, in a long run

of this form there is a configuration which is visited twice and the subrun in between

may be omitted.

Pushdown graphs form a class of finitely represented infinite graphs with good model

checking properties. Almost fifty years ago, Buchi [14] showed that the reachability prob-

lem on pushdown graphs is decidable. This result was notably extended by Muller and

Schupp in the 80’s as follows.

Theorem 2.3.8 ([53]). The MSO-theory of every pushdown graph is decidable.

This result was important for the development of software verification because of the

following fact. A pushdown graph naturally arises as the abstraction of some programme

using (first-order recursive) functions. Given a programme, one can design a pushdown

system that simulates the behaviour of this programme. Every run of the pushdown system

corresponds to a possible execution of the programme. Here, the state of the pushdown

system stores the programme counter. This means that the state of the pushdown system

stores the line number that is executed by the programme in this step. If a function call

occurs, the pushdown system does the following. It writes the programme counter onto

the stack, and the new state is the first line of the function which is called. When this

function eventually terminates, the programme counter is restored by reading the stack.

While the programme counter is restored, the topmost element of the stack is deleted.

Using this reduction, many problems occurring in software verification can be reduced

to model checking on pushdown graphs. But this approach has a severe limitation: in

the language of the pushdown graph, MSO cannot be used to define a function return

corresponding to a function call. Defining a return that corresponds to a certain call is

equivalent to defining a subrun of the pushdown system that starts at this function call

and forms a well-bracketed word (where we interpret push operations as opening brackets

2.3. Generalised Pushdown Graphs 39

and pop operations as closing brackets). But it is well known that MSO cannot define the

language of well-bracketed words (the so-called Dyck-languages).

Thus, if one wants to verify properties of a programme that involves a comparison of

the situation just before a function call with the situation exactly after the return of the

function, one cannot reduce this problem to a model checking problem on pushdown

graphs.

In the next section we present nested pushdown trees. These generalise trees generated

by pushdown systems in such a way that pairs of corresponding calls and returns become

definable even in first-order logic. Therefore, nested pushdown trees are suitable abstrac-

tions for programmes if one wants to verify properties involving the pairs of corresponding

function calls and returns.

2.3.2 Nested Pushdown Trees

Alur et al. [2] proposed the study of the model checking problem on nested pushdown

trees. A nested pushdown tree is the tree generated by a pushdown system where the

pairs of corresponding push and pop operations are marked by a new relation ,→. This

new relation is called jump-relation. We stress that due to this new relation, a nested

pushdown tree is no tree.

Definition 2.3.9. Let S = (Q,Σ,Γ,∆, q0) be a pushdown system. Then the nested push-

down tree generated by S is

NPT(S) := (R, (⊢γ)γ∈Γ, ,→)

where (R, (⊢γ)γ∈Γ) is the unfolding of the configuration graph of S . R is the set of all

runs of S starting at the configuration (q0,⊥). For two runs ρ1,ρ2 ∈ R, we have

ρ1 ⊢
γ ρ2 if ρ2 extends ρ1 by exactly one γ-labelled transition. The binary relation ,→

is called jump-relation and is defined as follows: let ρ1,ρ2 ∈ R with ln(ρi) = ni and

ρ1(n1) = (q, w) ∈Q×Σ∗. Then ρ1 ,→ ρ2 if ρ1 is an initial segment of ρ2, ρ2(n2) = (q
′, w)

for some q′ ∈ Q and w is a proper prefix of all stacks between ρ1(n1) and ρ2(n2), i.e.,

w < ρ2(i) for all n1 < i < n2.

Alur et al. proved the following results concerning the model checking properties of the

class of nested pushdown trees.

Theorem 2.3.10 ([2]). The Lµ model checking problem for nested pushdown trees is in

EXPTIME.

Lemma 2.3.11 ([2]). The MSO model checking problem for nested pushdown trees in unde-

cidable.

Proof. Let S := ({0, 1}, {a,⊥}, {A, P}, (0,⊥),∆) with

∆=
�

(0,⊥, A, 0, pusha), (0, a, A, 0, pusha), (0, a, P, 1, pop1), (1, a, P, 1, pop1)
	

.

Figure 2.2 shows the nested pushdown tree generated by S . We now show that the

bidirectional halfgrid H is MSO-interpretable in this graph. Application of Lemmas 2.2.2

and 2.1.22 then directly yields the claim.

40 2. Basic Definitions and Technical Results

0⊥
A

0⊥a
A

P

0⊥aa
A

P

0⊥aaa

P

. . .

1⊥ 1⊥a

P

1⊥aa

P

. . .

1⊥ 1⊥a

P

. . .

1⊥ . . .

Figure 2.2.: Example of a nested pushdown tree.

As an abbreviation, we use the binary relation REACHP∗ which holds for configurations

(c1, c2) if and only if c2 is reachable from c1 by a P-labelled path. This predicate is clearly

MSO-definable and in the structure NPT(S) it describes reachability along the columns.

Now, we define the next-column relation by

ϕnc(x , y) := ∃z1, z2(REACHP∗z1x ∧REACHP∗z2 y ∧ z1 ⊢
A z2).

Similarly, we can define a next-diagonal relation by

ϕnd(x , y) := ∃z1, z2(z1 ,→ x ∧ z2 ,→ y ∧ z1 ⊢
A z2).

We conclude that ϕnc ∧ϕnd(x , y) holds if and only if y is the right neighbour of x in the

half-grid. Thus, ↓ coincides with ⊢pop1 and x → y is defined by ϕnc(x , y) ∧ ϕnd(x , y).

Switching the roles of x and y , we can also define← and ↑.

This completes the interpretation of H in NPT(S). Lemmas 2.2.2 and 2.1.22 then yield

the claim.

Remark 2.3.12. Even though MSO model checking for nested pushdown trees is unde-

cidable, nested pushdown trees form an interesting class for software verification. Many

interesting properties of programmes are expressible in Lµ. Moreover, the jump-relation

allows to use Lµ in order to express properties concerning corresponding push and pop

operations. Such properties are not expressible when using MSO on pushdown graphs.

We have seen that MSO is undecidable on nested pushdown trees while Lµmodel check-

ing is decidable. This difference concerning decidability of MSO and Lµ model checking

turns nested pushdown trees into an interesting class of structures from a model theo-

retic point of view. Natural classes of graphs tend to have either decidable MSO and Lµ

model checking or undecidable MSO and Lµ model checking. Beside the class of nested

pushdown trees we only know of one other natural class that does not follow this gen-

eral rule: the class of collapsible pushdown graphs. In Section 3.2 we will show that

nested pushdown trees and collapsible pushdown graphs are closely related via a sim-

ple FO-interpretation. This relationship between nested pushdown trees and collapsible

pushdown graphs (of level 2) will motivate our definition of the hierarchy of higher-order

nested pushdown trees in Section 3.3 in analogy to the hierarchy of collapsible pushdown

graphs. But before we come to this generalisation of the concept of a nested pushdown

tree, let us introduce collapsible pushdown graphs.

2.3. Generalised Pushdown Graphs 41

2.3.3 Collapsible Pushdown Graphs

Before we introduce Collapsible pushdown graphs (CPG) in detail, we fix some notation.

Then, we informally explain collapsible pushdown systems. Afterwards, we formally in-

troduce these systems and the graphs generated by them. We conclude this section with

some basic results on runs of collapsible pushdown systems. In Chapter 3.1 we will then

investigate FO model checking on collapsible pushdown graphs.

For some alphabet Σ, we inductively define Σ∗n and Σ+n for all n ∈ N \ {0} as follows.

We set Σ∗1 := Σ∗, i.e., Σ∗1 is the set of all finite words over alphabet Σ. Then we set

Σ∗(n+1) := (Σ∗n)∗. Analogously, we write Σ+1 := Σ+ for the set of all nonempty finite

words over alphabet Σ and we set Σ+(n+1) := (Σ+n)+. Each element of Σ∗n is called an

n-word. Stacks of a level n collapsible pushdown system are certain nonempty n-words

over a special alphabet.

Let us fix a word s ∈ Σ∗(n+1) of level n+ 1. s consists of an ordered list w1, w2, . . . , wm

of n-words, i.e., w1, w2, . . . , wm ∈ Σ
∗n. If we want to state this list of n-words explicitly, we

separate them by colons writing s = w1 : w2 : · · · : wm. By |s| we denote the number of

n-words s consists of, i.e., |s| = m. We say |s| is the width of s. We also use the notion of

the height of an (n+ 1)-word. The height of s is hgt(s) := max{|wi| : 1 ≤ i ≤ m} which is

the width of the widest n-word occurring in s.

Let s′ be another word of level n+ 1 such that s′ = w′
1

: w′
2

: . . . w′
l
∈ Σ∗(n+1). We write

s : s′ for the concatenation w1 : w2 : . . . wm : w′
1

: w′
2

: · · · : w′
l
.

If s ∈ Σ∗n, we denote by [s] the n+ 1 word that only consists of a list of one n word

which is s. We regularly omit the brackets if no confusion arises.

Let Σ be some finite alphabet. A level n stack s is an n-word where each letter carries a

link to some substack. Each link has a certain level 1≤ i ≤ n. A level i link points to some

(i − 1)-word of the topmost level i stack of s. Now, we first define the initial level n stack;

afterwards we describe some stack operations that are used to generate all level n stacks

from the initial one.

Definition 2.3.13. Let Σ be some finite alphabet with a distinguished bottom-of-stack

symbol ⊥ ∈ Σ. The initial stack of level l over Σ is inductively defined as follows. The

initial level 1 stack is ⊥1 := ⊥. For the higher levels, we set ⊥n := [⊥n−1] to be the initial

stack of level n.

We informally describe the operations that can be applied to a level n stack. There are

the following stack operations:

• The push operation of level 1, denoted by pushσ,k for σ ∈ Σ and 1 ≤ k ≤ n, writes

the symbol σ onto the topmost level 1 stack and attaches a link of level k. This link

points to the next to last entry of the topmost level k stack.

• For 2 ≤ i ≤ n, the push operation of level i is denoted by clonei. It duplicates the

topmost entry of the topmost level i stack. The links are preserved by clonei in the

following sense. Let s be some stack. Let a be a letter in the topmost level i stack of

s. Assume that a has a link of level j. Let a′ be the copy of a in clonei(s). Then the

link of a′ points to the unique level j−1 stack in the topmost level j stack of clonei(s)

that is a clone of the j − 1 stack to which the link of a points. This means that for

42 2. Basic Definitions and Technical Results

j ≥ i, a and a′ carry links to the same stack. For j < i, the link of a′ points to the

clone of the stack to which the link of a points.

• The level i pop operation popi for 1 ≤ i ≤ n removes the topmost entry of the

topmost level i stack. Note that the pop1 operation corresponds to the ordinary pop

in a pushdown system that just removes the topmost symbol from the stack.

• The last operation is collapse. The result of collapse is determined by the link at-

tached to the topmost letter of the stack. If we apply collapse to a stack s where the

link level of the topmost letter is i, then collapse replaces the topmost level i stack of

s by the level i stack to which the link points. Note that the application of a collapse

is equivalent to the application of a sequence of popi operations where the link of the

topmost letter controls how long this sequence is.

In the following, we formally introduce collapsible pushdown stacks and the stack op-

erations. We represent such a stack of letters with links as n-words over the alphabet

(Σ∪ (Σ× {2, . . . , n} ×N))+n. We consider elements from Σ as elements with a link of level

1 and elements (σ, l, k) as letters with a link of level l. In the latter case, the third com-

ponent specifies the width of the substack to which the link points. For letters with link of

level 1, the position of this letter within the stack already determines the stack to which

the link points. Thus, we need not explicitly specify the link in this case.

Remark 2.3.14. Other equivalent definitions, for instance in [27], use a different way of

storing the links: they also store symbols (σ, i, n) on the stack, but here n denotes the

number of popi transitions that are equivalent to performing the collapse operation at a

stack with topmost element (σ, i, n). The disadvantage of that approach is that the clonei

operation cannot copy stacks. Instead, it can only copy the symbols stored in the topmost

stack and has to alter the links in the new copy. A clone of level i must replace all links

(σ, i, n) by (σ, i, n+ 1) in order to preserve the links stored in the stack.

Before we give a formal definition of the stack operations, we introduce some auxiliary

functions.

Definition 2.3.15. For s = w1 : w2 : · · · : wn ∈ (Σ ∪ (Σ× {2, . . . l} ×N))+l , we define the

following auxiliary functions:

• For 1≤ k ≤ l, the topmost level k− 1 word of s is topk(s) :=

(

wn if k = l,

topk(wn) otherwise.

• For top1(s) = (σ, i, j) ∈ Σ × {2, 3, . . . , l} × N, we define the topmost symbol

Sym(s) := σ, the collapse level of the topmost element CLvl(s) := i, and the collapse

link of the topmost element CLnk(s) := j.

For top1(s) = σ ∈ Σ, we define the topmost symbol Sym(s) := σ, the collapse level

of the topmost element CLvl(s) := 1, and the collapse link of the topmost element

CLnk(s) := |top2(s)| − 1.

• For m ∈ N, we define pσ,k,m(s) :=

(

s(σ, k, m) if l = 1,

w1 : w2 : · · · : wn−1 : pσ,k,m(wn) otherwise.

These auxiliary functions are useful for the formalisation of the stack operations.

2.3. Generalised Pushdown Graphs 43

Definition 2.3.16. For s = w1 : w2 : · · · : wn ∈ (Σ∪(Σ×{2, 3, . . . l}×N))+l , for σ ∈ Σ\{⊥},

for 1≤ k ≤ l and for 2≤ j ≤ l, we define the stack operations

clone j(s) :=

(

w1 : w2 : · · · : wn−1 : wn : wn if j = l ≥ 2,

w1 : w2 : · · · : wn−1 : clone j(wn) otherwise.

pushσ,k(s) :=







sσ if k = l = 1,

pσ,k,n−1(s) if k = l ≥ 2,

w1 : w2 : · · · : wn−1 : pushσ,k(wn) otherwise.

popk(s) :=







w1 : w2 : · · · : wn−1 : popk(wn) if k < l,

w1 : w2 : · · · : wn−1 if k = l, n> 1,

undefined otherwise, i.e.,k = l, n= 1.

collapse(s) :=







w1 : w2 : · · · : wm if CLvl(s) = l, CLnk(s) = m> 0,

w1 : w2 : · · · : wn−1 : collapse(wn) if CLvl(s)< l,

undefined if CLnk(s) = 0.

The set of level l operations is

OPl := {(pushσ,k)σ∈Σ,k≤l , (clonek)2≤k≤l , (popk)1≤k≤l , collapse}.

The set of level l stacks, Stacksl(Σ), is the smallest set that contains ⊥l and is closed under

application of operations from OPl .

Remark 2.3.17. It is sometimes convenient to assume that the identity

id : Stacksl(Σ)→ Stacksl(Σ)

is also a stack operation. Whenever this assumption is useful, we assume id to be a stack

operation.

We illustrate the definition of the stack operations with the following example.

Example 2.3.18. We start with the level 3 stack s0 := [⊥] : [⊥ :⊥]. We have

pusha,2(s0) = [⊥] : [⊥ :⊥(a, 2, 1)] =: s1

pushb,3(s1) = [⊥] : [⊥ :⊥(a, 2, 1)(b, 3, 1)] =: s2

clone3(s2) = [⊥] : [⊥ :⊥(a, 2, 1)(b, 3, 1)] : [⊥ :⊥(a, 2, 1)(b, 3, 1)] =: s3

clone2(s3) = s2 : [⊥ :⊥(a, 2, 1)(b, 3, 1) :⊥(a, 2, 1)(b, 3, 1)] =: s4

collapse(s4) = [⊥]

pop1(s4) = s2 : [⊥ :⊥(a, 2, 1)(b, 3, 1) :⊥(a, 2, 1)] =: s5

collapse(s5) = s2 : [⊥] = [⊥] : [⊥ :⊥(a, 2, 1)(b, 3, 1)] : [⊥] .

Note that collapse and popk operations are only allowed if the resulting stack is

nonempty. This avoids the special treatment of empty stacks. Furthermore, any collapse

that works on level 1 is equivalent to one pop1 operation: level 1 links always point to the

preceding letter because there is no clone1 operation. Furthermore, every collapse that

works on a level i ≥ 2 is equivalent to a sequence of popi operations.

Let us now define the substack relation on collapsible pushdown stacks. It is the natural

generalisation of the prefix order on words.

44 2. Basic Definitions and Technical Results

Definition 2.3.19. Let s, s′ ∈ Stacksl(Σ). We say that s′ is a substack of s if there are ni ∈ N
for 1 ≤ i ≤ l such that s′ = pop

n1
1 (pop

n2
2 (. . . (pop

nl

l
(s)))). We write s′ ≤ s if s′ is a substack

of s.

Now, it is time to formally define collapsible pushdown systems. These are defined

completely analogously to pushdown systems but using a level l stack and all the level l

stack operations.

Definition 2.3.20. A collapsible pushdown system of level l (l-CPS) is a tuple

S = (Q,Σ,Γ,∆, q0)

where Q is a finite set of states, Σ a finite stack alphabet with a distinguished bottom-of-

stack symbol ⊥ ∈ Σ, Γ a finite input alphabet, q0 ∈Q the initial state, and

∆⊆Q×Σ×Γ×Q×OPl

the transition relation.

A level l configuration is a pair (q, s) where q ∈ Q and s ∈ Stacksl(Σ). For q1, q2 ∈Q

and s, t ∈ Stacksl(Σ) we define a γ-labelled transition (q1, s) ⊢γ (q2, t) if there is a

(q1,σ,γ, q2, op) ∈∆ such that op(s) = t and Sym(s) = σ.

We call ⊢:=
⋃

γ∈Γ ⊢
γ the transition relation of S . We set C(S) to be the set of all

configurations that are reachable from (q0,⊥l) via ⊢ and call C(S) the set of reachable or

valid configurations. The collapsible pushdown graph (CPG) generated by S is

CPG(S) :=
�

C(S), (C(S)2∩ ⊢γ)γ∈Γ
�

Remark 2.3.21.

• Note that the transitions of a collapsible pushdown system only depend on the state

and the topmost symbol, but not on the topmost collapse level and collapse link. The

latter are only used to handle the result of a collapse operation.

• In the following, we always assume that the label of each transition carries informa-

tion about the stack operation and the state that is reached, i.e., we assume that there

is a map f : Γ → Q × OP such that for each transition (q,σ,γ, q′, op) ∈ ∆ we have

f (γ) = (q′, op). It is obvious that each collapsible pushdown system can be trans-

formed into one that satisfies this assumption: use Γ×Q×OP as new input alphabet;

then ⊢γ=
⋃

q∈Q,op∈OP ⊢
(γ,q,op). In this sense, we will write ⊢q,op:=

⋃

f (γ)=(q,op) ⊢
γ and

also ⊢q:=
⋃

op∈OP ⊢
q,op and ⊢op:=
⋃

q∈Q ⊢
q,op.

• An higher-order pushdown system is a collapsible pushdown system that does not use

the collapse operation.

To be more precise, we call a collapsible pushdown system with transition relation ∆

an higher-order pushdown system if

∆ ⊆Q×Σ×Γ×Q×
�

OPl \
�

{collapse} ∪ {pushσ,i : i ≥ 2}
��

,

i.e., if it does not use the collapse operation and the links of level i for all i > 1.

2.3. Generalised Pushdown Graphs 45

0⊥
Cl

1⊥ :⊥
A

A′
0⊥ :⊥a

Cl
1⊥ :⊥a :⊥a

A

A′
0⊥ :⊥a :⊥aa

Cl
1⊥ :⊥a :⊥aa :⊥aa

A′

. . .

2⊥ :⊥a
P

Co
2⊥ :⊥a :⊥aa

P

Co
2⊥ :⊥a :⊥aa :⊥aaa

P

Co . . .

2⊥ :⊥ 2⊥ :⊥a :⊥a
P

Co

2⊥ :⊥a :⊥aa :⊥aa
P

Co

. . .

2⊥ :⊥a :⊥ 2⊥ :⊥a :⊥aa :⊥a
P

Co

. . .

2⊥ :⊥a :⊥aa :⊥ . . .

Figure 2.3.: Example of the 2-CPG G (the level 2 links of the letters a are omitted due to

space restrictions).

Example 2.3.22. The following example of a collapsible pushdown graph G of level

2 is taken from [27]. Let Q := {0, 1, 2},Σ := {⊥, a}, Γ := {Cl, A, A′, P, Co}. ∆ is

given by (0,−, Cl, 1, clone2), (1,−, A, 0, pusha,2), (1,−, A′, 2, pusha,2), (2, a, P, 2, pop1), and

(2, a, Co, 0, collapse), where − denotes any letter from Σ.

The next two theorems summarise the known results concerning model checking on

collapsible pushdown graphs.

Theorem 2.3.23 ([27]). There is a collapsible pushdown graph of level 2 with undecidable

MSO model checking.

Proof. The graph from figure 2.3 is an example. Note that the graph from figure 2.2

is clearly FO-interpretable in this graph; one merely has to reverse the collapse-edges

in order to obtain the jump-edges and to omit every second node in the topmost line.

Hence, the corresponding MSO undecidability result from theorem 2.3.11 applies also to

this collapsible pushdown graph.

Theorem 2.3.24 ([27]). Lµ model checking on level n collapsible pushdown graphs is

n-EXPTIME complete.

We briefly sketch the proof idea for this theorem. The proof uses parity-games on col-

lapsible pushdown graphs. It is commonly known that Lµ model checking and the calcu-

lation of winning regions in a parity-game are equivalent. In order to solve parity-games

on a collapsible pushdown graph of level l+1, Hague et al. reduce this problem to another

parity game on a collapsible pushdown graph of level l. Their proof consists of two steps.

1. First, they prove that for each collapsible pushdown graph there is another one of the

same level that is rank aware. A level l collapsible pushdown graph is rank aware if

it “knows” at each configuration (q, s) with CLvl(s) = l the minimal rank (or priority)

that was visited since the last occurrence of the stack collapse(s). One can show that

for each parity game on a collapsible pushdown graph, one can construct a parity

game on a rank aware collapsible pushdown graph such that every winning strategy

in this new game can be transformed into a winning strategy for the original game.

2. In the second step, Hague et al. reduce the problem of solving a parity game on a

rank aware collapsible pushdown graph of level l + 1 to the problem of solving a

46 2. Basic Definitions and Technical Results

game on a graph of level l. The basic idea is to simulate only the topmost level l

stack of the level l + 1 graph and to handle the attempt to use a clonel+1 at a certain

stack s in the following way: if one player would perform a clonel+1 operation in the

original game, Verifier has to make a certain claim about her winning strategy in the

original game. According to her winning strategy, for each priority i, there is a set of

states Q i such that whenever the game returns to s and the minimal priority between

the clonel+1 operation and this new occurrence of the stack s is i, then the stack s is

visited again in one of the states from Q i. Now, in the new game, Verifier moves to a

state representing the set (Q i)i∈P where P is the finite set of priorities. Falsifier now

has two choices. Either he believes Verifier or he does not believe that Verifier’s claim

is correct.

If he believes her, he chooses one of the i ∈ P and a q ∈Q i. The new game continues

in (q, s) after visiting an auxiliary state of priority i.

Otherwise, the new game continues with the stack topl−1(s) and Falsifier has to show

that there is some position where he could use a popl- or collapse operation (in the

original game) and return to some state q and stack s such that q /∈ Q i for i the least

priority visited since Verifier had made this claim. At this point, rank awareness comes

into play. At each position where a pop2- or collapse operation may be performed,

rank-awareness allows to determine the minimal priority i since Verifier had made

her claim. Thus, due to rank-awareness, we can check whether Falsifier managed to

reach a position (q, s) where q /∈ Q i. In this case, Falsifier wins the game. If q ∈ Q i

then the game ends and Verifier wins.

Using this reduction l − 1 times, one derives a parity game on a level 1 pushdown graph

such that a strategy on this game can be used in order to compute a strategy in the orig-

inal parity game. Walukiewicz [63] showed the solvability of parity games on level 1

pushdown graphs. Now, the decidability of Lµ model checking on collapsible pushdown

graphs follows by induction on the level of the graph.

Since MSO model checking is undecidable for collapsible pushdown graphs, it is inter-

esting to investigate model checking for fragments of MSO. What is the largest fragment

such that model checking on collapsible pushdown graphs is decidable? In Chapter 3.1, we

make a first step towards an answer to this question. We prove the decidability of the first-

order model checking on level 2 collapsible pushdown graphs extended by Lµ-definable

predicates.

Now, we come to the notion of a run of a collapsible pushdown system. This definition

is completely analogous to the definition of a run of a pushdown system (cf. Definition

2.3.3).

Definition 2.3.25. Let S be a collapsible pushdown system. A run ρ of S is a sequence

of configurations that are connected by transitions, i.e., a sequence

c0 ⊢
γ1 c1 ⊢

γ2 c2 ⊢
γ3 · · · ⊢γn cn.

Remark 2.3.26. As in the case of pushdown systems, we identify a run ρ of length n

with the function that maps a number i to the configuration occurring just after the i-

th transition in ρ for each 0 ≤ i ≤ n, i.e., ρ(i) denotes the configuration after the i-th

transition of ρ and especially ρ(0) is the first configuration of ρ.

2.3. Generalised Pushdown Graphs 47

The final part of this section consists of some basic results concerning runs of collapsible

pushdown systems of level 2. We focus on level 2 because all of our main results only treat

pushdown systems of level 2.

First, we come to the question whether certain runs can create links to certain stacks.

Consider some configuration (q, s) of a level 2 collapsible pushdown system. If |s|= n then

a pushσ,2 transition applied to (q, s) creates a letter with a link to the substack of width

n − 1. Thus, links to the substack of width n − 1 in some word above the n-th one are

always created by a clone2 operation. A direct consequence of this fact is the following

lemma.

Lemma 2.3.27. Let s be some level 2 stack with top1(s) = (σ, 2, k). Let ρ be a run of a

pushdown system of level 2 that starts with stack s, that passes pop1(s), and that ends in s. If

k < |s| − 1 then ρ passes pop2(s).

The proof is left to the reader. Later we often use the contraposition of this statement.

We use the fact that a certain run to s does not visit pop2(s) and conclude that it cannot

visit pop1(s).

The next result deals with the decision problem for configurations: given a collapsible

pushdown system S , and a configuration (q, s), is (q, s) ∈ CPG(S)? We can solve this

problem using the decidability of Lµ model checking on collapsible pushdown systems.

In the following we reduce the decision problem for configurations for a level 2 collapsi-

ble pushdown system S to the Lµmodel checking on a variation of S . The proof is based

on the idea that a stack is uniquely determined by its top element and the information

which substacks can be reached via collapse and popi.

We can compute a variant S (q,s) of a given CPS S such that S (q,s) satisfies a certain

Lµ formula if and only if (q, s) is a configuration of the graph generated by S . The new

pushdown system is the extension of S by a testing device for the configuration (q, s). Let

us describe this testing device.

Assume that we want to define a testing device for the configuration (q, s). Furthermore,

assume that for each configuration (q′, s′) where s′ is a proper substack of s, there already

is a testing device for configuration (q′, s′). The testing device for (q, s) works as follows.

Whenever the system is in some configuration (q, ŝ), it switches to (qs, ŝ) where qs is a

new “testing state”. In qs, the system checks whether top1(ŝ) = top1(s). If this is the case,

then the following happens. Let ŝ′ be the stack obtained from ŝ by removing the topmost

element and let s′ be the stack obtained from s by removing the topmost element. Now,

we start the testing device for the substack s′ on the stack ŝ′. If this testing device returns

that ŝ′ is s′, then ŝ = s and the new testing device was started in (q, s).

For each configuration (q, s), there is an Lµ formula such that this formula is satisfied at

some configuration of S (q,s) if and only if this configuration is (q, s).

Before we go into the details of this proof, we recall the terminology concerning Lµ on

collapsible pushdown graphs. The binary relations on such a graph are labelled by symbols

from the input alphabet Γ and we use expressions as 〈γ〉ϕ for the formula saying “there is

a γ-labelled edge leading to a node where ϕ holds”. As an abbreviation we use 3ϕ for the

formula saying “there is an arbitrary labelled edge leading to a node where ϕ holds”, i.e.,

as an abbreviation for
∨

γ∈Γ〈γ〉ϕ.

48 2. Basic Definitions and Technical Results

Lemma 2.3.28. Given some CPS S = (Q,Σ,Γ,∆, q0) of level 2, some q ∈ Q and some stack

s, it is decidable whether (q, s) is a reachable configuration of S , i.e., whether (q, s) is a vertex

of CPG(S).

Proof. For q ∈ Q and s a stack, we define a system S (q,s) and a formula ψ(q,s) ∈ Lµ, such

that

S (q,s), (q0,⊥2) |=ψ(q,s) iff (q, s) ∈ CPG(S).

We set

S (q,s) := (Q′,Σ,Γ′,∆(q,s), q0) with

Q′ :=Q ∪ {qt : t ≤ s} ∪ {q;}, and

Γ′ := Γ∪ {(qt , op) : t ≤ s, op ∈ OP} ∪ ({q;} ×OP),

where qt is a new state for every substack t of the stack s we are looking for and q; is used

for checking that certain operations can or cannot be performed on a configuration.

In the following we define ∆(q,s) ⊇ ∆ by induction on the size of s such that

∆(qt ,t) ⊆∆(q,s) for all proper substacks t < s.

1. For s = ⊥2 we set

∆(q,s) :=∆∪
�

(q,⊥, (q;, clone2), q;, clone2), (q,⊥, (q;, pop2), q;, pop2)
	

.

Additionally, we set ϕ(q0,s) := 〈q;, clone2〉True ∧ [q;, pop2]False. Note that the first

part of this formula is satisfied in S (q,s) at some configuration c if the state is q and

the topmost symbol is ⊥. At such a configuration c, the second part can only be

satisfied if no pop2 is possible, i.e., if the width of the stack is 1.

2. Assume that |s|> 1 and Sym(s) = ⊥ for some stack s. Then we set t = pop2(s) and

∆(q,s) :=∆(qt ,t) ∪
�

(q,⊥, (qt , pop2), qt , pop2)
	

and ϕ(q,s) := 〈qt , pop2〉ϕ(qt ,t).

3. The next case is Sym(s) 6= ⊥ and CLnk(s) = 0. Then we set t := pop1(s) and

∆(q,s) :=∆(qt ,t)

∪
�

(q, Sym(s), (qt , pop1), qt , pop1), (q, Sym(s), (q;, collapse), q;, collapse)
	

and

ϕ(q,s) := 〈qt , pop1〉ϕ(qt ,t) ∧ [q;, collapse]False.

4. In all other cases we set t := pop1(s) and u := collapse(s). We set

∆(q,s) :=∆(qt ,t) ∪
�

(q, Sym(s), (qt , pop1), qt , pop1)
	

∪
�

(q, Sym(s), (qU , collapse), qu, collapse)
	

and

ϕ(q,s) :=〈qt , pop1〉ϕ(qt ,t) ∧ 〈qu, collapse〉ϕ(qu,u).

2.3. Generalised Pushdown Graphs 49

We show by induction that for all q ∈Q and stacks s

CPG(S (q,s)), c |= ϕ(q,s) iff c = (q, s).

The initial stack s = ⊥2 = [⊥] is characterised by the facts that the top symbol of the stack

is the bottom-of-stack symbol and that pop2 is undefined. The first conjunct of

ϕ(q0,s) = 〈q;, clone2〉True∧ [q;, pop2]False

is only satisfied if the top symbol is ⊥ and the second conjunct is satisfied if and only if

pop2 is undefined. Thus, ϕ(q,⊥2)
and S (q,⊥2) satisfy our claim.

For the induction step, note that collapse is defined if and only if the collapse link of the

topmost symbol is not 0. If collapse is defined for some stack s and u := collapse(s), t =

pop1(s) then∆(qu,u) ⊆∆(qt ,t) ⊆∆(qs,s) because u≤ t. With these observations the induction

step is straightforward by case distinction on the topmost symbol of s and on the fact

whether collapse(s) is defined. Let (q, s) be some configuration and let l be the minimal

level such that popl(s) is defined. On the graph generated by S (q,s), the formula ϕ(q,s)

asserts that this popl operation is defined and, by induction hypothesis, results in the

stack popl(s). The analogous argument applies to the result of a collapse operation if the

operation is defined on s. If it is undefined, i.e., CLnk(s) = 0 then the formula ϕ(q,s) asserts

that the collapse is undefined.

Now, we set ψ(q,s) := µZ .(3Z ∨ϕ(q,s)) which is just the formula asserting reachability of

some point where ϕ(q,s) holds. Thus,

(q, s) ∈ CPG(S) iff CPG(S (q,s)), (q0,⊥2) |=ψ(q,s) .

The latter problem is decidable due to Theorem 2.3.24.

Remark 2.3.29. This lemma extends to systems of higher level. But in the case of higher

levels, the proof needs some further preparation. The underlying problem that one faces

on higher levels is the following. Consider the level 3 stacks s2 := [[⊥(σ, 2, 0)]] and

s3 := [[⊥(σ, 3, 0)]]. For any sequence of stack operations, the result of the application of

this sequence to s2 is defined if and only if its application to s3 is defined. Furthermore,

the resulting stacks are identical except for the replacement of level 2 links of value 0 by

level 3 links of value 0.

Thus, our approach cannot distinguish between s2 and s3.

In order to make our approach work, we have to transform S into a new pushdown

system S ′ over a new alphabet Σ′ which is level aware. Level awareness is defined as

follows. There is a mapping f : Σ′ → {1, 2, 3, . . . , l} such that for each stack generated by

S ′, Sym(s) = σ implies that CLvl(s) = f (σ). This system can be obtained by replacing Σ

by Σ× {1, 2, 3, . . . , l} and by using push(σ,k),k instead of pushσ,k.

Then we can apply the generalisation of the approach of level 2 to this new system and

solve the decision problem for configurations.

We now turn to a quantitative version of the decision problem for configurations. We

want to compute how many runs to a given configuration exist up to a given threshold

k ∈ N. In the next lemma we show that this question can be reduced to the decision

problem for configurations.

50 2. Basic Definitions and Technical Results

Lemma 2.3.30. There is an algorithm solving the following problem. Given a level 2 col-

lapsible pushdown system S = (Q,Σ,Γ, q0,∆), a state q ∈ Q, a stack s ∈ Stacks2(Σ) and a

threshold k ∈ N, how many runs from the initial configuration to (q, s) exist up to threshold

k?

Proof. First of all, by Lemma 2.3.28, it is decidable whether (q, s) is a node of Grph(S).

If this is the case then there is at least one run of the desired form. Otherwise there are 0

runs of this form.

Assume that (q, s) ∈ Grph(S). Since the runs of S are recursively enumerable, we can

compute the length-lexicographically smallest run ρ1 to (q, s).3

In the following we show how to decide whether there is a second run of the desired

form. For this purpose, let l := ln(ρ1) and let δi be the transition between ρ1(i) and

ρ1(i + 1) for all 0 ≤ i < l. Furthermore, let qi be the state at ρ1(i). Now, we construct a

new pushdown system S̃ := (Q̃,Σ,Γ, q̃0, ∆̃) where

Q̃ :=Q ∪ {q̃0, q̃1, . . . , q̃l}

for new states q̃0, . . . , q̃l and

∆̃ :=∆∪
�

(q̃i,σ,γ, q̃i+1, op) : δi = (q,σ,γ, q′, op)
	

∪
�

(q̃i,σ,γ, q′, op) : (qi,σ,γ, q′, op) ∈∆ \ {δi},
	

.

This system copies the behaviour of every initial segment of ρ1 and stays within the new

states. As soon as it simulates one of the transitions of ∆ that do not extend the run to

another initial segment of ρ1, it changes to the correct original state in Q. From this point

on, the system behaves exactly like S . Note that the run corresponding to ρ1 in S̃ ends

in configuration (q̃l , s) (for s the final stack of ρ1). Hence, the corresponding run is no

witness for the reachability of (q, s) in the new system. Thus, if CPG(S̃) contains (q, s),

then there are two different runs in S from the initial configuration to (q, s).

Repeating this construction up to k times, we compute the runs to (q, s) up to threshold

k.

Remark 2.3.31. We have no elementary bound on the complexity of this algorithm. This

is due to the fact that we cannot derive a polynomial bound on the length of the run ρ1.

Hence, the size of the pushdown system under consideration may increase too much in

each iteration. Since we use the Lµ model checking algorithm on each of the pushdown

systems we construct, the resulting algorithm is doubly exponential in the size of the

largest pushdown system that we construct.

In the last part of this section, we recall a lemma of Blumensath from [8] concerning

the substitution of prefixes of stacks. The original lemma was stated for higher-order

pushdown systems (without collapse) of arbitrary level. Here, we only recall the result for

level 2 pushdown systems and we present a straightforward adaption to the case of level 2

collapsible pushdown systems. We start by defining a prefix relation on stacks. Note that

this relation does not coincide with the substack relation.

3 We assume that the transition relation of S is a totally ordered set.

2.3. Generalised Pushdown Graphs 51

Definition 2.3.32. For some level 2 stack t and some substack s ≤ t we say that s is a

prefix of t and write sÅ t, if there are n≤ m ∈ N such that s = w1 : w2 : · · · : wn−1 : wn and

t = w1 : w2 · · · : wn−1 : vn : vn+1 : · · · : vm such that wn ≤ v j for all n≤ j ≤ m.

For some run ρ, we write sÅρ if sÅρ(i) for all i ∈ dom(ρ).

Remark 2.3.33. Note that sÅ t obtains if s and t agree on the first |s| − 1 words and the

last word of s is a prefix of all other words of t. Especially, s has to be a substack of t ands

|s| ≤ |t|.

Now, we introduce a function that replaces the prefix of some stack by some other.

Definition 2.3.34. Let s, t, u be level 2 stacks such that sÅ t. Assume that

s = w1 : w2 : · · · : wn−1 : wn,

t = w1 : w2 · · · : wn−1 : vn : vn+1 : · · · : vm, and

u= x1 : x2 : · · · : xp

for numbers n, m, p ∈ N such that n ≤ m. For each n ≤ i ≤ m, let v̂ i be the unique word

such that v i = wn ◦ v̂ i. We define

t[s/u] := x1 : x2 : · · · : xp−1 : (xp ◦ v̂n) : (xp ◦ v̂n+1) : · · · : (xp ◦ v̂m)

and call t[s/u] the stack obtained from t by replacing the prefix s by u.

Remark 2.3.35. Note that for t some stack with level 2 links, the resulting object t[s/u]

may be no stack. Take for example the stacks

t = ⊥(a, 2, 0) :⊥(a, 2, 0),

s = ⊥(a, 2, 0) :⊥ and

u= ⊥ :⊥.

Then t[s/u] = ⊥ : ⊥(a, 2, 0). This list of words cannot be created from the initial stack

using the stack operation because an element (a, 2, 0) in the second word has to be a clone

of some element in the first one. But (a, 2, 0) does not occur in the first word.

If t ∈ Σ+2, i.e., if t does not contain links of level 2, then t[s/u] is always a stack. Thus,

the prefix replacement for stacks of higher-order pushdown systems always results in a

well-defined stack while prefix replacement for stacks of collapsible pushdown systems

may result in objects that are not stacks.

In the following we study the compatibility of prefix replacement with the stack opera-

tions.

Lemma 2.3.36. Let s, t be stacks such that sÅ t. Let op be some operation. If s 6Åop(t), then

one of the following holds:

1. op(t) = popk
2
(s) for some k ∈ N or

2. op(t) = pop1(s), top2(t) = top2(s) and top2(op(t)) = pop1(top2(s)).

52 2. Basic Definitions and Technical Results

Proof. If op is clone2 or pushσ,i for some σ ∈ Σ and i ∈ {1, 2}, then sÅ t implies sÅop(t).

If op= pop2 and s 6Åop(t) then |t|= |s| and op(t) = pop2(s).

If op= pop1, sÅ t and s 6Åop(t) implies that top2(s)≤ top2(t) but top2(s)� top2(op(t)).

One immediately concludes that top2(t) = top2(s) and top2(op(t)) = pop1(top2(s)).

If op = collapse, we have to distinguish two cases. If CLvl(t) = 1, then we apply the

same argument as in the case of op = pop1. Otherwise, op(t) = popm
2
(t) for some m ∈ N

and one reasons analogously to the case of op= pop2.

Lemma 2.3.37. Let s, t be stacks such that sÅ t and |t|> |s|. Then it holds that sÅpop2(t).

Proof. Just note that t = pop2(s) : t ′ for t ′ a stack where each word is prefixed by top2(s).

Furthermore, |t| > |s| implies that |t ′| ≥ 2. Hence, pop2(t) = pop2(s) : t ′ for t ′ a stack of

width at least 1 where each word is top2(s) prefixed by top2(s). Thus, sÅ t holds.

Blumensath showed the following important compatibility of prefix replacement and

stack operations in the case of level 2 pushdown systems (without collapse!).

Lemma 2.3.38 ([8]). Let ρ be a run of some pushdown system S of level 2 and let s, u ∈ Σ+2

be stacks such that the following conditions are satisfied:

1. sÅρ,

2. top2(s)< top2(ρ(i)) for all i < ln(ρ) or Sym(u) = Sym(s).

Under these conditions, the function ρ[s/u] defined by ρ[s/u](i) := ρ(i)[s/u] is a run of S .

Proof (sketch). One proves this lemma by induction on dom(ρ). The transitions performed

in ρ can be carried over one by one to the transitions of ρ[s/u].

Now, we present an adaption of this idea to collapsible pushdown systems.

Lemma 2.3.39. Let ρ be a run of some collapsible pushdown system S of level 2 and let s

and u be stacks such that the following conditions are satisfied:

1. sÅρ,

2. top2(s)< top2(ρ(i)) for all i < ln(ρ) or top1(u) = top1(s),

3. |s|= |u|, and

4. for ρ(0) = (q, t), t[s/u] is a stack.

Under these conditions the function ρ[s/u] defined by ρ[s/u](i) := ρ(i)[s/u] is a run of S .

Proof. The proof is again by induction on dom(ρ). For all operations, except for collapse,

the proof of this lemma is analogous to the proof of the previous lemma. For each such

operation op occurring at position i in ρ one shows that ρ(i + 1)[s/u] = op(ρ(i)[s/u]).

For the collapse operation, assume that there is a position i such that

ρ(i + 1) = collapse(ρ(i))

and such that ρ(i)[s/u] is defined. Due to condition 2, the topmost symbol and the col-

lapse level of ρ(i) and ρ(i)[s/u] agree. Thus, if the collapse level is 1, then the collapse

2.3. Generalised Pushdown Graphs 53

acts on both configurations like a pop1. In this case, the compatibility of this collapse

with the prefix replacement follows from the proof of the case of pop1. Otherwise, the

collapse level of the topmost element of both stacks is 2. In this case the collapse links

of the topmost elements also agree by definition. Furthermore, due to |s| = |u| the width

of ρ(i) and ρ(i)[s/u] agrees. Hence, there is some k ∈ N such that the collapse applied

to both configurations results in popk
2
(ρ(i)) and popk

2
(ρ(i))[s/u], respectively. Thus, the

reduction to the iterated use of the case of pop2 proves the claim.

2.4 Technical Results on the Structure of Collapsible Pushdown Graphs

In this section, we develop the technical background for our main results that are presented

in Sections 3.1 and 3.3.

As in the end of the previous section, this section is only concerned with collapsible

pushdown systems of level 2. Hence, if we write collapsible pushdown system, we always

mean one of level 2.

The overall goal of this section is the following: finite automata can be used to determine

how many4 runs from the initial configuration to some configuration (q, s) exist. In order

to prove this result, we introduce three notions: returns, loops, and generalised milestones5.

We motivate these notions from the last to the first.

Let s and s′ be stacks. We call s′ a generalised milestone of s if every run from the initial

configuration to a configuration with stack s has to pass s′ at some intermediate step.

Thus, it follows directly from this definition that the reachability of a certain stack from

the initial configuration decomposes into the analysis of the reachability of milestones from

other milestones of this stack. We will see that every run to s passes all the milestones of

s′ in a certain order. Thus, the question “how many runs to s exist?” can be reduced to the

question “how many runs from one milestone of s to the next exist?”.

A closer analysis of this decomposition shows that the run from one milestone to the next

is always a loop followed by exactly one transition. A loop is a run from some configuration

(q, s) to some configuration (q′, s) not passing a substack of pop2(s). This means that a run

starts and ends with the same stack s and it does not “look into” the content of pop2(s).

Using this result, the question “how many runs to (q, s) exist?” can be reduced to the

question “how many loops of each generalised milestone of s exist?”.

In order to show that a finite automaton can answer the last question, we introduce the

notion of a return. A run ρ is called return if it is a run from some stack s to the stack

pop2(s) that satisfies the following conditions:

1. before the last position, no substack of pop2(s) is passed, and

2. the collapse links of level 2 stored in top2(s) are not used by ρ.

It turns out that returns naturally appear as subruns of loops. In the following we first

introduce generalised milestones and develop their theory. Then we define loops and

4 For the rest of this section, the question “how many?” is meant up to a certain threshold k ∈ N, i.e.,

“how many runs to (q, s) exist” stands for “given a threshold k ∈ N, how many runs to (q, s) exist up to

threshold k?”.
5 The term “generalised” refers to the fact that this notion is a generalisation of the notion “milestone”

which we introduced in [35].

54 2. Basic Definitions and Technical Results

returns and show their connection to generalised milestones in Section 2.4.2. In Section

2.4.3 we develop the theory of counting returns. Finally, we develop the analogous theory

of loops in Section 2.4.4.

2.4.1 Milestones and Loops

Recall that w ⊓ v denotes the greatest common prefix of the words w and v (cf. Section

2.2.2). We start with a formal definition of generalised milestones. Afterwards, we show

that this definition fits the informal description given before.

Definition 2.4.1. Let s = w1 : w2 : · · · : wk be a stack. We call a stack m a generalised

milestone of s if m is of the form

m= w1 : w2 : · · · : wi : v i+1 where 0≤ i < k,

wi ⊓ wi+1 ≤ v i+1 and

v i+1 ≤ wi or v i+1 ≤ wi+1.

We denote by GMS(s) the set of all generalised milestones of s.

For a generalised milestone m of s, we call m a milestone of s if m is a substack of s. We

write MS(s) for the set of all milestones of s.

Remark 2.4.2. In the following we are mainly concerned with generalised milestones. Only

in Section 3.1 the concept of milestones appears as a useful concept on its own.

A simple observation is that we can derive a bound on the number of generalised mile-

stones from the height and the width of a stack.

Lemma 2.4.3. For each stack s there are less than 2 ·hgt(s) · |s| many generalised milestones.

In our informal description of generalised milestones, we said that the generalised mile-

stones of s are those stacks that every run to s has to pass. In order to show this, we use a

result of Carayol [15]. He showed the following. For each higher-order pushdown stack s

there is a unique minimal sequence of stack operations that creates s from the initial stack.

On level two, this sequence creates the stack word by word, i.e., it starts with a sequence

of push operations writing the first word onto the stack, then there is a clone operation,

after this there is a sequence of pop1 transitions followed by a sequence of push transitions

that create the second word of the stack, then there follows a clone and so on. Further-

more, the topmost word reached after the n-th of the pop1 sequences is exactly the greatest

common prefix of the n-th and the (n− 1)-st word of the stack. This result directly carries

over to collapsible pushdown stacks due to the following fact: on level two the result of a

collapse operation is either the same as applying a pop1 or a sequence of pop2 operations.

Carayol’s result shows that for any sequence containing a pop2 operation, there is a shorter

one where this pop2 is eliminated. Hence, we can eliminate in the same way any collapse

of link level 2. Finally, any other collapse can be treated like a pop1 operation. We describe

Carayol’s result more formally in the following lemma.

Lemma 2.4.4 ([15]).

• For each collapsible pushdown stack s of level 2 there is a minimal sequence of operations

op1, op2, . . . , opn ∈ {pushσ,i, pop1, clone2} such that s = opn(opn1
(. . . (op1(⊥2)))).

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 55

• For op1, op2, . . . , opn the minimal sequence generating a stack s, the stack

op j(op j−1(. . . op0(⊥2)))

is a generalised milestone of s for each 0≤ j ≤ n.

Furthermore, for each generalised milestone m of s there is a 0 ≤ j ≤ n such that

m= op j(op j−1(. . . op0(⊥2))).

• Every run ρ to some stack s passes all generalised milestones of s.

Remark 2.4.5. From the minimality of the sequence op1, op2, . . . , opn generating s it fol-

lows that there is a bijection between the initial subsequences op1, op2, . . . , op j and the

milestones of s. From now on, we call op j(op j−1(. . . op0(⊥2))) the j-th milestone of s.

Note that if i ≤ j then the i-th milestone mi of s is a milestone of the j-th milestone

m j of s. If we restrict this order to the set of milestones MS(s), then it coincides with the

substack relation.

We want to conclude the analysis of generalised milestones with a lemma that char-

acterises runs connecting generalised milestones in terms of loops. Thus, we first give a

precise definition of loops. Then we prove this characterisation. A loop is a run that starts

and ends in the same stack and which satisfies certain restrictions concerning the substacks

that are passed.

Definition 2.4.6. A loop from (q, s) to (q′, s) is a run λ that does not pass a substack of

pop2(s) and that may pass popk
1
(s) only if the k topmost elements of top2(s) are letters

with links of level 1. This means that for all i ∈ dom(λ), if λ(i) = (qi, popk
1
(s)) then

CLvl(popk′

1
(s)) = 1 for all 0≤ k′ < k.

If λ is a loop from (q, s) to (q′, s) such that λ(1) = pop1(s) and λ(ln(λ)− 1) = pop1(s),

then we call λ a low loop.

If λ is a loop from (q, s) to (q′, s) that never passes pop1(s), then we call λ a high loop.

Remark 2.4.7. If λ is a loop from (q, s) to (q′, s) such that the stack at i and at j is s for

i ≤ j ∈ dom(λ), then λ↾[i, j] is a loop.

We now characterise runs connecting milestones in terms of loops.

Lemma 2.4.8. Let ρ be a run from the initial configuration to the stack s = w1 : w2 : · · · : wk.

Furthermore, let n be the number of generalised milestones of s. For all i ≤ n, let mi be the

i-th generalised milestone of s. Furthermore, let ni denote the maximal position such that the

stack of ρ(ni) is mi. We write qi for the state of ρ(ni), i.e., ρ(ni) = (qi, mi). For all i < n,

there is some state q′
i+1

such that there is a transition from ρ(ni) to (q′
i+1

, mi+1) = ρ(ni + 1)

and ρ↾[ni+1,ni+1]
is a loop of mi+1. Furthermore, ρ↾[0,n1]

is a loop of ⊥2.

Proof. Fix some i ∈ N. We prove the claim for mi and mi+1. We distinguish the following

cases.

• Assume that mi+1 = clone2(mi). In this case mi = w1 : w2 : · · · : w|mi |
. Thus, at the

last position j ∈ dom(ρ) where |ρ(j)|= |mi|, the stack at ρ(j) is mi (because ρ never

changes the first |mi| many words after passing ρ(j)). Hence, j = ni by definition.

Since |s| > |mi|, it follows directly that the operation at ni is a clone2 leading to

mi+1. Note that ρ never passes a stack of width |mi| again. Thus, it follows from

Lemma 2.3.27 that ρ↾[ni+1,ni+1]
satisfies the restriction that it never visits popk

1
(mi+1)

if CLvl(popk−1
1 (mi+1)) = 2. Thus, we conclude that this restriction is a loop.

56 2. Basic Definitions and Technical Results

• Assume that mi+1 = pop1(mi). In this case, mi = w1 : w2 : · · · : w|mi |−1 : w for some

w such that w|mi |−1 ⊓ w|mi |
< w ≤ w|mi |−1. Thus, w 6≤ w|mi |

and creating w|mi |
as the

|mi|-th word on the stack requires passing w1 : w2 : · · · : w|mi |−1 : w|mi |−1 ⊓ w|mi |
. This

is only possible via applying pop1 or collapse of level 1 to mi. Since we assumed ni

to be maximal, the operation at ni must be pop1 or collapse of level 1 and leads to

mi+1.

We still have to show that ρ↾[ni+1,ni+1]
is a loop. By definition of ni+1, ρ↾[ni+1,ni+1]

starts and ends in mi+1. By maximality of ni, ρ↾[ni+1,ni+1]
does not visit the stack

pop2(mi) = pop2(mi+1). Furthermore, note that top1(mi+1) is a cloned element.

Hence, Lemma 2.3.27 implies that ρ↾[ni+1,ni+1]
may only visit popk

1
(mi+1) in case

that CLvl(popk−1
1 (mi+1)) = 1. Thus, ρ↾[ni+1,ni+1]

is a loop.

• The last case is mi+1 = pushσ,l(mi) for (σ, l) ∈ Σ× {1, 2}. In this case,

mi = w1 : w2 : · · · : w|mi |−1 : w

for some w such that w|mi |−1 ⊓w|mi |
≤ w < w|mi |

. Creating w|mi |
on the stack requires

pushing the missing symbols onto the stack as they cannot be obtained via clone

operation from the previous word. Since ni is maximal, the operation at ni is some

pushσ,l leading to mi+1. ρ↾[ni+1,ni+1]
is a high loop due to the maximality of ni (this

part of ρ never visits mi = pop1(mi+1) or any other proper substack of mi+1).

We conclude this section by rephrasing this result in terms of milestones. We will use it

in this form in Chapter 3.1.

Corollary 2.4.9. Let ρ be a run from the initial configuration to the configuration (q, s)

where s decomposes as

s = w1 : w2 : · · · : wk.

Let ni denote the maximal position such that ρ(ni) = (q, mi) for some q ∈ Q and mi the i-th

milestone of s. We define qi ∈Q such that ρ(ni) = (qi, mi). Then one of the following applies.

1. There is a pushσ, j transition from ρ(ni) = (qi, mi) to (q′
i+1

, mi+1) := ρ(ni + 1) and

ρ↾[ni+1,ni+1]
is a loop of mi+1, or

2. there is a clone2 transition followed by a sequence λ0 ◦ π1 ◦ λ1 · · · ◦ πn ◦ λn where the

λi are loops and the πi are runs that perform exactly one pop1 operation or collapse of

level 1 each.

Furthermore, we have

3. ρ(n1) = (q1, [⊥]), i.e., ρ↾[0,n1]
is a loop of [⊥]. If m is the number of milestones of s,

then ρ(nm) = (q, s) is the final configuration of ρ.

As another direct corollary of the lemma, we obtain that the linear order of the mile-

stones induced by the substack relation coincides with the order in which the milestones

appear for the last time in a given run.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 57

Corollary 2.4.10. For an arbitrary run ρ from the initial configuration to some stack s, the

function

f : MS(s)→ dom(ρ)

s′ 7→max{i ∈ dom(ρ) : ρ(i) = (q, s′) for some q ∈Q}

is an order embedding.

We have seen that generalised milestones induce a uniform decomposition of all runs

to a given stack. Furthermore, the parts of the run that connect generalised milestones

always consist of a loop plus one further transition. In order to understand the existence

of runs to certain configurations, we investigate the theory of loops in the following.

2.4.2 Loops and Returns

Recall that we have already defined loops in Definition 2.4.6. Next, we define returns

which are runs from a stack s : w to s without visiting substacks of s. Our interest in

returns stems from the fact that they appear as subruns of high loops whence they play an

important role in finding loops for a given stack.

Definition 2.4.11. Let t = s : w be some stack with topmost word w. A return from t to s

is a run ρ from t to s such that ρ never visits a substack of s except for the last stack of ρ

and such that one of the following holds:

1. the last operation in ρ is pop2,

2. the last operation in ρ is a collapse and w < top2(ρ(ln(ρ)−1)), i.e., ρ pushes at first

some new letters onto t and then performs a collapse of one of these new letters, or

3. there is some i ∈ dom(ρ) such that ρ↾[i,ln(ρ)] is a return from pop1(t) to s.

Remark 2.4.12. A return from t to pop2(t) is a run ρ from t to pop2(t) such that ρ never

visits a substack of pop2(t) except for the last stack of ρ and that does not use the level 2

links stored in top2(t).

We first give an example for this definition, afterwards we discuss its motivation.

Example 2.4.13. Consider a collapsible pushdown systemS over the alphabet {⊥,⊤, a, b}

with the transitions (q0, a,γ0, q1, clone2), (q1, a,γ1, q1, collapse) and (q1, b,γ2, q1, pusha,2).

Consider the stack

s := ⊥(b, 2, 0)2 :⊥(b, 2, 1)a.

The transitions induce a unique run ρ from (q1, s) to (q1, pop2(s)) of length 3. ρ is depicted

on the left side of Figure 2.4. ρ↾[1,3] is a return from

(q1,⊥(b, 2, 0)2 :⊥(b, 2, 1)) to

(q1, [⊥(b, 2, 0)2])

58 2. Basic Definitions and Technical Results

2 a

(b, 2, 0) (b, 2, 1)
q1, ⊥

γ1

⊥

2

(b, 2, 0) (b, 2, 1)
q1, ⊥

γ2

⊥

2 (a, 2, 1)

(b, 2, 0) (b, 2, 1)
q1, ⊥

γ1

⊥

2

(b, 2, 0)
q1, ⊥

a a

(b, 2, 0) (b, 2, 0) (b, 2, 0)
q1, ⊥

γ1

⊥ ⊥

a

(b, 2, 0) (b, 2, 0) (b, 2, 0)
q1, ⊥

γ2

⊥ ⊥

a (a, 2, 2)

(b, 2, 0) (b, 2, 0) (b, 2, 0)
q1, ⊥

γ1

⊥ ⊥

a

(b, 2, 0) (b, 2, 0)
q1, ⊥ ⊥

Figure 2.4.: The run ρ from (q1, s) to (q1, pop2(s)) on the left side and the run ρ′ = λ↾[1,4]

from (q1, s′) to (q1, pop2(s
′)) on the right side.

because it satisfies the second item of the definition of a return. Hence, ρ is a return

because it satisfies the third item of the definition.

We want to consider a second example that shows how returns occur as subruns of loops.

The transitions induce a loop λ from

(q0,⊥(b, 2, 0) :⊥(b, 2, 0)a) to

(q1,⊥(b, 2, 0) :⊥(b, 2, 0)a).

The run passes (q1,⊥(b, 2, 0) : ⊥(b, 2, 0)a : ⊥(b, 2, 0)a) and continues from there as de-

picted on the right side of Figure 2.4 (the figure shows λ without its first configuration

because this final part of λ plays a role in the next remark). Note that λ↾[2,4] is a return

starting from a stack with topmost word pop1(top2(λ(0))). Later, when we analyse loops

in detail we will see that this is a typical occurrence of a return. Any loop of a stack s

decomposes into parts prefixed by s and parts that are returns of stacks with topmost word

pop1(top2(s)).

Remark 2.4.14. A return is a run from some stack s to pop2(s) that depends on the symbols

and link levels of top2(s), but not on any other content of s in the following sense. A return

from s to pop2(s) consists of a sequence of transitions. For any stack s′ with |s′| ≥ 2 such

that the topmost words of s and s′ coincide on their symbols and link levels, this sequence

can be applied to s′. The resulting run induced by this sequence is then a return from s′ to

pop2(s
′).

We explain this idea with some examples. Let S be the pushdown system and ρ the

return from s to pop2(s) as in Example 2.4.13. Consider the stack

s′ := ⊥(b, 2, 0) :⊥(b, 2, 0)a :⊥(b, 2, 0)a.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 59

Note that the symbols and link levels of top2(s) and top2(s
′) agree while their links differ.

There is a return ρ′ from (q1, s′) to (q1, pop2(s
′)) which is obtained by starting in (q1, s′)

and copying the transitions of ρ one by one. The resulting return ρ′ is depicted on the

right side of Figure 2.4.

This is not by accident, but by intention: whenever two stacks s and s′ coincide on the

symbols and link levels of their topmost words, we can copy a return from s to pop2(s)

transition by transition and obtain a return from s′ to pop2(s
′). This is due to two facts.

Firstly, a return from s to pop2(s) never looks into pop2(s) before its last configuration.

Thus, the words below the topmost word have no influence on this run. Secondly, the

restriction of the use of collapse links ensures that a return only uses collapse links of level

2 if these were created during the run ρ. If such a link points to pop2(s), it is created by a

push operation at some position i in ρ on a stack of width |s|. But then ρ′, the one to one

copy of the transitions of ρ with starting stack s′, uses a push transition at position i on a

stack of width |s′|. Thus, the link created in this step points to pop2(s
′). Hence, if ρ uses

the created collapse link and collapses the stack to pop2(s), then ρ′ uses the copy of this

link and collapses to pop2(s
′).

We defined returns in such a way that they are runs from some stack s to pop2(s) that are

independent of the links and the words below the topmost one. The next example shows

that the restricted use of the collapse operation in the definition of returns is crucial for

this property. We present a run from some stack ŝ to pop2(ŝ) that does not look into the

substacks of pop2(ŝ) before the final position but that lacks the independence of the level

2 links of the topmost word.

Consider the stacks

ŝ := ⊥(b, 2, 0)(b, 2, 0) :⊥(a, 2, 1)a and

ŝ′ := ⊥(b, 2, 0) :⊥(a, 2, 1) :⊥(a, 2, 1)a.

We still consider the transitions given in Example 2.4.13. Using these transitions, there are

runs ρ̂ from (q1, ŝ) to (q1, pop2(ŝ)) and ρ̂′ from (q1, ŝ′) to (q1, [⊥(b, 2, 0)]) as depicted in

Figure 2.5.

Note that ρ̂ is no return because it uses the level 2 collapse link stored in top2(ŝ). Fur-

thermore, top2(ŝ) = top2(ŝ
′) and ρ̂′ copies ρ̂ transition by transition. Nevertheless, ρ̂′

does not end with the stack pop2(ŝ
′) but with pop2

2
(ŝ′).

Thus, if we drop the restriction on the use of collapse links, then we obtain runs from

some stack s to pop2(s) that cannot be transferred into runs from stacks s′ to pop2(s
′) even

though top2(s) = top2(s
′).

2.4.3 Computing Returns

As already mentioned in the previous section, the theory of returns is important for the

theory of loops. Thus, we first study the theory of returns on its own. Later we apply this

theory to the theory of loops. Our main goal in this part is to provide a finite automaton

that calculates on input top2(s) the number of returns from (q, s) to (q′, pop2(s)) up to a

given threshold k ∈ N. We start by introducing appropriate notation for this purpose.

60 2. Basic Definitions and Technical Results

(b, 2, 0) a

(b, 2, 0) (a, 2, 1)
q1, ⊥

γ1

⊥

(b, 2, 0)

(b, 2, 0) (a, 2, 1)
q1, ⊥

γ1

⊥

(b, 2, 0)

(b, 2, 0)
q1, ⊥

a

(b, 2, 0) (a, 2, 1) (a, 2, 1)
q1, ⊥

γ1

⊥ ⊥

(b, 2, 0) (a, 2, 1) (a, 2, 1)
q1, ⊥

γ1

⊥ ⊥

(b, 2, 0)
q1, ⊥

Figure 2.5.: The run ρ̂ from (q1, ŝ) to (q1, pop2(ŝ)) on the left side and the run ρ̂′ from

(q1, ŝ′) to (q1, pop2(pop2(ŝ
′))) on the right side.

Definition 2.4.15. Let S be a collapsible pushdown system of level 2. We set

#Retk
S
(s) : Q×Q→ {0, 1, . . . , k}

(q, q′) 7→

(

i if there are exactly i ≤ k different returns of S from (q, s) to (q′, pop2(s))

k otherwise.

Remark 2.4.16. This function maps (q, q′) to the number i of returns from (q, s) to (q′, s)

if i ≤ k and it maps (q, q′) to k otherwise. In this sense k stands for the class of at least

k returns. Thus, the answer to the question “how many returns from (q, s) to (q′, pop2(s))

exist up to threshold k?” is exactly the value of #Retk
S
(s)(q, q′). If S is clear from the

context, we will omit it and write #Retk instead of #Retk
S

.

As already indicated in the examples, it turns out that we can copy returns between

stacks which agree on their topmost words. Lemma 2.4.27 proves this fact. A corollary

of this lemma is that the number of returns from (q, s) to (q′, pop2(s)) only depend on the

topmost word of s. Hence, the following definition is well-defined.

Definition 2.4.17. For w an arbitrary word, let #Retk(w) be #Retk(s) for an arbitrary

stack s with top2(s) = w and |s| ≥ 2.

The next part of this section aims at a better understanding of the dependence of

#Retk(s) from top2(s). Let w be the topmost word of the stack s. It will turn out that

#Retk(w) only depends on #Retk(pop1(w)), on Sym(w) and on CLvl(w). This means that

the topmost element of w and the number of returns of stacks with topmost word pop1(w)

already determine the number of returns of s. This implies that #Retk(s) can be computed

as follows. First, we compute the number of returns of stacks with topmost word ⊥. Then

we compute #Retk(wi) where wi is the prefix of w of length i from i = 2, i = 3, . . . until

we have computed #Retk(wi) for wi = w or equivalently, for i = |w|. Before we prove this

claim in detail, let us give an example.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 61

ρ1 :

(b, 2, 0)

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ2

⊥

(b, 2, 0) (a, 2, 1)

(b, 2, 0) (b, 2, 1)
q1, ⊥

γ1

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

ρ2 :

(b, 2, 0)

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ6

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

γ8

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

Figure 2.6.: The two returns from (q2, s′) to (q2, pop2(s
′)).

Example 2.4.18. Consider the pushdown system S given by the transitions

(q0, a,γ0, q2, collapse), (q1, a,γ1, q2, collapse), (q2, b,γ2, q1, pusha,2),

(q0, a,γ3, q3, pushc,2), (q3, c,γ4, q2, clone2), (q2, c,γ5, q2, pop1),

(q2, b,γ6, q2, pop1), (q2, a,γ7, q2, pop1), and (q2,⊥,γ8, q2, pop2).

Consider the stacks

s = ⊥(b, 2, 0)(b, 2, 0) :⊥(b, 2, 1)a and s′ := pop1(s).

There are exactly two returns of S from (q2, s′) to (q2, pop2(s
′)). These are depicted in

Figure 2.6. We call them ρ1 and ρ2.

We explain how returns from (q0, s) to (q2, pop2(s)) depend on those from (q2, s′) to

(q2, pop2(s
′)). First of all note that there is a return π1 from (q0, s) to (q2, pop2(s)) as

depicted on the left side of Figure 2.7. This return π1 decomposes as π1 = π1↾[0,1] ◦ ρ1.

If we replace ρ1 by the other return ρ2, then we obtain again a return which we call

π2 := π1↾[0,1] ◦ ρ2. This run is depicted on the right side of Figure 2.7. In the following,

we consider π1↾[0,1] as a representative for the returns π1 and π2 because both returns

can be obtained from π1↾[0,1] by attaching a return with topmost word pop1(top2(s)).

Furthermore, the existence of π1↾[0,1] only depends on Sym(s) and CLvl(s): on any stack

with topmost symbol a of link level 1, we can perform the sequence of transitions π1↾[0,1]

consists of. Let us now turn to the other returns from (q0, s) to (q2, pop2(s)). Figure 2.8

depicts another return π3. Note that π3↾[4,6] and π3↾[8,10] are returns starting at stacks

with topmost words pop1(top2(s)). π3↾[8,10] is ρ2 and π3↾[4,6] copies the transitions of ρ2

one by one. We can replace each of these parts of π3 by the return ρ1 (or by a one by one

copy of its transitions) and obtain another return. We can also replace both parts by copies

of the return ρ1 and obtain a fourth return. Thus, we obtain 4 different returns from (q0, s)

to (q2, pop2(s)) from the pair (π3↾[0,4],π3↾[6,8]) by plugging in different returns of topmost

word pop1(top2(s)) after each element of this pair.

It is again an important observation that (π3↾[0,4],π3↾[6,8]) only depends on Sym(s) and

CLvl(s) in the following sense. Given any other stack t with topmost symbol a of link level

62 2. Basic Definitions and Technical Results

π1 :

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q0, ⊥

γ0

⊥

(b, 2, 0)

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ2

⊥

(b, 2, 0) (a, 2, 1)

(b, 2, 0) (b, 2, 1)
q1, ⊥

γ1

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

π2 :

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q0, ⊥

γ0

⊥

(b, 2, 0)

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ6

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

γ8

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

Figure 2.7.: Two returns from (q0, s) to (q2, pop2(s)).

1, there is a run π̂3↾[0,4] that copies the transitions of π3↾[0,4] and that ends in a stack t ′

with top2(t
′) = pop1(top2(t)). Similarly, we can copy the transitions of π3↾[6,8] to a run

starting at pop2(t
′) and which ends again in a stack with topmost word pop1(top2(t)).

It is easy to see that there are no other returns from (q0, s) to (q2, pop2(s)) than the ones

we discussed above.

Thus, the tuple π1↾[0,1], (π3↾[0,4],π3↾[6,8]) represents all returns from the configuration

(q0, s) to (q2, pop2(s)) in the following sense.

1. π1↾[0,1] can be turned into a return from (q0, s) to (q2, pop2(s)) by appending a return

of a stack with topmost word pop1(top2(s)).

2. (π3↾[0,4],π3↾[6,8]) can be turned into a return from (q0, s) to (q2, pop2(s)) by plugging

in one return of a stack with topmost word pop1(top2(s)) between the two runs and

by appending such a return to the end of π3↾[6,8].

3. All returns from (q0, s) to (q2, pop2(s)) are induced by this tuple in the sense of items

1 and 2.

Since there are 2 returns from state (q2, t) to (q2, pop2(t)) for any stack t of width at least

2 and topmost word top2(t) = pop1(top2(s)), we conclude that there are 2 + 2 · 2 = 6

different returns.

This form of computing the number of returns works for all stacks. Take for example the

stack

ŝ := ⊥ :⊥(b, 2, 1)(b, 2, 1)a.

This stack has the same topmost symbol and link level as s. Thus, we can copy transition

by transition the runs π1↾[0,1] and π3↾[0,4] to runs π̂1 and π̂2 starting from ŝ. Furthermore,

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 63

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q0, ⊥

γ3

⊥

(c, 2, 1)

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q3, ⊥

γ4

⊥

(c, 2, 1) (c, 2, 1)

(b, 2, 0) a a

(b, 2, 0) (b, 2, 1) (b, 2, 1)
q2, ⊥

γ5

⊥ ⊥

(c, 2, 1)

(b, 2, 0) a a

(b, 2, 0) (b, 2, 1) (b, 2, 1)
q2, ⊥

γ7

⊥ ⊥

(c, 2, 1)

(b, 2, 0) a

(b, 2, 0) (b, 2, 1) (b, 2, 1)
q2, ⊥

γ6

⊥ ⊥

(c, 2, 1)

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ8

⊥ ⊥

(c, 2, 1)

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ5

⊥

(b, 2, 0) a

(b, 2, 0) (b, 2, 1)
q2, ⊥ ⊥

γ7

(b, 2, 0)

(b, 2, 0) (b, 2, 1)
q2, ⊥

γ6

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

γ8

⊥

(b, 2, 0)

(b, 2, 0)
q2, ⊥

Figure 2.8.: The return π3 from (q0, s) to (q2, pop2(s)).

64 2. Basic Definitions and Technical Results

note that the stack of π3(6) is pop2(π3(4)). For t̂ the stack obtain via a pop2 from the

last stack of π̂2 we can copy π3↾[6,8] transition by transition to a run π̂3 starting at t̂. The

resulting runs are depicted in Figure 2.9.

Again, we can turn π̂1 and the pair (π̂2, π̂3) into returns from (q0, ŝ) to (q2, pop2(s)). For

this purpose, we have to plug in returns with topmost word ⊥(b, 2, 1)(b, 2, 1) from state

q2 to state q2 after π̂1, π̂2, and π̂3.

There are exactly three returns from (q2,⊥ :⊥(b, 2, 1)(b, 2, 1)) to (q2, [⊥]). The first

performs ⊢γ2 and then ⊢γ1 , the second performs ⊢γ6 ,⊢γ2 and ⊢γ1, and the last one performs

⊢γ6, ⊢γ6 and ⊢γ8.

Since we have to append such a return to π̂1 in order to obtain a return of ŝ, π̂1 induces

3 different returns from (q0, ŝ) to (q2, pop2(ŝ)). Moreover, using 2 of these returns, we can

turn the pair (π̂2, π̂3) into a return from (q0, ŝ) to (q2, pop2(ŝ)). Hence, there are 3 · 3 = 9

possibilities to turn this pair into a return. We conclude that there are 3+ 9 = 12 returns

from (q0, ŝ) to (q2, pop2(ŝ)). We leave it as an exercise to figure out that there are exactly

12 returns from (q0, ŝ) to (q2, pop2(ŝ)).

The previous example pointed to a connection between returns of a stack with topmost

word w and the returns of stacks with topmost word pop1(w). The main result of this

section is that this connection can be used to define a finite automaton that calculates

on input top2(s) the function #Retk(s) for a given k ∈ N. Furthermore, this dependence

can be used to calculate a bound on the length of returns in dependence of the length of

the topmost word of a stack. We first state these two results, afterwards we provide the

technical background for the proofs.

Proposition 2.4.19. There is an algorithm that, given a collapsible pushdown system S of

level 2, computes a deterministic finite automaton Aret with the following property. Aret

computes #Retk(s : w) on input π(w) where π(w) denotes the projection of w to its symbols

and link levels.

Proposition 2.4.20. There is an algorithm that, on input some 2-CPG S and a natural

number k, computes a function BRLS
k

: N→ N with the following properties.

1. For each stack s, for states q1, q2 and for i := #Retk(s)(q1, q2), the length-

lexicographically shortest returns ρ1, . . . ,ρi from (q1, s) to (q2, pop2(s)) satisfy

ln(ρ j)≤ BRLS
k
(|top2(s)|) for all 1≤ j ≤ i.

2. If there is a return ρ from (q1, s) to (q2, pop2(s)) with ln(ρ) > BRLS
k
(|top2(s)|), then

there are k returns from (q1, s) to (q2, pop2(s)) of length at most BRLS
k
(|top2(s)|).

For any stack s with topmost word ⊥, we will calculate the number of returns of s using

Lemma 2.3.30.

We can inductively calculate the returns of some stack s as follows. Assume that we

already know how to calculate returns of stacks with topmost word of size |top2(s)| − 1.

Any return of s splits into those parts that only depend on its topmost symbol and link

level and those parts that are returns from stacks with smaller topmost word (cf. Example

2.4.18). By induction hypothesis we already counted the latter parts. Hence, we have

to focus on the other parts. Here again, we can reduce the counting of these runs to an

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 65

π̂1 :

a

(b, 2, 1)

(b, 2, 1)
q0, ⊥

γ0

⊥

(b, 2, 1)

(b, 2, 1)
q3, ⊥ ⊥

π̂3 :

(c, 2, 1)
a

(b, 2, 1)

(b, 2, 1)
q2, ⊥

γ5

⊥

a

(b, 2, 1)

(b, 2, 1)
q2, ⊥

γ7

⊥

(b, 2, 1)

(b, 2, 1)
q2, ⊥ ⊥

π̂2 :

a

(b, 2, 1)

(b, 2, 1)
q0, ⊥

γ3

⊥

(c, 2, 1)
a

(b, 2, 1)

(b, 2, 1)
q3, ⊥

γ4

⊥

(c, 2, 1) (c, 2, 1)
a a

(b, 2, 1) (b, 2, 1)

(b, 2, 1) (b, 2, 1)
q2, ⊥

γ5

⊥ ⊥

(c, 2, 1)
a a

(b, 2, 1) (b, 2, 1)

(b, 2, 1) (b, 2, 1)
q2, ⊥

γ7

⊥ ⊥

(c, 2, 1)
a

(b, 2, 1) (b, 2, 1)

(b, 2, 1) (b, 2, 1)
q2, ⊥ ⊥ ⊥

Figure 2.9.: π̂1 corresponding to π1↾[0,1], π̂2 corresponding to π3↾[0,4], and π̂3 correspond-

ing to π3↾[6,8].

66 2. Basic Definitions and Technical Results

application of Lemma 2.3.30. This reduction to Lemma 2.3.30 is uniformly in the length of

the topmost word from s. Due to this uniformity, we can then compute a finite automaton

that calculates the number of returns.

The reader who is not interested in the technical details of the proofs of the propositions

may safely skip this part and continue reading Section 2.4.4.

We start the analysis of returns with a general observation. By definition, there are

returns ρ where there is some i ∈ dom(ρ) such that ρ↾[i,ln(ρ)] is a return from pop1(ρ(0)).

Our first lemma shows that a run ρ which visits pop1(ρ(0)) is a return if and only if a

suffix of ρ is a return from pop1(ρ(0)) to pop2(ρ(0)).

Lemma 2.4.21. For ρ a return from s to pop2(s) and for i ∈ dom(ρ) minimal such that

ρ(i) = pop1(s), the restriction ρ↾[i,ln(ρ)] is a return from pop1(s) to pop2(s).

Proof. If ρ ends with a pop2 transition, there is nothing to show. Now assume that ρ ends

with a collapse operation. If top2(s)≤ top2(ρ(ln(ρ)− 1)) then

top2(pop1(s))< top2(s)≤ top2(ρ(ln(ρ)− 1))

immediately yields the claim. The last possible case is that there is some j ∈ dom(ρ) such

that ρ↾[j,ln(ρ)] is a return of pop1(s). Since i ≤ j, this immediately implies the claim as

ρ↾[i, j] is a run from pop1(s) to pop1(s) that never visits pop2(s). But the class of returns is

closed under prefixing by such runs.

The previous observation gives rise to a classification of returns into low and high ones.

Definition 2.4.22. Let ρ be some return. We call ρ a low return, if there is some

i ∈ dom(ρ) such that ρ(i) = pop1(ρ(0)). Otherwise we call ρ a high return.

Remark 2.4.23. Due to 2.4.21, a low return decomposes as a run to pop1(ρ(0)) followed

by a return of pop1(ρ(0)). High returns never pass pop1(ρ(0)). Hence, low returns pass

“lower” stacks than high returns.

In fact, the analysis of high returns and low returns is very similar. But there are small

differences which provoke a lot of case distinctions when dealing with both types at the

same time. In order to avoid these case distinctions, some of our lemmas will concentrate

on high returns and we will only remark the differences to the case of low returns.

Next, we show that the notion #Retk(w) (cf. Definition 2.4.17) is well-defined for every

word w. For this purpose let us first introduce auxiliary notation.

Definition 2.4.24. The word w↓0 is obtained from w ∈ (Σ∪ (Σ× {2} ×N))∗ by replacing

every occurrence of (σ, 2, j) in w by (σ, 2, 0) for all σ ∈ Σ and all j ∈ N.

Remark 2.4.25. Later, it is important that w↓0 is a word over the finite alphabet Σ∪ (Σ×

{2} × {0}).

Definition 2.4.26. Let s, s′ be stacks such that top2(s)↓0 = top2(s
′)↓0. Let ρ be a return

from (q1, s) to (q2, pop2(s)) and ρ′ be a return from (q1, s′) to (q2, pop2(s
′)). We say ρ and

ρ′ are equivalent returns if they consist of the same sequence of transitions.

For an example, note that the returns ρ and ρ′ in Figure 2.4 are equivalent. The crucial

observation is that different stacks whose topmost words agree on their symbols and link

levels have the same returns modulo this equivalence of returns.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 67

Lemma 2.4.27. Let s and s′ be stacks of width at least 2 such that top2(s)↓0 = top2(s
′)↓0. If

ρ is a return from (q1, s) to (q2, pop2(s)) then there is an equivalent return ρ′ from (q1, s′)

to (q2, pop2(s
′)).

Proof. We assume that there is a symbol 2 ∈ Σ not occurring in any of the transitions of

the pushdown system. Let s be some stack and w := top2(s).

Now, we define s′ := w↓02 : w↓0. This definition is tailored towards the fact that s′ is

minimal with the following two properties.

1. The assumption that 2 does not appear within the transitions implies that an arbitrary

run from s′ to pop2(s
′) is a return.6

2. top2(s)↓0 = top2(s
′)↓0.

In order to prove the lemma, it suffices to show that for every return starting in s there is

an equivalent one starting in s′ and vice versa.

The proof of this lemma is as follows. Let t := pop2(s), t ′ := pop2(s
′) and let

k := |t| − |t ′|= |t| − 1. Furthermore, let ρ be some return from (q, s) to (q̂, t). We de-

fine ρ′ to be the largest run which starts in (q, s′) and copies an initial part of ρ transition

by transition.

We prove that dom(ρ′) = dom(ρ) by showing a stronger claim. For some word v let

v
−k denote the word that is obtained from v by replacing every link l of level 2 by the link

l − k.

Claim. The domains of ρ′ and ρ agree. Furthermore, for each i ∈ dom(ρ) the following

holds.

1. The states of ρ(i) and ρ′(i) agree

2. The stack of ρ(i) decomposes as t : w1v1 : w2v2 : · · · : wnvn and the stack of ρ′(i)

decomposes as t ′ : w1↓0v
−k
1 : w2↓0v

−k
2 : · · · : wn↓0v

−k
n

where the wi are chosen in

such a way that wi↓0 is a maximal prefixes of top2(s)↓0.

3. If the operation at i is a collapse of link level 2, then vn is nonempty.

This claim can be proved by induction on the domain of ρ. This is tedious but straight-

forward. The construction of ρ′ can be seen as the application of a prefix replacement as

follows: ρ′ = ρ[t :⊥/t ′⊥] where we manually repair the links of level 2.

The lemma then follows as a direct corollary of the claim: just note that the last opera-

tion of ρ is a collapse of level 2 or a pop2 and yields a stack of width |s| − 1. In both cases

it follows directly from the statements of the claim that the same transition is applicable

to ρ′(i) and results in a stack of width |s|−1−|s|+2= 1. Since ρ′ never changed the first

word of the stack, this stack is t ′ = pop2(s
′).

The previous lemma shows that #Retk(w) is well defined (cf. Definition 2.4.17) and

#Retk(s) = #Retk(top2(s)↓0) for all stacks s of width at least 2. Thus, if we want to

compute #Retk(s), we can concentrate of the returns of a fixed stack with topmost word

6 This fact is not important for the proof of this lemma, but this fact gets important in the next lemmas.

68 2. Basic Definitions and Technical Results

w := top2(s)↓0. We will do this by choosing the stack s′ := w↓02 : w↓0 to be the represen-

tative of any stack with top2(s) = w. s′ is the smallest stack with topmost word w↓0 such

that any run from s′ to pop2(s
′) is a return.

The following lemma contains the observation that every return from some stack s to

pop2(s) decomposes into parts that are prefixed by s and parts that are returns of stacks

with topmost word pop1(top2(s)). This lemma shows that the decomposition of the returns

in Example 2.4.18 can be generalised to decompositions of all returns.

Lemma 2.4.28. Let ρ be some high return of some stack s with topmost word w := top2(s).

Then there is a well-defined sequence

0 := j0 < i1 < j1 < i2 < j2 < · · ·< in < jn < in+1 := ln(ρ)− 1

with the following properties.

1. For 1≤ k ≤ n+ 1, sÅρ↾[jk−1,ik]
.

2. For all 1 ≤ k ≤ n, top2(ρ(ik)) = w and the operation at ik in ρ is a pop1 or a collapse

of level 1.

3. Either w is a proper prefix of top2(ρ(in+1)) and the operation at in+1 is a collapse of

level 2 or w is a prefix of top2(ρ(in+1)) and the operation at in+1 is a pop2.

4. For each 1 ≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that ρ↾[ik+1, jk]
is

a return from sk to pop2(sk).

Remark 2.4.29. If ρ is a low return, a completely analogous lemma holds. We just have to

omit in+1, i.e., the sequence ends with jn = ln(ρ). Then statements 1, 2, and 4 hold for

this sequence 0 := j0 < i1 < j1 < i2 < j2 < · · ·< in < jn = ln(ρ).

Proof. Set j0 := 0. Let i1 ∈ dom(ρ) be the minimal position such that sÅρ(i1) but

s 6Åρ(i1 + 1). If i = ln(ρ)− 1 we set n := 0 and we are done: due to the definition of

a high return, the last operation is either a collapse of level 2 and w < top2(ρ(i1)) or it is

a pop2 and w ≤ top2(ρ(i1)).

So let us assume that i1 < ln(ρ)− 1. By definition, sÅρ↾[j0,i1]
.

Since ρ is a return of s and i1+ 1< ln(ρ)), |ρ(i1+ 1)| ≥ |s|. Lemma 2.3.36 then implies

that top2(ρ(i1)) = w and top2(ρ(i1+ 1)) = pop1(w).

Since |ρ(i1 + 1)| ≥ |s| > |ρ(ln(ρ))|, there is some minimal j1 such that i1 < j1 and

|ρ(j1)|< |ρ(i1)|. We want to prove the following claim.

Claim. For s′ the stack at ρ(i1+ 1), ρ↾[i1+1, j1]
is a return from s′ to pop2(s

′).

First observe that by definition of j1 for all i1+1≤ k < j1, |ρ(k)| ≥ |s′|. The operation at

j1− 1 has to be a pop2 or a collapse (of link level 2) because it decreases the width of the

stack.

If it is pop2, then we conclude that ρ(j1) = pop2(s
′) and the claim is satisfied.

Now, we consider the case that the operation before j1 is a collapse of level 2. Since ρ is

a high return, ρ(i1 + 1) 6= pop1(s). Thus, |s′| > |s|. Since top2(s
′) = pop1(w), all elements

in top2(s
′) are clones of elements in the topmost word w of s. Thus, their level 2 links

point to stacks t with |t| < |s| < |s′|. Heading for a contradiction, let us first assume that

top2(ρ(j1 − 1)) is a prefix of top2(s
′), i.e., top2(ρ(j1 − 1)) ≤ top2(s

′) < w. In this case,

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 69

|ρ(j1)|< |s| whence j1 = ln(ρ) and the operation at j1− 1 is the last collapse operation in

ρ. But pop1(s) does not occur within ρ because ρ is a high return. We conclude that the

last operation of ρ is collapse, but neither w < top2(ρ(j1− 1)) nor a final segment of ρ is

a return of pop1(s). This contradicts the definition of a return.

Thus, we conclude that the topmost element of ρ(j1 − 1) was pushed onto the stack

between i1 + 1 and j1 − 1. Since |ρ(k)| ≥ |s′| for all ρ(k) with i1 + 1 ≤ k ≤ j1 − 1, the

link of this element is at least |s′| − 1. But by definition of j this link also points below s′,

whence the link is |s′| − 1. But then ρ↾[i, j] satisfies all requirements of a return of s′ and

we are done.

This completes the claim.

Thus, we have obtained that i1 and j1 are candidates for the initial elements of the

sequence required by the lemma. Note that the proof yields even more information. We

have seen that j1 < ln(ρ). Thus, |ρ(i1)| > |pop2(ρ(i1))| = |ρ(j1)| ≥ |s|. Lemma 2.3.37

implies that sÅρ(j1) because sÅρ(i1).
Hence, we can use the same arguments (restricted to ρ↾[j1,ln(ρ)]) to show that for the

minimal i2 > j1 such that s 6Åρ(i2 + 1), we have top2(ρ(i2 + 1)) = pop1(w). By induction

one concludes that the whole run ρ decomposes into parts prefixed by s and returns of

stacks with topmost word pop1(w) as desired.

Remark 2.4.30. For low returns the proof is analogous. The only difference is the following.

When defining inductively 0 = j0 < i1 < j1 < · · · < ik at some point, we will obtain that

ρ(ik) = pop1(s). In this case, we set jk := ln(ρ). Lemma 2.4.21 shows that ρ↾[ik, jk]
is a

return. Thus, this definition satisfies the claim of the lemma for the case of low returns.

Lemma 2.4.31. In Lemma 2.4.28, the sequence 0 = j0 < i1 < j1 < i2 < j2 < · · · < in+1 is

uniquely defined by conditions 1 and 4: assume that there is another sequence

0= l0 < k1 < l1 < k2 < l2 < · · ·< kn+1 = ln(ρ)

satisfying these conditions. Then l0 = j0, i1 = k1, j1 = l1, . . . , in+1 = kn+1.

Proof. If i1 < k1 then ρ↾[l0,k1]
contains ρ(i1) but s 6Åρ(i1) which is a contradiction. If

k1 < i1, we derive the contradiction s 6Åρ(k1) analogously. Now, l1 = j1 follows from the

fact that a return of ρ(k1) has to visit a stack s′ with |s′|< |ρ(k1)| at its last position but it

is not allowed to do so before. But j1 is the minimal position where such a stack is reached

whence l1 = j1. The claim follows by induction.

Before we continue our analysis of returns, it is useful to fix an enumeration of all runs

of a pushdown system.

Assumption 2.4.32. Let S be some pushdown system and ∆ its transition relation. From

now on, we assume that∆ is a linearly ordered set. Thus, all runs of S that start in a fixed

configuration are well-ordered via the length-lexicographic ordering of the transitions that

they use.

The rest of this section is concerned with the question “How can we determine #Retk(s)

for some collapsible pushdown system S using a finite automaton?”. The technical tools

that we use in order to answer this question are the notions of a return simulator and a

simulation of a return. We start with an informal description. Afterwards, we precisely

70 2. Basic Definitions and Technical Results

define these notions. A return simulator is a copy of the pushdown system S enriched

by transitions that simulate each return of pop1(s) in one transition. The simulation of a

return from s to pop2(s) is a return of this return simulator from the special stack

s′ := ⊥⊤top1(s)2 :⊥⊤top1(s)

to pop2(s
′). ⊤ is a new symbol representing top2(pop1(s)) and 2 is a symbol not occurring

in the transitions of the return simulator. 2 is used to stop the computation once we

reached pop2(s
′). This guarantees that any run from s′ to pop2(s

′) is a return. Figure 2.10

shows the simulations of the return π1 and π3 from figures 2.7 and 2.8.

Before we introduce simulations and simulators formally, we want to explain the con-

nection between a run and its simulation. For this purpose, we fix some notation. Let ρ

be some return and ρ′ its simulation (which is also a return). According to Lemma 2.4.28,

there is a sequence

0= j0 < i1 < j1 < . . . jn ≤ in+1 = ln(ρ)− 1

such that, for all 1 ≤ k ≤ n, sÅρ↾[jk−1,ik]
and ρ↾[ik+1, jk]

is a return from some stack with

topmost word top2(pop1(s
′)). Analogously, there is a sequence

0= j′
0
< i′

1
< j′

1
< . . . j′

n
≤ i′

n+1
= ln(ρ′)− 1

such that, for 1 ≤ k ≤ n, s′Åρ′↾[j′
k−1

,i′
k
] and ρ′↾[i′

k
+1, j′

k
] is a return from some stack with

topmost word ⊥⊤ = top2(pop1(s
′)). The run ρ and its simulation ρ′ are connected as

follows:

ρ′↾[j′
k−1

,i′
k
] = ρ↾[jk−1,ik]

[s/s′], i.e., ρ′↾[j′
k−1

,i′
k
] copies ρ↾[jk−1,ik]

transition by transition but

starts in a different stack. Furthermore, ρ′↾[i′
k
+1, j′

k
] is a return of length 1, i.e., it is a run

that only consists of one pop2 operation.

Thus, the simulation induces a decomposition of a run into those parts prefixed by its

initial stack s and those parts that form returns which are equivalent to a return from

pop1(s) to pop2(s). Using this decomposition we prove the inductive computability of

#Retk(s) from #Retk(pop1(s)). We first define the notion of a return simulator. Afterwards,

we introduce the notion of a simulation of a return.

Definition 2.4.33. Let k ∈ N be a threshold, S = (Q,Σ,Γ, q0,∆) a collapsible pushdown

system, and w some word. Let s := w↓02 : w↓0. The return simulator with respect to

(k,S , s), denoted by Rtk
s
(S), is the tuple (Q,Σ,Γ∪ {Rti : i ≤ k}, q0, ∆̂) where the Rti /∈ Γ

are new edge labels and

∆̂ :=∆∪ {(q1,⊤, Rti, q2, pop2) : i ≤ #Retk(pop1(w))(q1, q2)}.

We also use the notation Rtk
ρ(S) for Rtk

s
(S) if ρ is a return starting at stack s.

Remark 2.4.34. Before we continue, let us make some remarks concerning this definition.

• The return simulator copies the behaviour of S as long as the topmost symbol of a

stack is not ⊤.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 71

2

a a

⊤ ⊤
q0, ⊥

γ0

⊥

2

a

⊤ ⊤
q2, ⊥

Rt1

⊥

2

a

⊤
q2, ⊥

2

a a

⊤ ⊤
q0, ⊥

γ3

⊥

2 (c, 2, 1)
a a

⊤ ⊤
q3, ⊥

γ4

⊥

2 (c, 2, 1) (c, 2, 1)
a a a

⊤ ⊤ ⊤
q2, ⊥

γ5

⊥ ⊥

2 (c, 2, 1)
a a a

⊤ ⊤ ⊤
q2, ⊥

γ7

⊥ ⊥

2 (c, 2, 1)
a a

⊤ ⊤ ⊤
q2, ⊥

Rt2

⊥ ⊥

2 (c, 2, 1)
a a

⊤ ⊤
q2, ⊥

γ5

⊥

2

a a

⊤ ⊤
q2, ⊥

γ7

⊥

2

a

⊤ ⊤
q2, ⊥

Rt2

⊥

2

a

⊤
q2, ⊥

Figure 2.10.: Simulation of π1 on the left and π3 on the right.

72 2. Basic Definitions and Technical Results

• We consider ⊤ as an abbreviation for the word pop1(top2(s)). A run starting in the

stack

s′ := ⊥⊤top1(s)2 :⊥⊤top1(s)

reaches a stack with topmost symbol ⊤ if and only if the equivalent run that starts in

s reaches a stack with topmost word pop1(top2(s)). Recall that a return of s always

continues with a return if it reaches a stack with topmost word pop1(top2(s)).

• By definition #Retk

Rtks (S)
(⊥⊤) agrees with #Retk

S
(pop1(s)). On topmost symbol ⊤

the applicable transitions of the return simulator are only pop2 transitions. Hence,

a return from (q1, pop1(s
′)) to (q2, pop2(s

′)) consists by definition of only one pop2

transition. If #Retk
S
(pop1(s))(q1, q2) = i, then there are i such transitions which

are labelled by Rt1, . . . , Rti. Each of these induces exactly one return whence

#Retk

Rtks (S)
(⊥⊤)(q1, q2) = i.

The last two observations will lead to the result that the number of returns of S from s

and the returns of the simulator from s′ agree up to threshold k.

Definition 2.4.35. Let S , s, s′ and k as in Definition 2.4.33. We call any run of Rtk
s
(S)

from (q1, s′) to (q2, pop2(s
′)) a simulation of a return from (q1, s) to (q2, pop2(s)).

Lemma 2.4.36. Let S , k, s and s′ be as in Definition 2.4.33. If ρ is a simulation of a return

from (q, s′) to (q′, pop2(s
′)), then ρ is in fact a return of the return simulator.

Proof. Let i be minimal in dom(ρ) such that the stack at ρ(i) is a substack of pop2(s
′).

Due to |s′| = 2, ρ(i) = pop2(s
′). Furthermore Sym(pop2(s

′)) = 2. Since Rtk
s
(S) does

not contain any transition of the form (q1,2,γ, q2, op), ρ(i) cannot be extended. Thus,

i = ln(ρ).

Furthermore, top2(s
′) = ⊥⊤top1(s). If CLvl(s) = 2, then CLnk(s) = 0 by definition of s.

Thus, top2(s
′) does not contain any defined level 2 link. One easily concludes that ρ is a

return.

In the following, we justify the term simulation of a return. To each simulation of the

return simulator Rtk
s
(S) with initial state q and final state q′ we associate a return from

(q, s) to (q′, pop2(s)).

Definition 2.4.37. Let S be a collapsible pushdown system, k ∈ N a threshold, and w

some word. Let

s := w↓02 : w↓0 and

s′ := ⊥⊤top1(s)2 :⊥⊤top1(s)

We define a function sTrs that maps every run ρ′ of Rtk
s
(S) from (q, s′) to (q′, pop2(s

′)) to

a return sTrs(ρ
′) of S from (q, s) to (q′, pop2(s)).

In order to explain sTrs, we fix a run ρ′ of Rtk
s
(S) from (q1, s′) to (q2, pop2(s

′)). Due to

the previous lemma, ρ′ is a return. We assume that it is a high return. Let

0= j0 < i1 < j1 < · · ·< jn < in+1

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 73

be the sequence corresponding to ρ′ according to Lemma 2.4.28. Without loss of general-

ity, we assume that n> 0.

We set π′
k

:= ρ′↾[jk−1,ik]
for all 1≤ k ≤ n+1 and ρ′

k
:= ρ′↾[ik+1, jk]

for all 1≤ k ≤ n. Now,

we write c′
k
= (q′

k
, s′

k
) for the last configuration of π′

k
and ĉ′

k
= (q̂′

k
, ŝ′

k
) for the configuration

following c′
k

in ρ′. Lemma 2.4.28 implies the following.

1. s′Åπ′
k

for all 1≤ k ≤ n.

2. For all 1≤ k ≤ n, top2(s
′
k
) = ⊥⊤top1(s) and ŝ′

k
= pop1(s

′
k
). Thus, top2(ŝ

′
k
) = ⊥⊤.

3. top2(s
′) ≤ top2(c

′
n+1
) and c′

n+1
is connected to ĉ′

n+1
via a pop2 or collapse of level 2.

In the latter case, top2(s
′)< top2(c

′
n+1
).

4. For 1 ≤ i ≤ n, ρ′
k

is a return from ĉ′
k

to pop2(ĉ
′
k
). Thus, ρ′

k
is a return of a stack with

topmost word ⊥⊤.

We now define iteratively runs πi,ξi and ρi whose composition then forms sTrs(ρ
′).

Due to condition 1, π1 := π1[s
′/s] is well-defined. π1 ends with stack s1 := s′

1
[s′/s].

Due to condition 2, top2(s
′
1
) = top2(s

′) whence top2(s1) = w. This implies that

top1(s
′
1
) = top1(w) = top1(s1). Furthermore, the transition connecting ρ′(i1) = (q

′
1
, s′

1
)

with ρ′(i1 + 1) = (q̂′
1
, ŝ′

1
) performs a pop1 or a collapse of level 1. Let ξ1 be the run

of length 1 that applies this transition to the last configuration of π1, i.e., ξ1 is a run

(q′
1
, s1) ⊢ (q̂

′
1
, pop1(s1)).

Due to the observation in Remark 2.4.34, the form of ρ′
1

is (q̂′
1
, ŝ′

1
) ⊢Rtn (q̃′

1
, pop2(ŝ

′
1
))

for some n ≤ #Retk(pop1(s))(q̂
′
1
, q̃′

1
). Thus, we can define ρ̂1 to be the n-th return from

(q̂′
1
, pop1(s)) to (q̃′

1
, pop2(s)) in length-lexicographic order.

Recall that top2(pop1(s1)) = pop1(s) is the topmost word of the last configuration of ξ1.

Hence, there is a return ρ1 that is equivalent to ρ̂1 and starts in the last configuration of

ξ1.

ρ1 ends in configuration (q̃′
1
, pop2(s1)) where q̃′

1
is by definition the state of the initial

configuration of π′
2
. Furthermore the stack of π′

2
is pop2(s

′
1
). Since s′Åπ′

2
, s′

1
[s′/s] is a

well-defined stack. Due to s1 = s′
1
[s′/s], we conclude that pop2(s1) = pop2(s

′
1
)[s′/s].

Thus, we can repeat this construction for 2, 3, 4, . . . , n and obtain runs πk,ξk,ρk such

that π1 ◦ ξ1 ◦ ρ1 ◦ π2 ◦ ξ2 ◦ ρ2 ◦ · · · ◦ πn ◦ ξn ◦ ρn is a well-defined run from (q, s) to

π′
n+1
(0)[s′/s].

We set πn+1 := πn+1[s
′/s]. Due to condition 3, w ≤ sn+1 := s′

n+1
[s′/s] which is the last

stack of πn+1. As in the cases i ≤ n, it follows that top1(sn+1) = top1(s
′
n+1
). Thus, the

last transition δ of ρ′ is also applicable to the last configuration of πn+1. By definition,

δ connects the last configuration of π′
n+1

with (q′, pop2(s
′)). Since |s′

n+1
| = |sn+1| and

CLvl(sn+1) = CLvl(s′
n+1
), the application of this transition to the last configuration of πn+1

results in (q′, s̃) where s̃ is a stack of width 1 such that s̃ = popm
2
(sn+1) for some m ∈ N. But

this is by definition (q′, w↓02). Let ξn+1 be the run that applies δ to the last configuration

of πn+1. We define

sTrs(ρ
′) := π1 ◦ ξ1 ◦ρ1 ◦π2 ◦ ξ2 ◦ρ2 ◦ · · · ◦πn ◦ ξn ◦ρn ◦πn+1 ◦ ξn+1.

We say sTrs(ρ
′) is the return simulated by ρ′.

74 2. Basic Definitions and Technical Results

Remark 2.4.38. For low returns ρ′, sTrs(ρ
′) is defined completely analogous. We define

πi,ξi, and ρi for all 1≤ i ≤ n as before. Then

sTrs(ρ
′) := π1 ◦ ξ1 ◦ρ1 ◦π2 ◦ ξ2 ◦ρ2 ◦ · · · ◦πn ◦ ξn ◦ρn.

Lemma 2.4.39. Let s = w↓02 : w↓0 and ρ′ a simulation of a return as in the previous

definition. Then sTrs(ρ
′) is a return from s to pop2(s).

Proof. By definition, sTrs(ρ
′) is a run from s to pop2(s) that does not pass any substack of

pop2(s) before its final configuration. If its last operation is pop2 we are done.

Otherwise, the last operation is a collapse of level 2. Then we distinguish the following

cases:

First consider the case that ρ′ is a high return. Recall that by definition of πn+1, we have

that top2(s) is a proper prefix of the topmost word of the last stack of πn+1. But then the

use of the last collapse in sTrs(ρ
′) satisfies the restrictions from the definition of a return.

Now, consider the case that ρ′ is a low return. By definition, sTrs(ρ
′) ends with ρn. But

ρn was defined to be a return from pop1(s) to pop2(s). Thus, sTrs(ρ
′) is a return due to

Lemma 2.4.21.

Lemma 2.4.40. Let s = w↓02 : w↓0 as in Definition 2.4.37. Then sTrs is injective.

Proof (Sketch). The proof is by contradiction. Assume that there are two runs ρ′
1

and ρ′
2

such that ρ′
1
6= ρ′

2
. We write ρi := sTrs(ρi) for i ∈ {1, 2}.

Then there is a minimal i′ ∈ dom(ρ′
1
) such that the transition δ′

1
at position i′ in ρ′

1
is

not the transition δ′
2

at position i′ in ρ′
2
. Set π′ := ρ′

1
↾[0,i′] = ρ

′
2
↾[0,i′]. Now, π′ induces a

common initial segment π of ρ1 and ρ2 of length i. By this we mean that ρ1↾[0,i] = ρ2↾[0,i]

and that δ′
1

and δ′
2

determine the transition of ρ1 and ρ2 at position i.

We distinguish two cases.

1. Assume that top1(ρ1(i)) = top1(ρ2(i)) 6= ⊤. By definition of ρ1 and ρ2, this implies

that the transition at i in ρ j is δ′
j

for j ∈ {1, 2}. Since δ′
1
6= δ′

2
, this implies that ρ1

and ρ2 differ in the transition applied at i whence ρ1 6= ρ2.

2. Otherwise, assume that top1(ρ1(i)) = top1(ρ2(i)) = ⊤. Then we directly conclude

that δ′
1
= (q,⊤, Rt j1

, q′
1
, pop2) and δ′

2
= (q,⊤, Rt j2

, q′
2
, pop2) where either q′

1
6= q′

2
or

j1 6= j2.

If q′
1
6= q′

2
, then there are i1 > i and i2 > i such that ρ1↾[i,i1] is a return from state q

to state q′
1

while ρ2↾[i,ii] is a return from state q to state q′
2
. Thus, ρ1 6= ρ2.

Otherwise, j1 6= j2 and q′
1
= q′

2
. By definition, ρ1 continues with the j1-th return from

ρ1(i) to (q′
1
, pop2(ρ1(i))) and ρ2 continues with the j2-th return from ρ2(i) = ρ1(i)

to (q′
1
, pop2(ρ1(i))). Since j1 6= j2, these returns differ whence the runs ρ1 and ρ2

differ.

The last fact that we prove about sTrs is a characterisation of its image. Consider a run ρ

of Rtk
s
(S) in the domain of sTrs. By definition of sTrs, sTrs(ρ) is a return from s to pop2(s)

that satisfies the following restriction: let ρ′ be a subrun of sTrs that is a return from some

stack s′ with top2(s
′) = top2(pop1(s)). Then ρ′ is one of the k smallest returns of s′ (with

respect to length-lexicographic order).

The following lemma shows that this condition already defines the image of sTrs. We

only state the lemma for high returns, but for low returns the analogous statement holds.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 75

Lemma 2.4.41. Let S be some collapsible pushdown system, s some stack of the form

s = w↓02 : w↓0 and k some threshold. Furthermore, let ρ be a high return from (q, s) to

(q′, pop2(s)) of S and let

0= j0 < i1 < j1 < · · ·< in < jn < in+1

be the sequence corresponding to ρ according to Lemma 2.4.28. Let ρm := ρ↾[im, jm]
for each

1 ≤ m ≤ n. ρm is a return from some (qm, sm) to (q′
m

, pop2(sm)). If for all 1 ≤ m ≤ n, ρm is

one of the m length-lexicographically smallest returns from (qm, sm) to (q′
m

, pop2(sm)), then

there is a run ρ′ of Rtk
s
(S) such that sTrs(ρ

′) = ρ.

Proof. Let ρ be a high return from s to pop2(s) satisfying the properties required in the

lemma. For each 1 ≤ m ≤ n+ 1 let δm be the transition connecting ρ(im) and ρ(im + 1).

Furthermore, for 1 ≤ m ≤ n let lm be the number such that ρ↾[im+1, jm]
is the lm-th return

from ρ(im + 1) to ρ(jm) in length-lexicographic order. Set s′ := ⊥⊤top1(s)2 : ⊥⊤top1(s).

For 1≤ m≤ n+ 1, set π′
m

:= ρ↾[jm−1,im]
[s/s′].

We define ρ′ to be the run

ρ′ := π′
1
◦ ξ′

1
◦ρ′

1
◦π′

2
◦ · · · ◦ρ′

n
◦π′

n+1
◦ ξ′

n+1

where ξ′
m

applies δm to the last configuration of π′
m

and ρ′
m

applies an Rtlm
-labelled tran-

sition to the last configuration of ξ′
m

.

It is now easy to check that ρ′ is a well defined run of Rtk
s
(S) from s′ to pop2(s) and

that ρ = sTrs(ρ
′).

A corollary of the previous lemma is that there are at least as many returns of a push-

down system S from (q, s) to (q′, pop2(s)) as there are runs of Rtk
s
(S) from (q, s′) to

(q′, pop2(s
′)) for s′ = ⊥⊤top1(s)2 :⊥⊤top1(s).

In fact, we want to prove that these two numbers agree up to threshold k. We obtain

this result as a corollary of the following lemma. Again we only formulate the lemma for

high returns, but the corresponding statement for low returns is proved analogously.

Lemma 2.4.42. Let S be a collapsible pushdown system and s = w↓02 : w↓0 for some word

w. Let ρ be a return of S from (q, s) to (q′, pop2(s)). Let

0= j0 < i1 < j1 < · · ·< in < jn < in+1

be the sequence corresponding to ρ according to Lemma 2.4.28. If there is a 1 ≤ k ≤ n such

that ρk := ρ↾[ik+1, jk]
is not one of the minimal k returns from ρ(ik + 1) to ρ(jk), then there

are more than k returns of S from (q, s) to (q′, pop2(s)).

Proof. Let 1 ≤ k ≤ n be a number such that ρk := ρ↾[ik+1, jk]
satisfies the require-

ments of the lemma. Then there are k returns from ρ(ik + 1) to ρ(i j) that are length-

lexicographically smaller than ρk. Now, let ρ̂1, ρ̂2, . . . , ρ̂k be an enumeration of these runs.

For 1≤ i ≤ k, the run πi := ρ↾[0,ik+1]◦ρ̂i◦ρ↾[jk,in+1+1] is a return from (q, s) to (q′, pop2(s)).

The πi are pairwise distinct and distinct from ρ. Thus, there are at least k+1 returns from

(q, s) to (q′, pop2(s)).

76 2. Basic Definitions and Technical Results

As a direct corollary of the previous two lemmas, we obtain that the runs of the return

simulator and the returns from a configuration (q, s) to (q′, pop2(s)) agree up to threshold

k.

Corollary 2.4.43. Let S be a collapsible pushdown system, k ∈ N some threshold and w

some word. For s := w↓02 : w↓0 and s′ := ⊥⊤top1(s)2 : ⊥⊤top1(s) and for all q, q′ ∈ Q let

Mq,q′ be the set of runs of Rtk
s
(S) from (q, s′) to (q′, pop2(s

′)). For all q, q′ ∈Q,

#Retk
S
(w)(q, q′) =min{k, |Mq,q′ |}= #Retk

Rtks (S)
(top2(s

′))(q, q′).

The last corollary shows that we can count simulations of a return simulator in order to

calculate #Retk
S
(s). Now, we use this result in order to obtain a proof of Proposition 2.4.19.

Recall that this proposition asserts that there is a finite automaton Aret that calculates

#Retk(s) for each stack s on input top2(s)↓0.

Proof of Proposition 2.4.19. In the following, we define the finite automaton

Aret := (Qret,Σ∪ (Σ× {2} × {0}), a0,∆ret).

Let Qret := {a0}∪{0, 1, . . . , k}Q×Q where Q is the set of states of S and a0 is an extra initial

state distinct from all other states. Thus, beside the initial state all functions from Q ×Q

to {0, 1, . . . , k} are states ofAret.

We define ∆ret in such a way that the run ofAret on some word w = top2(s)↓0 ends in a

state a = #Retk(s). We compute the transitions ofAret iteratively.

We start with the transitions from the initial state. Recall that all words occurring in

some stack start with the letter ⊥. Thus, the only transition at a0 should be of the form

(a0,⊥, a) where a must satisfy a = #Retk(⊥) = #Retk([⊥2 : ⊥]). Due to Lemma 2.3.30,

the value of a is computable.

Now, we repeat the following construction. Assume that for all reachable states

a ∈Qret \ {a0} every path from a0 to a is labelled by some word w such that a = #Retk(w).

For each σ ∈ Σ, we want to compute the value a′ = #Retk(wσ). Let s := w↓0σ2 : w↓0σ.

Recall that Rtk
s
(S) is computable from S , a = #Retk(w), and k. Due to Lemma

2.3.30, we can count the number iq1,q2
of runs of Rtk

s
(S) from (q1,⊥⊤σ2 : ⊥⊤σ) to

(q2, [⊥⊤σ2]) for each pair q1, q2 ∈ Q up to threshold k. Finally, Corollary 2.4.43 shows

that iq1,q2
= #Retk(wσ)(q1, q2).

Thus, a′ := #Retk(wσ) is computable and we add the transition (a,σ, a′) to ∆ret. By

induction hypothesis and by Corollary 2.4.43, all nonempty paths to some state â are now

labelled by words v such that â = #Retk(v) (this can be proved by induction on the length

of the path).

For words of the form w(σ, 2, 0) the transitions (a, (σ, 2, 0), a′) are defined completely

analogous.

After finitely many iterations of this process, we cannot add any new transitions toAret.

Then the construction ofAret is finished.

We claim that the resulting automaton Aret calculates #Retk(s) on input top2(s)↓0 for

every stack s.

The claim is proved by contradiction. Assume that there is some stack s such that there

is no run of Alp on w := top2(s)↓0. By minimality there is a run on pop1(w). Now, we

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 77

could add a transition from the final state of this run which is labelled by top1(w). This

contradicts the assumption that we added all possible transitions.

Thus, there is a run ofAlp on w := top2(s)↓0 for all stacks s. By construction, the run on

w calculates #Retk(w).

We conclude this section by proving Proposition 2.4.20. Recall that this proposition

asserts the existence of a function BRLS
k

that bounds the length of the shortest returns of

every stack. We first define BRLS
k

, then we prove the properties asserted in the lemma.

Let S be some collapsible pushdown system and let Aret be the corresponding finite

automaton that calculates the returns of S up to threshold k. Recall that ∆ret denotes the

transition relation ofAret.

Recall that for each δ = (a,τ, b) ∈ ∆ret, it holds that τ ∈ Σ ∪ (Σ× {2} × {0}) and a, b :

Q×Q→ {0, 1, . . . , k} are functions such that there is some word wδ ∈ (Σ∪(Σ×{2}×{0}))
+

with #Retk(wδ) = a and #Retk(wδτ) = b. In the following, we fix a wδ for each δ ∈∆ret.

For each wδ, we define the stack s′
δ

:= ⊥⊤τ2 : ⊥⊤τ. Due to Corollary 2.4.43, there are

(up to threshold k) b(q1, q2) many simulations of returns from (q1, s′
δ
) to (q2, pop2(s

′
δ
)).

Using Lemma 2.3.30 we can compute the b(q1, q2) many lexicographically smallest such

simulations. We call these ρ
δ,q1,q2
1 ,ρ

δ,q1,q2
2 , . . . ,ρ

δ,q1,q2

b(q1,q2)
.

Let

lδ
q1,q2

:=max
n

ln(ρ
δ,q1,q2
1), ln(ρ

δ,q1,q2
2), . . . , ln(ρ

δ,q1,q2

b(q1,q2)
)
o

and

#⊤δ
q1,q2

:=max
n

|{ j ∈ dom(ρ
δ,q1,q2

i
) : Sym(ρ

δ,q1,q2

i
(j)) = ⊤}| : 1≤ i ≤ b(q1, q2)

o

be the maximal length of any of these simulations and the maximal number of occurrences

of ⊤ as topmost symbol in any of these returns, respectively. Now, set

l :=max{lδ
q1,q2

: q1, q2 ∈Q,δ ∈∆ret} and

#⊤ :=max{#⊤δ
q1,q2

: q1, q2 ∈Q,δ ∈∆ret}.

Definition 2.4.44. We define

BRLS
k

: N→ N by

BRLS
k
(0) = 0 and

BRLS
k
(n+ 1) := l +#⊤ · BRLS

k
(n).

Remark 2.4.45. The following idea underlies this definition. Assume that there is some

word w of length n− 1 such that the length of the shortest #Retk(w)(q1, q2) returns from

(q1, w2 : w) to (q2, w2) is bound by BRLS
k
(n− 1). Furthermore, let s be a stack such that

w = top2(pop1(s)).

Due to the definition of l, the lexicographically smallest #Retk(s)(q, q′) many returns

from (q, s) to (q′, pop2(s)) have simulations of length at most l.

Now, sTrs translates these simulations into #Retk(s)(q, q′) many returns by copying all

transitions one by one except for transitions on topmost symbol ⊤. The latter are replaced

by lexicographically small returns equivalent to those from (q1, w2 : w) to (q2, w2). Since

this replacement happens at at most #⊤ many positions, we obtain #Retk(s)(q, q′) many

returns from (q, s) to (q′, pop2(s)) of length at most l +#⊤ · BRLS
k
(n− 1) = BRLS

k
(n).

78 2. Basic Definitions and Technical Results

Next, we prove Proposition 2.4.20.

Proof. Recall that we have to show the following two properties of BRLS
k

.

1. For each stack s, for all states q1, q2 and for i := #Retk(s)(q1, q2), the length-

lexicographically shortest returns ρ1, . . . ,ρi from (q1, s) to (q2, pop2(s)) satisfy

ln(ρ j)≤ BRLS
k
(|top2(s)|) for all 1≤ j ≤ i.

2. If there is a return ρ from (q1, s) to (q2, pop2(s)) with ln(ρ) > BRLS
k
(|top2(s)|), then

there are k returns from (q1, s) to (q2, pop2(s)) of length at most BRLS
k
(|top2(s)|).

Note that the previous remark already contains a proof of the first part. The second part is

proved by induction on k.

Let ρ be a return from (q1, s) to (q2, pop2(s)) with ln(ρ) > BRLS
k
(|top2(s)|). Then we

conclude that #Retk(s) ≥ 1. Due to the first statement, the lexicographically shortest

return ρ1 from (q1, s) to (q2, pop2(s)) satisfies ln(ρ1)≤ BRLS
k
(|top2(s)|). Thus, ρ1 6= ρ and

we conclude that #Retk(s)≥ 2 (if k ≥ 2).

We can iterate this argument k times and obtain ρ1,ρ2 . . . ,ρk many short returns from

(q1, s) to (q2, pop2(s)) as desired.

2.4.4 Computing Loops

This section investigates the computability of loops. In fact, it lifts the results on returns to

analogous results on loops. Again, we start by defining the functions we are interested in.

Definition 2.4.46. Let S be some collapsible pushdown system of level 2, k ∈ N some

threshold and s some stack. We define

#Loopk
S
(s) : Q×Q→ {0, 1, . . . , k}

(q, q′) 7→

(

i if there are exactly i ≤ k different loops of S from (q, s) to (q′, s)

k otherwise.

This function maps (q, q′) to the number i of loops from (q, s) to (q′, s) if i ≤ k and it maps

(q, q′) to k otherwise. In this sense k stands for the class of at least k loops.

Analogously, we define #LLoopk
S
(s) : Q×Q→ {0, 1, . . . , k} to be the function that maps

(q, q′) to the number i of low loops from (q, s) to (q′, s) if i ≤ k and that maps (q, q′) to k

otherwise.

Finally, we define #HLoopk
S
(s) : Q × Q → {0, 1, . . . , k} to be the function that maps

(q, q′) to the number i of high loops from (q, s) to (q′, s) if i ≤ k and that maps (q, q′) to k

otherwise.

If S is clear from the context, we omit it and write #Loopk for #Loopk
S

, etc.

Analogously to the theory of returns, we want to show that #Loopk, #HLoopk, and

#LLoopk can be calculated by a finite automaton. Furthermore, we also want to prove

bounds on the length of short loops analogously to Proposition 2.4.20. We start by stating

these two propositions.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 79

Proposition 2.4.47. There is an algorithm that, given a collapsible pushdown system S of

level 2, computes a deterministic finite automaton Aloop that computes #Loopk(s : w) on

input w↓0.

In the same sense, there are automata that compute #HLoopk and #LLoopk.

Proposition 2.4.48. There is an algorithm that computes on input some 2-CPG S and a

natural number k a function BLLS
k

: N→ N such that the following holds.

1. For every stack s, for q1, q2 ∈ Q and for i := #Loopk(s)(q1, q2), the length-

lexicographically shortest loops λ1, . . . ,λi from (q1, s) to (q2, s) satisfy

ln(λ j)≤ BLLS
k
(|top2(s)|)

for all 1≤ j ≤ i.

2. If there is a loop λ from (q1, s) to (q2, s) with ln(λ)> BLLS
k
(|top2(s)|), then there are k

loops from (q1, s) to (q2, pop2(s)) of length at most BLLS
k
(|top2(s)|).

Analogously, there are functions BHLLS
k

: N→ N and BLLLS
k

: N→ N that satisfy the same

assertions but for the set of high loops or low loops, respectively.

Before we prove these propositions, we present two corollaries of the previous Proposi-

tion that play a crucial role in Section 3.3.

Corollary 2.4.49. Let S be some level 2 collapsible pushdown system. Furthermore, let (q, s)

be some configuration and ρ1, . . . ,ρn be pairwise distinct runs from the initial configuration

to (q, s). There is a run ρ̂1 from the initial configuration to (q, s) such that the following

holds.

1. ρ̂1 6= ρi for 2≤ i ≤ n and

2. ln(ρ̂1)≤ 2 ·wdt(s) · hgt(s)(1+ BLLS
n
(hgt(s))).

Proof. If ln(ρ1) ≤ 2 · |s| · hgt(s)(1+ BLLS
n
(hgt(s))), set ρ̂1 := ρ1 and we are done. Assume

that this is not the case. Due to Lemmas 2.4.3 and 2.4.4, ρ1 decomposes as

ρ1 = λ0 ◦ op1 ◦λ1 ◦ · · · ◦λm−1 ◦ opm ◦λm

where every λi is a loop and every opi is a run of length 1 such that m ≤ 2 · |s| · hgt(s).

Proposition 2.4.48 implies the following: If ln(λi)> BLLS
n
(hgt(s))), then there are n loops

from λ(0) to λ(ln(λ)) of length at most BLLS
n
(hgt(s))). At least one of these can be

plugged into the position of λi such that the resulting run does not coincide with any of

the ρ2,ρ3, . . . ,ρn. In other words, there is some loop λ′
i

of length at most BLLS
n
(hgt(s)))

such that

ρ̂1 := λ0 ◦ op1 ◦λ1 ◦ · · · ◦ opi ◦λ
′
i
◦ opi+1 ◦λi+1 ◦ · · · ◦λm−1 ◦ opm ◦λm

is a run to (q, s) distinct from ρ2,ρ3 . . . ,ρn and shorter than ρ1. Iterated replacement of

large loops results in a run ρ′
1

with the desired properties.

Now, we state a second corollary that is quite similar to the previous one but deals with

runs of a different form.

80 2. Basic Definitions and Technical Results

Corollary 2.4.50. Let ρ̂1, ρ̂2, . . . ρ̂n be runs from the initial configuration to some configura-

tion (q, s). Furthermore, let w be some word and ρ1,ρ2, . . .ρn be runs from (q, s) to (q′, s : w)

that do not visit proper substacks of s. If ρ̂1 ◦ ρ1, ρ̂2 ◦ ρ2, . . . , ρ̂n ◦ ρn are pairwise distinct,

then there is a run ρ′
1

from (q, s) to (q′, s : w) that satisfies the following.

1. ρ′
1
does not visit a proper substack of s,

2. ln(ρ′
1
)≤ 2 · hgt(s : w) · (1+ BLLS

n
(hgt(s : w))), and

3. ρ̂1 ◦ρ
′
1

is distinct from each ρ̂i ◦ρi for 2≤ i ≤ n.

Proof. It is straightforward to see that ρ1 decomposes as

ρ1 = λ0 ◦ op1 ◦λ1 ◦ · · · ◦λm−1 ◦ opm ◦λm

where every λi is a loop and every opi is a run of length 1 such that m≤ 2 · hgt(s : w). We

then proceed completely analogous to the previous corollary.

We now come to the proofs of the main propositions on loops. The proofs of these

two propositions are analogous to the proofs for the return case. The reader who is not

interested in these rather technical proofs should skip the rest of this section and continue

reading Section 2.5.

We now prepare the proofs of the two main propositions on loops. Analogously to the re-

turn case, the first important observation is that #Loopk(s), #HLoopk(s), and #LLoopk(s)

only depend on the symbols and link levels of the topmost word of the stack s. In order

to show this, we first define the notion of equivalent loops analogously to the notion of

equivalent returns in Definition 2.4.26.

Definition 2.4.51. Let s, s′ be stacks such that top2(s)↓0 = top2(s
′)↓0. Let λ be a loop from

(q1, s) to (q2, s) and λ′ be a loop from (q1, s′) to (q2, s′). We say λ and λ′ are equivalent

loops if they consist of the same sequence of transitions.

The crucial observation is that different stacks whose topmost words agree on their

symbols and link levels have the same loops modulo this equivalence relation.

Lemma 2.4.52. Let s and s′ be stacks such that top2(s)↓0 = top2(s
′)↓0. If λ is a loop from

(q1, s) to (q2, s) then there is an equivalent loop λ′ from (q1, s′) to (q2, s′).

Remark 2.4.53. The proof of this lemma is analogous to the proof of Lemma 2.4.27. Fur-

thermore, it is straightforward to see that a low loop can only be equivalent to a low loop

(analogously, a high loops can only be equivalent to a high loop).

Since the lemma shows that loops of a given stack only depend on its topmost word, it

is a meaningful concept to speak about the loops of some word.

Definition 2.4.54. For w some word, let #Loopk(w) be #Loopk(s) for some stack s with

top2(s) = w. Analogously, we define the notions #HLoopk(w) and #LLoopk(w).

The next step towards the proof of our main propositions is a characterisation of

#Loopk(w) in terms of #Loopk(pop1(w)) and #Retk(pop1(w)) analogously to the result

of Lemma 2.4.28 for returns. We do this in the following three lemmas. First, we present

a unique decomposition of loops into high and low loops. Afterwards, we characterise low

loops and high loops.

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 81

Lemma 2.4.55. Let λ be a loop from (q, s) to (q′, s). λ is either a high loop or it has a unique

decomposition as λ= λ0 ◦λ1 ◦λ2 where λ0 and λ2 are high loops and λ1 is a low loop.

Proof. Assume that λ is no high loop. Since it is a loop, it visits pop1(s) at some position.

Let i ∈ dom(λ) be the minimal position just before the first occurrence of pop1(s) and j ∈

dom(λ) be the position directly after the last occurrence of pop1(s). It is straightforward

to see that λ↾[i+1, j−1] is by definition a loop of pop1(s) and the initial and final part of λ

are loops of s. We conclude by noting that λ↾[i, j] is then a low loop of s.

Remark 2.4.56. An important consequence of this lemma is the fact that #Loopk(s) is

determined by #HLoopk(s) and #LLoopk(s). #Loopk(s)(q, q′) counts the high loops from

(q, s) to (q′, s) and those loops that consists of a high loop from (q, s) to (q̂, s) followed by

a low loop from (q̂, s) to (q̂′, s) followed by a loop from (q̂′, s) to (q′, s). Thus, writing H(s)

for #HLoopk(s) and L(s) for #LLoopk(s), we obtain that

#Loopk(s)(q, q′) =min







k, H(s)(q, q′) +
∑

q̂,q̂′∈Q

H(s)(q, q̂) · L(s)(q̂, q̂′) ·H(s)(q̂′, q′)







.

In the following, we first explain how low loops depend on the loops of smaller stacks,

afterwards we explain how high loops depend on returns of smaller stacks.

Lemma 2.4.57. Let λ be a low loop starting and ending in stack s. Then λ↾[1,ln(λ)−1] is a

loop starting and ending in pop1(s). The operation at 0 is a pop1 or a collapse of level 1. The

operation at ln(λ)− 1 is a pushσ where top1(s) = σ ∈ Σ.

Proof. Let top1(s) = σ. The lemma follows directly from the observation that a pushσ
transition followed by a loop of s followed by a pop1 or collapse forms a loop of pop1(s).

The following lemma provides the analysis of high loops. Every high loop decomposes

into parts that are prefixed by its initial stack s and parts that are returns of stacks with

topmost word pop1(top2(s)). Note the similarity of this characterisation and its proof with

the characterisation of returns in Lemma 2.4.28.

Lemma 2.4.58. Let λ be some high loop of some stack s with topmost word w = top2(s).

Then there is a sequence 0=: j0 < i1 < j1 < i2 < j2 < · · ·< in < jn ≤ in+1 := ln(λ) such that

1. for 1≤ k ≤ n+ 1, sÅλ↾[jk−1,ik]
and

2. for each 1≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that λ↾[ik+1, jk]
is a

return of sk.

Proof. This is completely analogous to the proof of Lemma 2.4.28. Assume that λ is a high

loop and let i1 be the minimal position in dom(λ) such that s 6Åλ(i1 + 1). For exactly the

same reasons as in the return case, top2(λ(i1 + 1)) = pop1(w). Since λ is a high loop,

λ(i1 + 1) 6= pop1(s) whence |λ(i1 + 1)| > |s|. Since λ ends in stack s, there is a minimal

j1 > i1 + 1 with |λ(j1)| < |λ(i1 + 1)|. Now, completely analogous to the return case one

concludes that λ↾[i1+1, j1]
is a return: just note that all level 2 links in top2(λ(i1 + 1)) are

82 2. Basic Definitions and Technical Results

clones of top2(s) whence they point to stacks of width smaller than s. By definition of

a loop, λ cannot use any of these links. Thus, it is clear that λ(j1) = pop2(λ(i1 + 1)).

Furthermore, it is easy to see that sÅλ(j1). Thus, an inductive definition of the ik and jk
provides a proof of the lemma.

Remark 2.4.59. Completely analogous to the decomposition of returns, one proves that

the sequence j0 < i1 < · · ·< jn ≤ in+1 is unique.

Having obtained this decomposition of high loops we show that the computation of

#HLoopk can be done analogously to the computation of #Retk: we use certain runs of

the return simulator Rtk
s
(S) as simulations of high loops with initial and final stack s.

Definition 2.4.60. Let S be a collapsible pushdown system of level 2, k ∈ N some thresh-

old, and s some stack of the form s = w↓02 : w↓0. We set s′ := ⊥⊤top1(s)2 : ⊥⊤top1(s).

We call any run of Rtk
s
(S) from (q1, s′) to (q2, s′) a simulation of a high loop from (q1, s) to

(q2, s).

This terminology is justified for the same reasons as in the case of returns. Analogously,

to the function sTrs, we next define a function sTls that translates simulations of loops into

loops with initial and final stack s.

Definition 2.4.61. Let S , k, s and s′ be as in the previous definition. Let λ′ be a simulation

of a high loop from (q1, s′) to (q2, s′) where q1, q2 ∈ Q. Due to the definition of the return

simulator Rtk
s
(S), the run λ′ cannot pass any substack of pop1(s

′) (there are no transitions

that allow to return to s′ once the run reaches pop1(s
′) or pop2(s

′)). Thus, λ′ is a high loop

and there is a sequence j0 < i1 < j1 < · · ·< jn ≤ in+1 according to Lemma 2.4.58.

We set π′
k

:= λ′↾[jk−1,ik]
for all 1≤ k ≤ n+ 1 and ρ′

k
:= λ′↾[ik+1, jk]

for all 1≤ k ≤ n.

Completely analogous to what we did in Definition 2.4.37 we can define runs πk,ξk,

and ρk and set

sTls(ρ
′) := π1 ◦ ξ1 ◦ρ1 ◦π2 ◦ ξ2 ◦ρ2 ◦ · · · ◦πn ◦ ξn ◦ρn ◦πn+1.

We say sTls(λ
′) is the high loop simulated by λ′.

We omit the details of the following claims because they are completely analogous to the

return case. One can show that sTls is an injective function (cf. Lemma 2.4.40). The image

of sTls contains exactly all those high loops with initial and final stack s that use length-

lexicographic small returns of stacks with topmost word top2(pop1(s)) in the following

sense. Let λ be in the image of sTls. If λ contains a subrun that is a return from (q1, ŝ)

to (q2, pop2(ŝ)) with top2(ŝ) = pop1(top2(s)) then this subrun is equivalent to one of the k

length-lexicographically smallest returns from (q1, pop1(s)) to (q2, pop2(s)). The proof of

this claim is analogous to the proof of Lemma 2.4.41. Finally, if there is a high loop from

(q, s) to (q′, s) that is not the image of sTls, then there are k high loops from (q, s) to (q′, s)

in the image of sTls (cf. Lemma 2.4.42).

Analogous to Lemma 2.4.43, these results imply that the number of simulations of high

loops is up to threshold k the number of high loops.

Corollary 2.4.62. Let S be a collapsible pushdown system, k ∈ N some threshold and w

some word. For s := w↓02 : w↓0, s′ := ⊥⊤top1(s)2 : ⊥⊤top1(s) and for q, q′ ∈ Q, let Mq,q′

be the set of runs of Rtk
s
(S) from (q, s′) to (q′, s′). For all q, q′ ∈Q,

#HLoopk
S
(w)(q, q′) =min{k, |Mq,q′ |}= #HLoopk

Rtks (S)
(top2(s

′))(q, q′).

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 83

We will soon see that this corollary can be used to define a finite automaton that com-

putes #HLoopk. But before we come to this result, we briefly examine how we can com-

pute the number of low loops of a given stack.

In Lemma 2.4.57 we proved that the number of low loops of a stack s depends on the

number of loops of pop1(s). The following lemma shows how we can use this dependence

in order to compute #LLoopk(s) from #Loopk(pop1(s)).

Lemma 2.4.63. Let S be some collapsible pushdown system of level 2, k ∈ N some threshold.

There is a function that computes #LLoopk(w) on input Sym(w), CLvl(w), Sym(pop1(w)),

#Loopk(pop1(w)) and the transition relation ∆ of S .

Proof. A low loop from (q, s) to (q′, s) with w = top2(s) can only exists if CLvl(w) = 1.

Hence, we only have to consider the case CLvl(w) = 1. Due to Lemma 2.4.57, a low loop

from (q, s) to (q′, s) starts with a pop1 or collapse (of level 1) and ends with pushSym(w).

Between these two transitions, the low loop performs a loop of pop1(s). We set

Mq1,q2
:= {(q1, Sym(w),γ, q2, op) ∈∆ : op= pop1 or op= collapse} and

Nq1,q2
:= {(q1, Sym(pop1(w)),γ, q2, pushSym(w)) ∈∆}.

Then, #LLoopk(s)(q, q′) =min
n

k,
∑

q̂,q̂′∈Q|Mq,q̂| ·#Loopk(s)(q̂, q̂′) · |Nq̂′,q′ |
o

.

By now, we are prepared to prove Proposition 2.4.47. Recall that we have to provide au-

tomata that calculate #Loopk, #HLoopk and #LLoopk. In fact, we provide one automaton

that calculates these functions and #Retk at the same time.

Proof of Proposition 2.4.47. Let S = (Q,Σ,Γ, q0,∆) be a collapsible pushdown system of

level 2.

We want to define a finite automaton Alp := (Qlp,Σ ∪ (Σ × {2} × {0}), a0,∆lp) that

computes #Retk(s), #HLoopk(s), #LLoopk(s), and #Loopk(s) on input w := top2(s)↓0.

Recall the following facts.

1. #Retk(s) = #Retk(w), #HLoopk(s) = #HLoopk(w), etc.

2. Due to Proposition 2.4.19, #Retk(w) is computable by some automaton.

3. Due to the proof of corollary 2.4.62, we can compute a function f such that for all

words w and all τ ∈ Σ∪ (Σ× {2} ×N), we have

#HLoopk(wτ) = f (#Retk(w), Sym(τ), CLvl(τ)).

4. Due to Lemma 2.4.63, we can compute a function g such that

#LLoopk(wτ) = g(Sym(τ), CLvl(τ), Sym(w), #Loopk(w)).

5. Due to Remark 2.4.56 there is a function h such that

#Loopk(wτ) = h(#HLoopk(wτ), #LLoopk(wτ)).

84 2. Basic Definitions and Technical Results

Analogously to the proof of Proposition 2.4.19, we can use these observations in order to

define an automaton that computes #Retk(s), #HLoopk(s), #LLoopk(s), and #Loopk(s) on

input w := top2(s)↓0.

Finally, we have to prove Proposition 2.4.48. Analogously to the case of returns, we first

define functions BLLS
k

, BHLLS
k

, and BLLLS
k

. Then we show that these functions satisfy the

conditions of Proposition 2.4.48. We first prepare the definition of BHLLS
k

. Afterwards, we

define the functions mentioned above.

LetS be some collapsible pushdown system andAlp the corresponding finite automaton

that calculates the returns, high loops, low loops, and loops of S . Recall that we write ∆lp

for the transition relation ofAlp.

Recall that the transitions are labelled by elements of Σ ∪ (Σ× {2} × {0}). The run of

the automaton on some word w over this alphabet leads to a state a such that a encodes

Sym(w), #Retk(w), #HLoopk(w), etc.

For each transition δ(a,τ, b) we fix a word wδ such that the run on wδ ends in state a.

For each wδ, we define the stack s′
δ

:= ⊥⊤τ2 : ⊥⊤τ. Due to Corollary 2.4.43, there

are (up to threshold k) #HLoopk
S
(s′
δ
)(q1, q2) many simulations of high loops from (q1, s′

δ
)

to (q2, s′
δ
). Using Lemma 2.3.30 we can compute the #HLoopk

S
(s′
δ
)(q1, q2) many lexico-

graphically smallest such simulations. We call these λ
δ,q1,q2
1 ,λ

δ,q1,q2
2 , . . . ,λ

δ,q1,q2

#HLoopk(s′
δ
)(q1,q2)

.

Let

lδ
q1,q2

:=max

�

ln(λ
δ,q1,q2
1), ln(λ

δ,q1,q2
2), . . . , ln(λ

δ,q1,q2

#HLoopk(s′
δ
)(q1,q2)

)

�

and

#⊤δ
q1,q2

:=max

§�

�

�

n

j ∈ dom(λ
δ,q1,q2

i
) : Sym(λ

δ,q1,q2

i
(j)) = ⊤
o
�

�

� :≤ #HLoopk(s′δ)(q1, q2)

ª

be the maximal length of any of these simulations and the number of occurrences of ⊤ as

topmost symbol in any of these simulations, respectively. Now, set

l :=max{lδ
q1,q2

: q1, q2 ∈Q,δ ∈∆lp} and

#⊤ :=max{#⊤δ
q1,q2

: q1, q2 ∈Q,δ ∈∆lp}.

Definition 2.4.64. We define

BHLLS
k

: N→ N via

BHLLS
k
(0) = 0 and

BHLLS
k
(n+ 1) = l +#⊤ · BRLS

k
(n).

Furthermore, we define BLLLS
k

: N→ N and BLLS
k

: N→ N simultaneously via

BLLLS
k
(0) := 0,

BLLS
k
(0) := 0,

BLLLS
k
(n+ 1) := 2+ BLLS

k
(n) and

BLLS
k
(n+ 1) := BLLLS

k
(n+ 1) + 2 · BHLLS

k
(n+ 1).

2.4. Technical Results on the Structure of Collapsible Pushdown Graphs 85

Remark 2.4.65. The following idea underlies the definition of BHLLS
k

. Let w be some word

w of length n− 1. Assume that we have already proved that the lengths of the shortest

#Retk(w)(q1, q2)many returns from (q1, w2 : w) to (q2, [w2]) are bound by BRLS
k
(n−1).

Now, let s be a stack such that w = top2(pop1(s)). Due to the definition of l, the

lexicographically smallest #HLoopk(s)(q, q′) many high loops from (q, s) to (q′, s) have

simulations of length at most l.

sTls translates these simulations into #HLoopk(s)(q, q′) many high loops by copying all

transitions one by one but by replacing transitions on topmost symbol ⊤ by lexicograph-

ically small returns equivalent to those from (q1, w2 : w) to (q2, w2). Since this replace-

ment happens at at most #⊤ many positions, we obtain #HLoopk(s)(q, q′) many returns

from (q, s) to (q′, pop2(s)) of length at most l +#⊤ · BRLS
k
(n− 1) = BHLLS

k
(n).

The other two functions are motivated as follows. A low loop of a word wσ consists of

its initial and final transition plus a loop of w. Hence, a short low loop consists of a short

loop of w plus 2 transitions.

Due to Lemma 2.4.55, a loop of wσ is either a high loop or consists of a high loop

followed by a low loop followed by a high loop. Thus, short loops consists of at most three

short loops, one a low the two others high ones.

In analogy to Remark 2.4.45, the previous remark already contains the first half of the

proof of Proposition 2.4.48. The second half is proved completely analogous to the return

case.

2.5 Automatic Structures

For over 50 years finite automata have been playing a crucial role in theoretical computer

science and have found various applications in very different fields. In this chapter we

recall the basic notions and techniques concerning finite tree-automata and tree-automatic

structures. In general finite automata come in different flavours. On one hand automata

can be used as acceptors for strings or for trees and on the other hand one can consider the

variants for inputs of finite or infinite length. We mainly focus on finite tree-automata for

finite binary trees because we will use these automata as one of the crucial tools in Section

3.1. Nevertheless, in Section 3.4 we will also use finite ω-tree-automata on infinite trees

as tools for our proof. But only basic facts concerningω-tree-automata are actually needed

to understand that section.

For automata on strings, most of the facts we present here are folklore. Their analogues

for tree-automata are mostly straightforward generalisations.

This section is organised as follows: we first recall the notions of a finite tree-automaton

and a finite ω-tree-automaton, then we introduce tree-automatic structures as a form of

internal representation for infinite structures. Finally, we recall the known decidability

results for model checking on tree-automatic structures.

2.5.1 Finite Automata

In this section, we present the basic theory of tree-automata and tree-automatic structures.

For a more detailed introduction, we refer the reader to [19]. We start by fixing our

notation concerning tree-automata.

86 2. Basic Definitions and Technical Results

Definition 2.5.1. A finite tree-automaton is a tupleA = (Q,Σ, qI , F,∆) where Q is a finite

nonempty set of states, Σ is a finite alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set of

final states, and ∆ ⊆Q×Q×Σ×Q is the transition relation.

Remark 2.5.2. In the following, we simply write automaton for “finite tree-automaton”.

We next define the concept of a run of an automaton on a tree. Before we state the

definition, recall that for any tree t, t+ denotes the minimal elements of {0, 1}∗ \ dom(t)

and t⊕ = dom(t)∪ t+ (cf. Section 2.2.2).

Definition 2.5.3. A run ofA on a binary Σ-labelled tree t is a map ρ : dom(t)⊕→Q such

that

• ρ(d) = qI for all d ∈ dom(t+), and

•
�

ρ(d0),ρ(d1), t(d),ρ(d)
�

∈∆ for all d ∈ dom(t).

ρ is called accepting if ρ(ǫ) ∈ F . We say t is accepted byA if there is an accepting run of

A on t. With each automatonA , we associate the language

L(A) := {t : t is accepted byA}

accepted (or recognised) by A . The class of languages accepted by automata is called the

class of regular languages.

Remark 2.5.4. Recall that we can consider any string as a tree where each node has at most

one successor. Using this idea a finite string-automaton is just the corresponding special

case of a finite automaton.

One of the reasons for the success of the concept of automata in computer science is

the robustness of this model with respect to determinisation. We call an automaton A

bottom-up deterministic, if ∆ is the graph of a function Q×Q×Σ→Q.

Lemma 2.5.5 (see [19]). For each automatonA there is a bottom-up deterministic automa-

tonA ′ that accepts exactly the same trees asA .

This correspondence between deterministic and nondeterministic automata is one of the

reasons why the class of regular languages has very strong closure properties.

Lemma 2.5.6 (see [19]). The regular languages are closed under conjunction, disjunction,

complementation, and projection.

While the proof of closure under complementation is straightforward using deterministic

automata (just use Q \ F as set of accepting states), the closure under projection is easily

shown using nondeterministic automata.

In the next section we will see how these closure properties can be used to turn automata

into a useful tool for first-order model checking purposes using the concept of an automatic

structure. Beforehand, we recall some more facts about automata. First, we present the

generalisation of the pumping lemma for regular string languages to the tree case. Instead

of the length of a string, one uses the depth of a tree. One obtains the completely analogous

result which states that if a regular language of trees contains a tree of large depth, then

the language contains infinitely many trees and some of these have smaller depth than the

tree considered initially.

2.5. Automatic Structures 87

Lemma 2.5.7 (see [19]). LetA = (Q,Σ, qI , F,∆) be an automaton recognising the language

L. For each tree t ∈ L with dp(t)> |Q|, there are nodes d, d ′ ∈ dom(t) with d ≤ d ′ such that

the following holds. If we replace in t the subtree rooted at d by the subtree rooted at d ′, the

tree t0 resulting from this replacement satisfies t0 ∈ L. Furthermore, let t1, t2, t3, . . . be the

infinite sequence of trees where t1 = t and t i+1 arises from t i by replacing the subtree rooted

at d ′ in t i by the subtree rooted at d in t i, then t i ∈ L for all i ∈ N.

Proof. Take an accepting run ρ1 of A on t. Since dp(t) > |Q|, there are d, d ′ ∈ dom(t)

such that ρ1(d) = ρ1(d
′) and d ≤ d ′. Now, we have to show that the trees t0, t1, t2, . . . are

accepted by A , i.e., we have to define accepting runs for these trees. For t0 consider the

run

ρ0 : dom(t0)
⊕→Q where ρ0(e) :=

(

ρ1(e) if d 6≤ e,

ρ1(d
′ f) if e = d f .

It is easy to see that ρ0 is a run of A on t0. It is accepting because ρ was accepting and

we did not alter the label of the root. For i ≥ 1 we use the same trick the other way round,

setting

ρi+1(e) :=

(

ρi(e) if d ′ 6≤ e,

ρi(d f) if e = d ′ f .

Again one easily sees that this defines an accepting run ofA on t i+1.

As a direct corollary of the pumping lemma we obtain that finiteness of regular languages

is decidable because finiteness of such a language is equivalent to not containing a tree of

depth between |Q| and 2|Q|. The latter can be checked by exhaustive search.

Corollary 2.5.8. Given an automatonA , it is decidable whether L(A) is finite. If this is the

case, we can compute |L(A)|.

We conclude this introduction to automata on trees by recalling a well known character-

isation of regular classes of trees in terms of MSO-definability.

Lemma 2.5.9 ([59], [21]). For a set T of finite Σ-labelled trees, there is an automaton

recognising T if and only if T is MSO definable.

Beside the successful applications of automata on finite strings or trees in many areas

of computer science, the lifting of the underlying ideas to the case of infinite inputs had

a mayor impact on the importance of automata theory for computer science. Rabin[55]

played a prominent role in the development of this theory.

In order to give a meaningful definition of an automaton processing an infinite tree,

we have to reverse the direction in which the automaton works. Up to now, we have

considered bottom-up automata, i.e., automata which start to label a tree at the leaves and

then process the tree up to the root. Of course, one can also imagine an automaton that

starts labelling the root and then labels top-down all the nodes from the root to the leaves.

For the determinisation result we presented, it is very important to think of a bottom-up

automaton. Deterministic top-down automata are strictly weaker than nondeterministic

88 2. Basic Definitions and Technical Results

ones: there is a regular language which is not the language recognised by any top-down

deterministic automaton. Top-down automata become important as soon as we look at

infinite trees. Since there are infinite trees without leaves, the bottom-up approach is not

meaningful anymore. But the top-down approach generalises from finite to infinite trees.

Considered as a device working top-down, an automaton is a device labelling the root with

the initial state and then forks into two copies of this automaton – one for each successor

of the root. Each of these copies now repeats the same procedure on the corresponding

subtree but starting from a different state according to the transition relation. With this

view, it is straightforward to generalise the notion of a run from finite trees to infinite trees.

We only have to come up with a new concept of an accepting run. We now introduce finite

ω-tree automata. Recall that we write t⊥ for the lifting of a (possibly infinite) tree to the

domain {0, 1}∗ by padding with ⊥.

Definition 2.5.10. A finite ω-tree automaton is a tupleA = (Q,Σ,Q I ,∆,Ω), where Q and

Σ, and ∆ are as in the case of a finite tree-automaton, Q I is a set (called the set of initial

states), and Ω is a function Ω : Q→ N (called priority function).

A function ρ : {0, 1}∗→Q is a run ofA on an infinite tree t⊥ if ρ(ǫ) ∈Q I and ρ respects

∆. We say ρ is a run on an arbitrary finite or infinite tree t if it is a run on t⊥.

Given some run ρ of A on t, we call ρ accepting if lim infn→∞Ω(ρ(b1b2b3 . . . bn)) is

even for all infinite branches b1b2b3 · · · ∈ {0, 1}∗.

Remark 2.5.11. The acceptance condition that we present here is called parity condition.

In the literature, several other acceptance conditions for automata on infinite trees are

studied, e.g., Buchi-, Muller-, Rabin- or Street-conditions. The parity condition turned out

to be the strongest of all these in the sense that all other conditions mentioned can be

reformulated in terms of parity conditions, while the parity condition is weak enough in

order to transfer most of the important results from the theory of finite trees to the infinite

tree case.

In the following we use the term ω-automaton for “finite ω-tree-automaton”.

Even though the determinisation result for finite automata does not carry over to ω-

automata, the languages accepted by ω-automata have the same good closure properties

as in the finite case. Rabin was the first who gave a construction for the complementation

of a nondeterministic ω-automaton. In analogy to the finite case, we call the class of

languages of (finite and infinite) trees accepted by ω-automata ω-regular languages.

Lemma 2.5.12 ([55]). The ω-regular languages are closed under conjunction, disjunction,

complementation, and projection.

The proof of this lemma is through effective constructions of the corresponding ω-

automata. Furthermore, the tight correspondence between automata and MSO carries

over from the finite to the ω-case.

Theorem 2.5.13 ([55]). A subset S ⊆ Tree≤ωΣ isω-regular if and only if it is MSO-definable.

We conclude this brief introduction of ω-automata by recalling the connection between

regular and ω-regular sets of trees. We show that each regular set has an ω-regular

representation via padding with some label ⊥. Recall that for a Σ-labelled tree t, we

write t⊥ for the full binary tree which coincides with t on dom(t) and is labelled by ⊥ at

all other positions. In the following lemmas, we assume that ⊥ /∈ Σ.

2.5. Automatic Structures 89

Lemma 2.5.14. Given an automaton A = (Q,Σ, qI , F,∆), one can construct an ω-

automatonA∞ such that for all finite Σ-labelled trees t,

A accepts t iffA∞ accepts t⊥.

Proof. The construction of A∞ := (Q∞,Σ ∪ {⊥},Q∞
I

,∆∞,Ω) is as follows. We add a new

state qacc to the set of states by setting Q∞ :=Q∪{qacc}. Set Q∞
I

:= F (since we change from

the bottom-up view to the top-down view, the final states of the automaton become the

initial state of the ω-automaton). ∆∞ is a copy of ∆ enriched by the following transitions:

{(qacc, qacc,⊥, qI), (qacc, qacc,⊥, qacc)}. The priority function Ω : Q∞
I
→ {1, 2} is defined by

Ω(q) =

(

1 if q ∈Q,

2 if q = qacc.

Using these definitions a tree t is accepted if and only if there is a finite initial part D ⊆

{0, 1}∗ such that A accepts t↾D, i.e., it labels t↾D+ only with the initial state qI and all

descendants of D+ are nodes labelled by ⊥. Thus,A accepts a tree t ′ if and only if it is of

the form t ′ = t⊥ for some finite tree t such thatA accepts t.

Lemma 2.5.15. Given anω-automatonA = (Q,Σ,Q I ,∆,Ω), one can construct an automa-

tonA fin such that for all finite Σ-labelled trees t,

A accepts t⊥ iffA fin accepts t.

Proof. We constructA fin := (Qfin,Σ, qfin
I

, F fin,∆fin) as follows:

• Qfin :=Q ∪ {qinit} for a new state qinit not contained in Q,

• F fin :=Q I ,

• qfin
I

:= qinit, and

• ∆fin is constructed as follows. For each q ∈ Q we consider the runs of the automaton

A with initial state q, i.e., the automatonAq := (Q,Σ, {q},∆,Ω), on the {⊥}-labelled

full binary tree ;⊥. We call q good if there is an accepting run ofAq on ;⊥. Now, for

each transition (q1, q2,σ, q3) we add a new transition (qinit, q2,σ, q3) to ∆fin if q1 is

good. Analogously, we add a transition (q1, qinit,σ, q3) to ∆fin if q2 is good. Finally,

we add (qinit, qinit,σ, q3) to∆fin if both q1 and q2 are good. Furthermore,∆fin contains

a copy of each transition in ∆, i.e., ∆ ⊆∆fin.

Now,A fin copies the behaviour ofA but at any position where one of the successor nodes

is labelled by a good state, it can nondeterministically guess that the tree it processes is not

defined on this successor. If this guess is right, then A processes at this successor a tree

which is completely labelled by ⊥. Since the state at this successor is good, the partial run

up to this position can be extended in such a way that each path starting at this successor

is accepting.

Now, ifA fin labels some node by its initial state, there is no transition that is applicable

at this node. Thus, any run of A fin on a tree t labels only those positions by qinit that are

in dom(t)+.

By definition, a run of A fin on some tree t labels all elements of dom(t)+ by qinit if and

only if there is a run of A on t⊥ that labels all elements of dom(t)+ by good states. But

this is equivalent to the fact thatA accepts t⊥ by the definition of good states.

We conclude thatA fin satisfies the claim of this lemma.

90 2. Basic Definitions and Technical Results

2.5.2 Automatic Structures

As already mentioned the algorithmic tractability of problems on an infinite structure de-

pends on a good finite representation. In this section we recall how automata can be used

for this purpose. The general underlying idea is the following.

Given some structure A, one defines a tuple of machines from some fixed model of

computation such that these machines can be used to evaluate atomic formulas on A.

A presentation of some structure A= (A, E1, E2, . . . , En) using a certain model of compu-

tationM is a tuple of machines M , M1, M2, . . . , Mn fromM and some map f such that the

following holds.

• M accepts a set L of strings or trees.

• f is a bijective map from L to A.

• Mi accepts a tuple of elements from L if and only if the image of this tuple under f

is in Ei.

The first model of computation that was considered for this approach is that of Turing

machines (cf. Appendix A). If one uses Turing machines for representing a structure in this

way, one obtains the so-called class of recursive structures (cf. [29]). But for algorithmic

issues, Turing machines turned out to be far too strong, resulting in the undecidability of

model checking on recursive structures for most logics. In general, it is only possible to

evaluate quantifier-free formula on recursive structures.

Automata can be used much more fruitfully as underlying model of computation. This is

due to their good computational behaviour. The resulting structures are called automatic

structures. Hodgson [31, 32] first proposed this idea. But it took more than 10 years

until the systematic investigation of the general notion of automatic structures started.

Khoussainov and Nerode [37] reintroduced the notion of string-automatic structures. They

obtained the first important results. For instance, they proved that these structures have

decidable FO model checking due to the good closure properties of regular languages.

Another boost to the study of automatic structures came from the work of Blumensath

[7] who developed the theory further and lifted the idea from the finite string case to the

cases of finite or infinite strings or trees. Since then, the field of automatic structures has

been an active area of research and many new results have been collected over the years by

Blumensath, Grädel, Khoussainov, Kuske, Lohrey, Rubin, et al.(e.g., [37, 10, 39, 44, 11, 40,

38, 57, 36, 45, 47, 46]). In the following, we recall the definitions and important results

with a focus on tree-automatic structures (which we simply call automatic-structures in

the following). String-automatic structures are obtained by restriction of the accepted

languages to languages of strings. We start by introducing the convolution of trees. This is

a tool for representing an n-tuple of Σ-trees as a single tree over the alphabet (Σ ∪ {2})n

where 2 is a padding symbol 2 /∈ Σ.

Definition 2.5.16. The convolution of two Σ-labelled trees t and s is given by a function

t ⊗ s : dom(t)∪ dom(s)→ (Σ∪ {2})2

2.5. Automatic Structures 91

where 2 is some new padding symbol, and

(t ⊗ s)(d) :=







(t(d), s(d)) if d ∈ dom(t)∩ dom(s),

(t(d),2) if d ∈ dom(t) \ dom(s),

(2, s(d)) if d ∈ dom(s) \ dom(t).

We also use the notation
⊗

(t1, t2, . . . , tn) for t1⊗ t2⊗ · · · ⊗ tn.

Using convolutions of trees we can use a single automaton for defining n-ary relations

on a set of trees. Thus, we can then use automata to represent a set and a tuple of n-ary

relations on this set. If we can represent the domain of some structure and all its relations

by automata, we call the structure automatic.

Definition 2.5.17. We say a relation R ⊆ Treen
Σ

is automatic if there is an automaton A

such that L(A) = {
⊗

(t1, t2, . . . , tn) ∈ Treen
Σ

: (t1, t2, . . . , tn) ∈ R}.

A structure B = (B, E1, E2, . . . , En) with relations Ei is automatic if there are automata

AB,AE1
,AE2

, . . . ,AEn
such that for the language L(AB) accepted by AB the following

holds:

1. There is a bijection f : L(AB)→ B.

2. For c1, c2, . . . , cn ∈ L(AB), the automaton AEi
accepts
⊗

(c1, c2, . . . , cn) if and only if

(f (c1), f (c2), . . . , f (cn)) ∈ Ei.

In other words, f is a bijection between L(AB) and B and the relations Ei are automatic

via the automataAEi
. We call f a tree presentation of B.

Automatic structures form a nice class because automata theoretic techniques may be

used to decide first-order formulas on these structures:

Theorem 2.5.18 ([7], [57]). If B is automatic, then its FO(∃mod)-theory is decidable.

Proof. Given some FO formula ϕ(x1, . . . , xn), we can construct effectively an automaton

Aϕ such that Aϕ accepts t1 ⊗ · · · ⊗ tn if and only if B, f (t1), . . . , f (tn) |= ϕ for f the

bijection from the previous definition. For atomic formulas, this is clear from the definition

of an automatic structure because the automata for the relations are already given in the

definition. Conjunction and negation transform into the classical automata constructions

of product and complementation. Finally, existential quantification corresponds to the

closure of regular languages under projection.

The decidability of the modulo counting quantifier was first proved for the string-

automatic case in [40]. Our presentation follows the ideas of Rubin [57]. He provided

a proof for the string-automatic case that allows a straightforward adaption to the case of

trees.

For simplicity in the presentation, we assume that B is an automatic structure whose

presentation is the identity id. Let

ϕ(x , y1, y2, . . . , yn) ∈ FO(∃mod)

be some formula which is represented on B by the automatonA = (Q,Σ, qI , F,δ), i.e.,

B, t, t1, t2, . . . , tn |= ϕ(x , y1, y2, . . . , yn)

92 2. Basic Definitions and Technical Results

if and only ifA accepts
⊗

(t, t1, t2, . . . , tn).

Given a tuple t1 ⊗ · · · ⊗ tn representing the assignment of the free variables in a for-

mula ∃(k,m)x(ϕ(x , y1, . . . , yn)) for which we want to evaluate the formula, we have to

construct an automaton that counts modulo j the number of trees t such that A accepts

t ⊗ t̄ := t ⊗ t1⊗ · · · ⊗ tn. Without loss of generality, we assume that A is a bottom-up

deterministic automaton. In this case the number of trees t such that t ⊗ t̄ is accepted

by A coincides with the number of accepting runs on trees of the form t ⊗ t̄. We now

construct an automaton Â that does this counting. The states Q̂ of Â are functions

Q→ {0, 1, . . . , m− 1,∞}. Â will label a node d of t̄ with a function f such that there are

(modulo m) f (q) different trees t such that the unique run ofA on t⊗(t̄)d labels the root

with state q. By this we mean that f (q) =∞ iff there are infinitely many such trees t and

otherwise f (q) determines the number of such trees modulo m. If we know how to label

the successors of some node according to this rule, then some automaton can update this

information. The details of the construction are as follows.

We set Q̂ := {0, 1, . . . , m− 1,∞}Q, the initial state is q̂I := f where – modulo m – f (q) is

|{t : ρ(ǫ) = q for ρ the run ofA on t ⊗;n}|.

Note that qI is computable due to Corollary 2.5.8. The set of final states F̂ consists of those

function f : Q→ {0, 1, . . . , m−1,∞} such that
∑

q∈F

f (q) = k mod m. The transition relation

∆̂ consists of all tuples (f0, f1,σ, f) where f0, f1, f are functions Q→ {0, 1, . . . , m− 1,∞}

such that

f (q) =







∑

(q0,q1,σ,q)∈∆

f0(q0) · f1(q1)






mod k

holds for all q ∈Q. Note that for fixed f0, f1, and σ the function f is uniquely determined.

Thus, the resulting automaton is a deterministic bottom-up automaton.

By an easy induction, one sees that for all d ∈ t̄ the run of Â on (t̄)d labels the root

with some function f : Q → {0, 1, . . . , m− 1,∞} such that there are f (q) many different

trees t (modulo m) such that the run ρt ofA on t ⊗ (t̄)d satisfies ρt(ǫ) = q.

From this fact, we directly obtain the desired result, namely, that Â accepts t̄ if and only

if there are k modulo m many trees t such thatA accepts t ⊗ t̄.

Remark 2.5.19. The complexity of the FO model checking algorithm for automatic struc-

tures is nonelementary. This is due to the following facts.

• Applying a projection to some deterministic automaton yields a nondeterministic one.

• Complementation of an automaton can only be done efficiently if the automaton is

deterministic.

• Determinisation of a nondeterministic automaton yields an exponential blow-up.

Thus, the size of the automaton obtained by the construction in the proof is an exponen-

tial tower in the number of alternations of existential quantification and negation in the

2.5. Automatic Structures 93

formula (or equivalently the number of alternations of existential and universal quantifi-

cations), i.e., if there are n alternations between existential and universal quantification

in ϕ, then the corresponding automaton Aϕ may have expn(c) many states (for c some

constant)7.

On the other hand, the algorithm cannot be improved essentially: the extension

(N,+, |p)
8 of Presburger Arithmetic is a string-automatic structure [10] which has nonele-

mentary model checking complexity [26]. This implies that there is a nonelementary lower

bound for the FO model checking complexity on automatic structures.

The theory of automatic structures can be naturally extended to the theory of structures

that are represented by automata for infinite trees. The structures obtained in this way are

called ω-automatic structures. We conclude this section by precisely defining ω-automatic

structures.

Definition 2.5.20. We say a relation R ⊆ (Tree≤ωΣ)
n is ω-automatic if there is an ω-

automatonA such that

L(A) =
n
⊗

(t1, t2, . . . , tn) ∈ (Tree≤ωΣ)
n : (t1, t2, . . . , tn) ∈ R

o

.

A structure A= (A, E1, E2, . . . , En) with relations Ei is ω-automatic if there are ω-automata

AA,AE1
,AE2

, . . . ,AEn
such that for L(AA), the language accepted by AA, the following

holds:

1. There is a bijection f : L(AA)→ A.

2. For t1, t2, . . . , tn ∈ L(AA), the automaton AEi
accepts
⊗

(t1, t2, . . . , tn) if and only if

(f (t1), f (t2), . . . , f (tn)) ∈ Ei.

We call f an ω-presentation of A.

The similarity of Lemma 2.5.6 and Lemma 2.5.12 yields the straightforward extension

of Theorem 2.5.18 to the ω-automatic case.

Theorem 2.5.21 ([7, 10, 5]). The FO(∃∞)-theory of every ω-automatic structure is decid-

able.

7 We denote by expi the following function. exp0(m) := c and expn+1(c) := 2expn(m), i.e., expn(m) is an

exponential tower of height n with topmost exponent m.
8 x |p y if x is a power of p dividing y .

94 2. Basic Definitions and Technical Results

3 Main Results

In this chapter, we present four results concerning model checking on certain graph struc-

tures. The first and the last involve automaticity1 while the other two are based on modu-

larity arguments for Ehrenfeucht-Fraïssé games.

Our first result concerns FO model checking on collapsible pushdown graphs of level 2.

The expansion of every level 2 collapsible pushdown graph by regular reachability and Lµ-

definable predicates is automatic. From the general decidability result for FO on automatic

structures, we obtain the following theorem.

Theorem 3.0.1. Let S = (Q,Σ,Γ,∆, q0) be a collapsible pushdown system of level 2. Let

G := (CPG(S), REACHL1
, REACHL2

, . . . , REACHLn
, P1, . . . , Pm)

be an expansion of the collapsible pushdown graph CPG(S) where L1, L2, . . . , Ln are arbitrary

regular languages over Γ and P1, . . . , Pm are arbitrary Lµ-definable predicates. Then the FO-

theory of G is decidable.

Using our fourth main theorem, even the FO(∃∞,∃mod, (Ramn)n∈N)-theory of G is de-

cidable. A preliminary version of this theorem was published in [35] and we present the

proof of this theorem in Section 3.1.

Next, we turn to modularity arguments for Ehrenfeucht-Fraïssé games on nested push-

down trees. The analysis of restricted strategies in these games lead to model checking

algorithms on the class of nested pushdown trees (cf. Section 2.1.1). We obtain the

following two results.

Theorem 3.0.2. FO(REACH)model checking on nested pushdown trees is decidable. Further-

more, there is an FO model checking algorithm on nested pushdown trees with the following

complexities: Its structure complexity is in EXPSPACE, while its expression complexity and its

combined complexity are in 2-EXPSPACE.

Theorem 3.0.3. FO model checking on level 2 nested pushdown trees is decidable.

The concept of a level 2 nested pushdown tree is a combination of the concepts of

higher-order pushdown systems and nested pushdown trees. One takes a level 2 push-

down system (without collapse) and enriches the unfolding of its graph by jump-edges

connecting corresponding clone and pop operations (of level 2). We formally introduce

the hierarchy of higher-order nested pushdown trees in Section 3.3.

The proof of the first theorem, which was published in [34], is contained in Section 3.2.

The second theorem is proved in Section 3.3.

Finally, motivated by the automaticity of collapsible pushdown graphs of level 2. We

study the model checking problem on the class of automatic structure. We extend the

automata-based approach for FO(∃∞,∃mod) model checking on automatic structures to

FO(∃∞,∃mod, (Ramn)n∈N) model checking. In Section 3.4 we prove the following theorem

which was developed by Dietrich Kuske and the author.

Theorem 3.0.4. The FO(∃∞,∃mod, (Ramn)n∈N)-theory of automatic structures is decidable.

1 We stress that the term “automaton” stands for “finite tree-automaton” and “automatic” stands for “tree-

automatic”.

95

3.1 Level 2 Collapsible Pushdown Graphs are Tree-Automatic

In this section, we focus on collapsible pushdown graphs of level 2. Thus, whenever we

talk about collapsible pushdown systems or graphs, we mean those of level 2.

The main result of this section is the following theorem.

Theorem 3.1.1. Given a collapsible pushdown graph CPG(S) = (C(S), (⊢γ)γ∈Γ), regu-

lar languages L1, L2, . . . , Ln ⊆ Γ
∗, and Lµ-definable predicates P1, P2, . . . , Pm ⊆ C(S), its

expansion (CPG(S), REACHL1
, REACHL2

, . . . , REACHLn
, P1, P2, . . . , Pm) is automatic2.

A direct consequence of this result is the automaticity of the second level of the Caucal

hierarchy.

Corollary 3.1.2. The second level of the Caucal hierarchy is automatic.

Proof. The second level of the Caucal hierarchy is obtained by ǫ-contraction3 from the

class of higher-order pushdown graphs of level 2 (cf. [16]).

Using Theorem 3.0.4 we obtain the decidability of the first-order theory of collapsible

pushdown graphs of level 2:

Corollary 3.1.3. Let S be a collapsible pushdown system of level 2. Let G be the expansion

of CPG(S) by Lµ-definable predicates and by regular reachability predicates. Under these

conditions, the FO(Reg, ∃mod, (Ramn)n∈N)-theory of G is decidable.

Remark 3.1.4. Note that this corollary is just a reformulation of Theorem 3.0.1.

The main part of this section consists of a proof of theorem 3.1.1. Furthermore, we

discuss the limitations of our approach and the limitations of first-order model checking

on collapsible pushdown graphs in general.

The section is organised as follows. In Section 3.1.1, we present a function Enc which

translates configurations of collapsible pushdown systems into trees. This function Enc

yields an automatic representation for every collapsible pushdown graph. We show in Sec-

tion 3.1.2 that the reachable configurations of a collapsible pushdown system are turned

into a regular set of trees by Enc. The proof of this statement takes the results on loops

from section 2.4 as a main ingredient. Recall that the loops of a given stack can be calcu-

lated by a string-automaton reading the topmost word of the stack. This result carries over

to an automaton reading the encoding of a given stack. Since runs from the initial con-

figuration to some configuration c mainly consist of loops, this kind of regularity of loops

can be used to show the regularity of the set of reachable configurations. In Section 3.1.3,

we prove that the stack operations are regular via Enc. Hence, for each transition relation

⊢γ there is an automaton recognising those encodings of pairs of configurations that are

related by ⊢γ. Then we show that regular reachability predicates over Γ∗ are regular sets

via Enc. This is done in Section 3.1.4 as follows. First, we prove that the image of the

“ordinary” reachability predicate REACH is a regular relation via Enc. Then we show that

collapsible pushdown graphs are closed under products with string-automata. Finally, we

2 Recall that “automatic” is an abbreviation for “tree-automatic”.
3 An ǫ-contraction of a higher-order pushdown graph G = (V, E1, E2, . . . , En) is a graph (V, E′

1
, E′

2
, . . . , E′

m
)

for m≤ n where E′
i
:= REACHLi

for Li = L((Em+1 + Em+2 + · · ·+ En)
∗Ei).

96 3. Main Results

f

e g i

b d d d h j l

a c c c c c c c k

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 3.1.: A stack with blocks forming a c-blockline.

reduce the predicate REACHL to the predicate REACH on the product of the collapsible

pushdown system and the string-automaton corresponding to L.

Afterwards, we relate our result to other known results. In Section 3.1.5, we first in-

vestigate combinations of the known Lµ model checking algorithm with our FO model

checking algorithm. Then, in Section 3.1.6, we provide a lower bound for FO model

checking on level 2 collapsible pushdown graphs. Recall that the first-order model check-

ing on automatic structures has nonelementary complexity. We show that the complexity

of the first-order model checking on collapsible pushdown graphs is also nonelementary.

Thus, our model checking algorithm cannot be improved essentially. In the final part we

discuss first-order model checking on higher-order collapsible pushdown graphs. Recently,

Broadbent [12] showed that first-order model checking is undecidable on level 3 collapsi-

ble pushdown graphs. Thus, there is no hope to extend our technique to higher levels of

the collapsible pushdown hierarchy.

3.1.1 Encoding of Level 2 Stacks in Trees

In this section we present an encoding of level 2 stacks in trees. The idea is to divide a stack

into blocks and to encode different blocks in different subtrees. The crucial observation is

that every stack is a list of words that share the same first letter. A block is a maximal list

of words occurring in the stack which share the same two first letters. If we remove the

first letter of every word of such a block, the resulting 2-word decomposes again as a list

of blocks. Thus, we can inductively carry on to decompose parts of a stack into blocks and

encode every block in a different subtree. The roots of these subtrees are labelled with the

first letter of the block. This results in a tree where every initial left-closed path in the tree

represents one word of the stack. A path of a tree is left-closed if its last element has no

left successor.

As we already mentioned, the encoding works by dividing stacks into blocks. The fol-

lowing notation is useful for the formal definition of blocks. Let w ∈ Σ∗ be some word and

s = w1 : w2 : · · · : wn ∈ Σ
∗2 some stack. We write s′ := w \ s for s′ = ww1 : ww2 : · · · : wwn.

Note that [w] is a prefix of s′, i.e., in the notation from Definition 2.3.32, [w]Åw \ s. We

say that s′ is s prefixed by w.

Definition 3.1.5. Let σ ∈ Σ and b ∈ Σ∗2. We call b a σ-block if b = [σ] or b = στ \ s′ for

some τ ∈ Σ and some s′ ∈ Σ∗2. If b1, b2, . . . , bn are σ-blocks, then we call b1 : b2 : · · · : bn

a σ-blockline. See Figure 3.1 for an example of a blockline with its blocks.

Note that every stack in Stacks2(Σ) forms a ⊥-blockline. Furthermore, every blockline l

decomposes uniquely as l = b1 : b2 : · · · : bn of maximal blocks bi in l. We will call these

maximal blocks the blocks of l.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 97

(c, 2, 1) e

(b, 2, 0) (b, 2, 0) c (d, 2, 3)

(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)

⊥ ⊥ ⊥ ⊥ ⊥

c, 2 e, 1

b, 2 ǫ c, 1 d, 2

a, 2 a, 2 ǫ ǫ

⊥, 1 ǫ

Figure 3.2.: A stack s and its Encoding Enc(s): right arrows lead to 1-successors (right suc-

cessors), upward arrows lead to 0-successors (left successors).

Another crucial observation is that a σ-block b ∈ Σ∗2 \Σ decomposes as b = σ \ l for

some blockline l and we call l the blockline induced by b. For a block of the form [b] with

b ∈ Σ, we define the blockline induced by [b] to be ;.

Recall that the symbols of a collapsible pushdown stack (of level 2) come from the set

Σ∪ (Σ× {2} ×N) where Σ is the stack alphabet.

We are now going to define our encoding of stacks in trees. For τ ∈ Σ ∪ (Σ× {2} ×N),
we encode a τ-blockline l in a tree as follows. The root of the tree is labelled by

(Sym(τ), CLvl(τ)). The blockline induced by the first block of l is encoded in the left

subtree and the rest of l is encoded in the right subtree. This means that we only encode

explicitly the symbol and the collapse level of each element of the stack, but not the col-

lapse link. We will later see how to decode the collapse links from the encoding of a stack.

When we encode a part of a blockline in the right subtree, we do not repeat the label

(Sym(τ), CLvl(τ)), but replace it by the empty word ǫ.

Definition 3.1.6. Let τ ∈ Σ∪ (Σ× {2} ×N). Furthermore, let

s = w1 : w2 : · · · : wn ∈ (Σ∪ (Σ× {2} ×N))
+2

be some τ-blockline. Let w′
i

be words such that s = τ \ [w′
1

: w′
2

: · · · : w′
n
] and set

s′ := w′
1

: w′
2

: · · · : w′
n
. As an abbreviation we write isk := wi : wi+1 : · · · : wk. Further-

more, let w1 : w2 : · · · : w j be a maximal block of s. Note that j > 1 implies that there is

some τ′ ∈ Σ∪(Σ×{2}×N) and there are words w′′
j′

for each j′ ≤ j such that w j′ = ττ
′w′′

j′
.

Now, for arbitrary σ ∈ (Σ× {1, 2}) ∪ {ǫ}, we define recursively the (Σ× {1, 2}) ∪ {ǫ}-

labelled tree Enc(s,σ) via

Enc(s,σ) :=















σ if |w1|= 1, n= 1

σ→ Enc(2sn,ǫ) if |w1|= 1, n> 1

Enc(1s′
n
, (Sym(τ′), CLvl(τ′)))← σ if |w1|> 1, j = n

Enc(1s′
j
, (Sym(τ′), CLvl(τ′)))← σ→ Enc(j+1sn,ǫ) otherwise

For every s ∈ Stacks2(Σ), Enc(s) := Enc(s, (⊥, 1)) is called the encoding of the stack s.

Figure 3.2 shows a configuration and its encoding.

Remark 3.1.7. Fix some stack s. For σ ∈ Σ and k ∈ N, every (σ, 2, k)-block of s is encoded

in a subtree whose root d is labelled (σ, 2). We can restore k from the position of d in the

tree Enc(s) as follows.

k = |{d ′ ∈ domEnc(s)∩ {0, 1}∗1 : d ′ ≤lex d}|,

98 3. Main Results

where ≤lex is the lexicographic order. This is due to the fact that every right-successor

corresponds to the separation of some block from some other.

This correspondence can be seen as a bijection. Let s = w1 : w2 : · · · : wn be some

stack. We define the set R := dom(Enc(s))∩ ({ǫ} ∪ {0, 1}∗1). Then there is a bijection

f : {1, 2, 3, . . . , n} → R such that i is mapped to the i-th element of R in lexicographic or-

der. Each 1 ≤ i ≤ n represents the i-th word of s. f maps the first word of s to the root of

Enc(s) and every other word in s to the element of Enc(s) that separates this word from its

left neighbour in s.

If we interpret ǫ as empty word, the word from the root to f (i) in Enc(s) is the great-

est common prefix of wi−1 and wi. More precisely, the word read along this path is the

projection onto the letters and collapse levels of wi−1 ⊓ wi.

Furthermore, set f ′(i) := d0m ∈ Enc(s) for d := f (i) such that m is maximal with this

property, i.e., f ′(i) is the leftmost descendent of f (i). Then the path from f (i) to f ′(i) is

the suffix w′
i

such that wi = (wi−1 ⊓ wi) ◦ w′
i

(here we set w0 := ǫ). More precisely, the

word read along this path is the projection onto the symbols and collapse levels of w′
i
.

Having defined the encoding of a stack, we want to encode whole configurations, i.e., a

stack together with a state. To this end, we just add the state as new root of the tree and

attach the encoding of the stack as left subtree, i.e., for some configuration (q, s) we set

Enc(q, s) := Enc(s)← q.

The image of this encoding function contains only trees of a very specific type. We call

this class TEnc. In the next definition we state the characterising properties of TEnc. This

class is MSO-definable whence automata-recognisable (cf. Lemma 2.5.9).

Definition 3.1.8. Let TEnc be the class of trees T that satisfy the following conditions.

1. The root of T is labelled by some element of Q (T (ǫ) ∈Q).

2. Every element of the form {0, 1}∗0 is labelled by some (σ, l) ∈ Σ× {1, 2}, especially

T (0) = (⊥, 1).

3. Every element of the form {0, 1}∗1 is labelled by ǫ.

4. 1 /∈ dom(T), 0 ∈ dom(T).

5. For all t ∈ T we have that T (t0) = (σ, 1) implies T (t10) 6= (σ, 1).

Remark 3.1.9. Note that all trees in the image of Enc satisfy condition 5 due to the follow-

ing. T (t0) = T (t10) = (σ, 1) would imply that the subtree rooted at t encodes a blockline

l such that the first block b1 of l induces a σ-blockline and the second block b2 induces

also a σ-blockline. This contradicts the maximality of the blocks used in the encoding be-

cause all words of b1 and b2 have σ as second letter whence b1 : b2 forms a larger block.

Note that for letters with links of level 2 the analogous restriction does not hold. In Figure

3.2 one sees the encoding of a stack s where Enc(s)(0) = Enc(s)(10) = (a, 2). Here, the

label (a, 2) represents two different letters. Enc(s)(0) encodes the element (a, 2, 0), while

Enc(s)(10) encodes the element (a, 2, 2), i.e., the first element encodes a letter a with

undefined link and the second encodes the letter a with a link to the substack of width 2.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 99

Having defined the encoding function Enc, we next show that it induces a bijection

between the configurations of CPG and TEnc. The rest of this section is a formal proof of

the following lemma.

Lemma 3.1.10. Enc : Q× Stacks2(Σ)→ TEnc is a bijection. We denote its inverse by Dec.

The formal proof of this lemma is rather technical. The reader who is not interested in

the technical details of this proof may continue with reading Section 3.1.2 directly.

We start our proof of the lemma by explicitly constructing the inverse of Enc. This inverse

is called Dec. Since Enc removes the collapse links of the elements in a stack, we have to

restore these now. For restoring the collapse links, we use the following auxiliary function.

For g ∈ N and τ ∈ {ǫ} ∪ (Σ× {1, 2}), we set

fg(τ) :=







σ if τ= (σ, 1),

(σ, 2, g) if τ= (σ, 2),

ǫ if τ= ǫ.

Later, g will be the width of the stack decoded so far.

Definition 3.1.11. Let Γ := (Σ × {1, 2}) ∪ {ǫ}. We define the following function

Dec : TreeΓ×N→ (Σ∪ (Σ× {2} ×N))
∗2 by recursion. Let

Dec(T, g) =















fg(T (ǫ)) if dom(T) = {ǫ},

fg(T (ǫ)) \ Dec((T)0, g) if 1 /∈ dom(T),

fg(T (ǫ)) \ (ǫ : Dec((T)1, g + 1)) if 0 /∈ dom(T),

fg(T (ǫ)) \ (Dec((T)0, g) : Dec((T)1, g + G((T)0))) otherwise,

where G((T)0) := |Dec((T)0, 0)| is the width of the stack encoded in (T)0. For a tree

T ∈ TEnc, the decoding of T is

Dec(T) := (T (ǫ), Dec((T)0, 0)) ∈Q× (Σ∪ (Σ× {2} ×N))+2.

Remark 3.1.12. Obviously, for each T ∈ TEnc, Dec(T) ∈Q× (Σ∪ (Σ×{2}×N))+2. In fact,

the image of Dec only consists of configurations, i.e., Dec(T) = (q, s) such that s is a level

2 stack. The verification of this claim relies on two important observations.

Firstly, T (0) = (⊥, 1) due to condition 2 of Definition 3.1.8. Thus, all words in s start

with letter ⊥.

Now, s is a stack if and only if the link structure of s can be created using the push, clone

and pop1 operations. The proof of this claim can be done by a tedious but straightforward

induction. We only sketch the most important observations for this fact.

Every letter a of the form (σ, 2, l) occurring in s is either a clone or can be created by

the pushσ,2 operation. We call a a clone if a occurs in s in some word waw′ such that the

word to the left of this word has wa as prefix. Note that cloned elements are those that

can be created by use of the clone2 and pop1 operations from a certain substack of s.

If a is not a clone in this sense, then Dec creates the letter a because there is some (σ, 2)-

labelled node in T corresponding to a. Now, the important observation is that Dec defines

100 3. Main Results

a = fg((σ, 2)) where g + 1 is the width of the stack decoded from the lexicographically

smaller nodes. Hence, the letter a occurs in the (g + 1)-st word of s and points to the

g-th word. Such a letter a can clearly be created by a pushσ,2 operation. Thus, all 2-

words in the image of Dec can be generated by stack operations from the initial stack. A

reformulation of this observation is that the image of Dec only contains stacks.

Now, we prove that Dec is injective on TEnc. Afterwards, we show that Dec ◦ Enc is the

identity on the set of all configurations. This implies that Dec is a surjective map from TEnc

to Q× Stacks2(Σ). Putting both facts together, we obtain the bijectivity of Enc.

Lemma 3.1.13. Dec is injective on TEnc.

Proof. Assume that there are trees T ′, U ′ ∈ TEnc with Dec(T ′) = Dec(U ′) = (q, s). Then by

definition T ′(ǫ) = U ′(ǫ) = q. Thus, we only have to compare the subtrees rooted at 0, i.e.,

T := (T ′)0 and U := (U ′)0. From our assumption it follows that Dec(T, 0) = Dec(U , 0).

Note that the roots of T and of U are both labelled by (⊥, 1).

Now, the lemma follows from the following claim.

Claim. Let T and U be trees such that there are T ′, U ′ ∈ TEnc and d ∈ dom(T ′) \ {ǫ},

e ∈ dom(U ′) \ {ǫ} such that T = (T ′)d and U = (U ′)e. If Dec(T, m) = Dec(U , m) and either

T (ǫ) = U(ǫ) = ǫ or T (ǫ) ∈ Σ× {1, 2} and U(ǫ) ∈ Σ× {1, 2}, then U = T .

The proof is by induction on the depth of the trees U and T . If dp(U) = dp(T) = 0,

Dec(U , m) and Dec(T, m) are uniquely determined by the label of their roots. A straight-

forward consequence of the definition of Dec is that U(ǫ) = T (ǫ) whence U = T .

Now, assume that the claim is true for all trees of depth at most k for some fixed k ∈ N.

Let U and T be trees of depth at most k+ 1.

We proceed by a case distinction on whether the left or right subtree of T and U are

defined. In fact, Dec(T, m) = Dec(U , m) implies that

1. (T)0 6= ; if and only if (U)0 6= ; and

2. (T)1 6= ; if and only if (U)1 6= ;.

We first prove that Dec(T, m) = Dec(U , m) implies U = T in the cases satisfying these

conditions. Afterwards, we show that all possible combinations that do not satisfy this

condition imply Dec(T, m) 6= Dec(U , m).

1. Assume that (U)0 = (U)1 = (T)0 = (T)1 = ;. Then dp(T) = dp(U) = 0. For trees of

depth 0 we have already shown that Dec(U , 0) = Dec(T, 0) implies U = T .

2. Assume that (U)0 = ;, (U)1 6= ;, (T)0 = ; and (T)1 6= ;. In this case

Dec(U , m) = fm(U(ǫ)) \ (ǫ : Dec((U)1, m+ 1)) and

Dec(T, m) = fm(T (ǫ)) \ (ǫ : Dec((T)1, m+ 1)).

Since U(ǫ) = ǫ if and only if T (ǫ) = ǫ, we can directly conclude that U(ǫ) = T (ǫ). But

then Dec(T, m) = Dec(U , m) implies that Dec((T)1, m+ 1) = Dec((U)1, m+ 1). Since

dp((T)1) ≤ k and dp((U)1) ≤ k, the induction hypothesis implies that (T)1 = (U)1.

We conclude that T = U .

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 101

3. Assume that (U)0 6= ;, (U)1 = ;, (T)0 6= ;, and (T)1 = ;. In this case,

Dec(U , m) = fm(U(ǫ)) \ Dec((U)0, m) and

Dec(T, m) = fm(T (ǫ)) \ Dec((T)0, m).

Since U(ǫ) = ǫ if and only if T (ǫ) = ǫ, we conclude that U(ǫ) = T (ǫ) and

Dec((U)0, m) = Dec((T)0, m). Since the depths of (U)0 and of (T)0 are at most k,

the induction hypothesis implies (U)0 = (T)0 whence U = T .

4. Assume that (U)0 6= ;, (U)1 6= ;, (T)0 6= ;, and (T)1 6= ;. Then we have

Dec(U , m) = fm(U(ǫ)) \
�

Dec((U)0, m) : Dec((U)1, m+m′)
�

and

Dec(T, m) = f n
m
(T (ǫ)) \
�

Dec((T)0, m) : Dec((T)1, m+m′′)
�

for some natural numbers m′, m′′ > 0.

Since U(ǫ) = ǫ if and only if T (ǫ) = ǫ this implies that the roots of U and T coincide.

Hence,

Dec((U)0, m) : Dec((U)1, m+m′) = Dec((T)0, m) : Dec((T)1, m+m′′)

If Dec((U)0, m) = Dec((T)0, m), then the induction hypothesis yields (U)0 = (T)0.

Furthermore, this implies Dec((U)1, m + m′) = Dec((T)1, m + m′′) and m′ = m′′

whence by induction hypothesis (U)1 = (T)1. In this case we conclude immedi-

ately that T = U .

The other case is that the width of Dec((U)0, m) and the width of Dec((T)0, m) do

not coincide.

We prove that this case contradicts the assumption that Dec(U , m) = Dec(T, m).

Let us assume that Dec((U)0, m) = popz
2

�

Dec((T)0, m)
�

for some z ∈ N \ {0}. Note

that this implies that the first word of Dec((U)1, m+m′) is a word in Dec((T)0, m).

Since U(0) is a left successor in some tree from TEnc, it is labelled by some

(σ, l) ∈ Σ× {1, 2}. We make a case distinction on l.

a) Assume that U(0) = (σ, 2) for some σ ∈ Σ. Then all words in Dec((T)0, m) start

with the letter (σ, 2, m). Thus, the first word of Dec((U)1, m+m′)must also start

with (σ, 2, m). But all collapse links of level 2 in Dec((U)1, m+m′) are at least

m+m′ > m. This is a contradiction.

b) Otherwise, U(1) = (σ, 1) for some σ ∈ Σ. Thus, all words in Dec((T)0, m)

start with the letter σ. Thus, the first word of Dec((U)0, m) and the first

word of Dec((U)1, m + m′) have to start with σ. But this requires that

U(0) = U(10) = (σ, 1). This contradicts the assumption that U is a proper sub-

tree of a tree from TEnc (cf. condition 5 of Definition 3.1.8).

Both cases result in contradictions. Thus, it is not the fact that there is some z ∈ N\{0}
such that

Dec((U)0, m) = popz
2

�

Dec((T)0, m)
�

By symmetry, we obtain that there is no z ∈ N \ {0} such that

Dec((T)0, m) = popz
2

�

Dec((U)0, m)
�

.

Thus, we conclude that Dec((T)0, m) = Dec((U)0, m) whence U = T as shown above.

102 3. Main Results

If Dec(T, m) = Dec(U , m), one of the previous cases applies: the following case distinc-

tion shows that all other cases for the defined or undefined subtrees of T and U imply

Dec(T, m) 6= Dec(U , m).

1. Assume that (U)0 = (U)1 = (T)0 = ; and (T)1 6= ;. In this case, Dec(U , m) is [ǫ] or

[τ] for some τ ∈ Σ∪ (Σ× {2} ×N). Furthermore,

Dec(T, m) = fm(T (ǫ)) \ (ǫ : Dec((T)1, m+ 1)).

It follows that |Dec(T, m)| ≥ 2> |Dec(U , m)|= 1 whence Dec(T, m) 6= Dec(U , m).

2. Assume that (U)0 = (U)1 = ;, (T)0 6= ;, and (T)1 = ;. In this case, Dec(U , m) is

again [ǫ] or [τ] for some τ ∈ Σ∪(Σ×{2}×N). Since we assumed that U(ǫ) = T (ǫ),

Dec(T, m) = fm(T (ǫ)) \ fm(T (0)) \ s

for some 2-word s. Since T is a subtree of a tree in TEnc, T (0) ∈ Σ × {1, 2}.

Thus, fm(T (0)) ∈ Σ ∪ (Σ × {1, 2} × N). We conclude that the length of the first

word of Dec(T, m) is greater than the length of the first word of Dec(U , m). Thus,

Dec(T, m) 6= Dec(U , m).

3. Assume that (U)0 = (U)1 = ;, (T)0 6= ;, and (T)1 6= ;. Completely analo-

gous to case 1, we conclude that |Dec(T, m)| ≥ 2 > |Dec(U , m)| = 1 whence

Dec(T, m) 6= Dec(U , m).

4. Assume that (U)0 = ;, (U)1 6= ;, and (T)0 = (T)1 = ;. Exchanging the roles of U and

T , this is exactly the same as case 1.

5. Assume that (U)0 = ;, (U)1 6= ;, (T)0 6= ;, and (T)1 = ;. Analogously to case 2, we

derive that the length of the first word of Dec(T, m) is greater than the length of the

first word of Dec(U , m). Thus, Dec(T, m) 6= Dec(U , m).

6. Assume that (U)0 = ;, (U)1 6= ;, (T)0 6= ;, and (T)1 6= ;. Analogously to case 2, we

derive that the length of the first word of Dec(T, m) is greater than the length of the

first word of Dec(U , m). Thus, Dec(T, m) 6= Dec(U , m).

7. Assume that (U)0 6= ;, and (U)1 = (T)0 = (T)1 = ;. Exchanging the roles of U and

T , this is exactly the case 2.

8. Assume that (U)0 6= ;, (U)1 = (T)0 = ;, and (T)1 6= ;. Exchanging the roles of U and

T , this is exactly the case 5.

9. Assume that (U)0 6= ;, (U)1 = ;, (T)0 6= ;, and (T)1 6= ;. In this case,

Dec(U , m) = fm(U(ǫ)) \ Dec((U)0, m)

and Dec(T, m) = fm(T) \
�

Dec((T)0, m) : Dec((T)1, m+m′)
�

for some m′ ∈ N \ {0}. Since U(ǫ) = ǫ if and only if T (ǫ) = ǫ, we conclude that

U(ǫ) = T (ǫ). Now,

Dec((U)0, m) = τ \ u′

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 103

for τ= fm(U(0)) ∈ Σ∪ (Σ×{2}×{m}) and u′ some level 2-word. We distinguish the

following cases.

First assume that τ = (σ, 2, m). For all letters in T ′ := Dec((T)1, m+m′) of collapse

level 2, the collapse link is greater or equal to m+m′. Hence, T ′ does not contain a

symbol (σ, 2, m) whence Dec(U , m) 6= Dec(T, m).

Otherwise, τ ∈ Σ. But then Dec(U , m) = Dec(T, m) would imply that

Dec((T)0, m) = τ \ T ′

and Dec((T)10, m+m′) = τ \ T ′′

for certain nonempty level 2-words T ′ and T ′′. But then T (0) = T (10) = (τ, 1) which

contradicts the fact that T is a subtree of some tree from TEnc.

Thus, we conclude that Dec(T, m) 6= Dec(U , m).

10. Assume that (U)0 6= ;, (U)1 6= ;, and (T)0 = (T)1 = ;. Exchanging the roles of U and

T , this is the same as case 3.

11. Assume that (U)0 6= ;, (U)1 6= ;, (T)0 = ;, and (T)1 6= ;. Exchanging the roles of U

and T , this is the same as case 6.

12. Assume that (U)0 6= ;, (U)1 6= ;, (T)0 6= ;, and (T)1 = ;. Exchanging the roles of U

and T , this is the same as case 9.

Hence, we have seen that Dec(T, m) = Dec(U , m) implies that each of the subtrees of T

is defined if and only if the corresponding subtree of U is defined. Under this condition,

we concluded that U = T . Thus, the claim holds and the lemma follows as indicated

above.

Next, we prove that Dec is a surjective map from TEnc to Q × Stacks2(Σ). This is done

by induction on the blocklines used to encode a stack. In this proof we use the notion of

left-maximal blocks and good blocklines. Let

s :
�

w \ (w′ : b)
�

: s′

be a stack where s and s′ are 2-words, w, and w′ are words, and b is a τ-block. We call b

left maximal in this stack if either b = [τ] or b = ττ′ \ b′ such that w′ does not start with

ττ′ for some τ′ ∈ Σ∪(Σ×{2}×N). We call a blockline in some stack good, if its first block

is left maximal. Furthermore, we call the blockline starting with the block b left maximal

if w′ does not start with τ. Recall that the encoding of stacks works on left maximal blocks

and good blocklines.

Lemma 3.1.14. Dec ◦ Enc is the identity on Q × Stacks2(Σ), i.e., Dec(Enc(c)) = c, for all

c ∈Q× Stacks2(Σ).

Corollary 3.1.15. Dec : TEnc→Q× Stacks2(Σ) is surjective.

Proof of Lemma. Let c = (q, s) be a configuration. Since Dec and Enc encode and decode

the state of c in the root of Enc(c), it suffices to show that

Dec(Enc(s, (⊥, 1)), 0) = s

for all stacks s ∈ Stacks2(Σ). We proceed by induction on blocklines of the stack s. For this

purpose we reformulate the lemma in the following claim.

104 3. Main Results

Claim. Let s′ be some stack which decomposes as s′ = s′′ : (w \ b) : s′′′ such that

b ∈ (Σ∪ (Σ× {2} ×N))+2 is a good τ-blockline for some τ ∈ Σ∪ (Σ× {2} ×N). Then

1. Dec(Enc(b,ǫ), |s′′|) = b′ for the unique 2-word b′ such that b = τ \ b′ and

2. if b is left maximal, then Dec(Enc(b, (σ, l)), |s′′|) = b where σ = Sym(τ) and

l = CLvl(τ).

Note that the conditions in the second part require that either τ ∈ Σ or τ = (σ, 2, |s′′|) for

some σ ∈ Σ.

The lemma follows from the second part of the claim because every stack is a left maxi-

mal ⊥-blockline.

We prove both claims by parallel induction on the size of b. As abbreviation we set

g := |s′′|. We write
(1)
=(
(2)
= , respectively) when some equality is due to the induction hy-

pothesis of the first claim (the second claim , respectively). The arguments for the first

claim are as follows.

• If b = [τ] for τ ∈ Σ ∪ (Σ × {2} × N), the claim is trivially true because

Dec(Enc(b,ǫ), g) = Dec(ǫ, g) = ǫ.

• If there are b1, b′
1
∈ (Σ∪ (Σ× {2} ×N))∗2 such that

b = [τ] : b1 = [τ] :
�

τ \ b′
1

�

then

Dec(Enc(b,ǫ), g) = Dec(ǫ→ Enc(b1,ǫ), g)

= fg(ǫ) \
�

ǫ : Dec(Enc(b1,ǫ), g + 1)
�

(1)
=ǫ \ (ǫ : b′

1
) = ǫ : b′

1
= b′.

• Assume that there is some τ′ ∈ Σ∪ (Σ×{2}×N) and some b1 ∈ (Σ∪ (Σ×{2}×N))
∗2

such that

b = ττ′ \ b1.

The assumption that b is good implies that the blockline τ′ \ b1 is left maximal

whence

Dec(Enc(b,ǫ), g) = Dec(Enc(τ′ \ b1, (Sym(τ′), CLvl(τ′)))← ǫ, g)

= fg(ǫ) \ Dec(Enc(τ′ \ b1, (Sym(τ′), CLvl(τ′)), g))

(2)
=τ′ \ b1 = b′.

• The last case is that

b = τ \
�

(τ′ \ b1) : b2

�

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 105

for b2 a blockline of s not starting with τ′. By this we mean that b2 6= τ
′w′ : b′

2
for

any word w′ and any 2-word b′
2
. Since b is good, τ′ \ b1 is a left maximal blockline.

Furthermore, τ \ b2 is a good blockline. Thus,

Dec(Enc(b,ǫ), g)

=Dec
�

Enc
�

τ′ \ b1, (Sym(τ′), CLvl(τ′))
�

← ǫ→ Enc(τ \ b2,ǫ), g
�

= fg(ǫ) \
�

Dec(Enc(τ′ \ b1, (Sym(τ′), CLvl(τ′))), g) : Dec(Enc(τ \ b2,ǫ), g + f)
�

,

where

f = |Dec(Enc(τ′ \ b1, (Sym(τ′), CLvl(τ′))), g)|
(2)
= |b1|.

From this, we obtain that

Dec(Enc(b,ǫ), g)

(1)
=ǫ \
�

(τ′ \ b1) : Dec(Enc(τ \ b2,ǫ), g + f)
�

(2)
=(τ′ \ b1) : b2 = b′.

For the proof of the second claim, note that the calculations are basically the same, but

fg(ǫ) is replaced by fg(σ, l). Thus, if l = 1 then fg(σ, l) = σ = τ. For the case l = 2,

recall that g = |s′′| whence fg(σ, l) = (σ, 2, |s′′|). Note that CLnk(τ) = |s′′| due to the left

maximality of b.

Thus, one proves the second case using the same calculations, but replacing ǫ by τ.

The previous lemmas provide a proof of Lemma 3.1.10: we have shown that Dec is

bijective and it is the inverse of Enc.

3.1.2 Recognising Reachable Configurations

In this section, we show that Enc maps the reachable configurations of a given collapsible

pushdown system to a regular set.

Fix a configuration c = (q, s). Recall that every run from the initial configuration to

some stack s has to pass each of the generalised milestones GMS(s) of s (cf. Section 2.4.1).

Especially, the set of milestones MS(s) ⊆ GMS(s) has a close connection to our encoding:

with every d ∈ Enc(c), we can associate a subtree of Enc(c) which encodes a milestone.

Via this correspondence, the substack relation on the milestones corresponds exactly to

the lexicographic order of the elements of Enc(c).

We show the regularity of the set of encodings of reachable configurations as follows.

Given the tree Enc(c), we annotate each node d ∈ Enc(c) with a state qd . This annotation

represents the claim that there is a run from the initial configuration to c that passes the

milestone associated with d in state qd . Then we show that an automaton can check the

correctness of such an annotation. Since this annotation can be generated nondeterminis-

tically by an automaton, it follows that the set of encodings of reachable configurations is

regular.

106 3. Main Results

The correspondence between nodes of Enc(s) and milestones of s is established via the

notion of the left stack induced by d ∈ dom(Enc(s)). This left stack is the decoding of

the subtree of Enc(s) which contains all nodes that are lexicographically smaller than d.

We show that these left stacks always form milestones and that each milestone can be

represented by such an element.

Definition 3.1.16. Let T ∈ TEnc be a tree and d ∈ T \ {ǫ}. Then the left and downward

closed tree of d is LT (d, T) := T↾D where D := {d ′ ∈ T : d ′ ≤lex d} \ {ǫ}. Then we denote by

LStck(d, T) := Dec(LT (d, T), 0) the left stack induced by d. If T is clear from the context,

we omit it.

Remark 3.1.17. We exclude the case d = ǫ from the definition because the root encodes

the state of the configuration and not a part of the stack. In the following, we are often

interested in the stack encoded in a tree, whence we will consider all nodes except for the

root of the encoding tree.

Recall that w := top2(LStck(d, s))↓0 is top2(LStck(d, s)) where all level 2 links are set to

0 (cf. Definition 2.4.24). Due to the definition of the encoding, for every d ∈ dom(Enc(s)),

w is determined by the path from the root to d: interpreting ǫ as empty word, the word

along this path contains the pairs of stack symbols and collapse levels of the letters of

top2(LStck(d, s)). Since all level 2 links in w are 0, w is determined by this path. Thus,

Proposition 2.4.47 implies that there is an automaton that calculates at each position d ∈

Enc(q, s) the number of possible loops of LStck(d, Enc(q, s)) with given initial and final

state.

Remark 3.1.18. LStck(d, Enc(q, s)) is a substack of s for all d ∈ dom(Enc(q, s)). This obser-

vation follows from Remark 3.1.7 combined with the fact that the left stack is induced by

a lexicographically downward closed subset.

Lemma 3.1.19. Let q ∈ Q and s ∈ Stacks2(Σ). For each d ∈ Enc(q, s) \ {ǫ} we

have LStck(d, Enc(q, s)) ∈ MS(s). Furthermore, for each s′ ∈ MS(s) there is some

d ∈ Enc(q, s) \ {ǫ} such that s′ = LStck(d, Enc(q, s)).

Proof. For the first claim, let d ∈ dom(Enc(q, s)) \ {ǫ}. We already know that

sd := LStck(d, Enc(q, s)) is a substack of s.

Recall that the path from the root to sd encodes top2(sd). Furthermore, by definition of

Enc, d corresponds to some maximal block b occurring in s in the following sense: there

are 2-words s1, s2 and a word w such that s = s1 : (w \ b) : s2 and such that the subtree

rooted at d encodes b. Moreover, d encodes the first letter of b, i.e., if b is a τ-block, then

the path from the root to d encodes wτ.

Note that by maximality of b, the greatest common prefix of the last word of s1 and the

first word of w \ b is a prefix of wτ.

Since the elements that are lexicographically smaller than d encode the blocks to the left

of b, one sees that sd = s1 : wτ. Setting k := |sd |, we conclude that sd is a substack of s

such that the greatest common prefix of the (k− 1)-st and the k-th word of s is a prefix of

top2(sd).

Recall that this is exactly a characterisation of a milestone of s. Thus, sd is a milestone

of s and we completed the proof of the first claim.

Now, we turn to the second claim. The fact that every milestone s′ ∈ MS(s) is indeed

represented by some node of Enc(q, s) can be seen by induction on the block structure of

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 107

s′. Assume that s′ ∈ MS(s) and that s′ decomposes as s′ = b0 : b1 : · · · : bm−1 : b′
m

into

maximal blocks. We claim that s then decomposes as s = b0 : b1 : · · · : bm−1 : bm : · · · : bn

into maximal blocks. In order to verify this claim, we have to prove that bm−1 cannot be

the initial segment of a larger block bm−1 : bm in s. Note that if b′
m

only contains one

letter, then by definition of a milestone the last word of bm−1 and the first word occurring

in s after bm−1, which is the first word of bm, can only have a common prefix of length at

most 1. Hence, their composition does not form a block. Otherwise, the first word of b′
m

contains two letters which do not coincide with the first two letters of the words in bm−1.

Since this word is by definition a prefix of the first word in bm, we can conclude again that

bm−1 : bm does not form a block.

Note that all words in the blocks bi for 1≤ i ≤ n and in the block b′
m

share the same first

letter which is encoded at the position 0 in Enc(q, s) and in Enc(q, s′). By the definition of

Enc(q, s) the blockline induced by bi is encoded in the subtree rooted at 01i0 in Enc(q, s).

For i < m the same holds in Enc(q, s′). We set d := 01m. Note that Enc(q, s′) and Enc(q, s)

coincide on all elements that are lexicographically smaller than d (because these elements

encode the blocks b1 : b2 : . . . bm−1.

Now, we distinguish the following cases.

1. Assume that b′
m
= [τ] for τ ∈ Σ∪ (Σ× {2} ×N). Then the block b′

m
consists of only

one letter. In this case d is the lexicographically largest element of Enc(q, s′) whence

s′ = LStck(d, Enc(q, s′)) = LStck(d, Enc(q, s)).

2. Otherwise, there is a τ ∈ Σ∪ (Σ× {2} ×N) such that

bm = τ \ (c0 : c1 : · · · : cm′ : · · · : cn′) and

b′
m
= τ \ (c0 : c1 : · · · : cm′−1 : c′

m′
)

for some m′ ≤ n′ such that c0 : c1 : · · · : cn′ are the maximal blocks of the blockline

induced by bm and c0 : c1 : . . . cm′−1 : c′
m′

are the maximal blocks of the blockline in-

duced by b′
m

. Now, c1 : c2 : · · · : cm′−1 are encoded in the subtrees rooted at d01i0 for

0≤ i ≤ m′−1 in Enc(q, s) as well as in Enc(q, s′). cm′+1 : cm′+2 : · · · : cn′ is encoded in

the subtree rooted at d01m′+1 in Enc(q, s) and these elements are all lexicographically

larger than d01m′0. Hence, we can set d ′ := d01m′ and repeat this case distinction

on d ′, c′
m′

and cm′ instead of d, b′
m

and bm.

Since s′ is finite, by repeated application of the case distinction, we will eventually end up

in the first case where we find a d ∈ Enc(q, s) such that s′ = LStck(d, Enc(q, s)).

The next lemma states the tight connection between milestones of a stack (with substack

relation) and elements in the encoding of this stack (with lexicographic order).

Lemma 3.1.20. The map

g : dom(Enc(q, s)) \ {ǫ} →MS(s)

d 7→ LStck(d, s)

is an order isomorphism between
�

dom(Enc(q, s)) \ {ǫ},≤lex

�

and
�

MS(s),≤
�

.

108 3. Main Results

Proof. If the successor of d in lexicographic order is d0, then the left stack of the latter

extends the former by just one letter. Otherwise, the left and downward closed tree of the

successor of d contains more elements ending in 1, whence it encodes a stack of larger

width. Since each left and downward closed tree induces a milestone, it follows that g is

an order isomorphism.

Recall that by Lemma 2.4.10, each run to a configuration (q, s) visits the milestones of s

in the order given by the substack relation. With the previous lemma, this translates into

the fact that the left stacks induced by the elements of Enc(q, s) are visited by the run in

lexicographical order of the elements of Enc(q, s).

This gives rise to the following algorithm for identifying reachable configurations of a

collapsible pushdown system S : we label each node d of the encoding with a state qd . Let

sd be the left stack induced by each d. Fix a d and let d ′ be the lexicographical successor

of d. Then we check whether there is a run from (qd , sd) to (qd′ , sd′).

In the next section we show that this check depends only on the local structure of the

encoding of a configuration. Hence, an automaton can do this check.

Detection of Reachable Configurations

We have already seen that every run to a valid configuration (q, s) passes all the mile-

stones of s. Now, we use the last states in which a run ρ to (q, s) visits the milestones as a

certificate for the reachability of (q, s).

Definition 3.1.21. Let (q, s) be some configuration and ρ a run from the initial config-

uration to (q, s). The certificate for the reachability of (q, s) induced by ρ is the map

Cρ : dom(Enc(q, s)) \ {ǫ} →Q such that d 7→ q̂ if and only if ρ(i) = (q̂, LStck(d)) and i

is the maximal position in ρ where LStck(d, Enc(q, s)) is visited.

Remark 3.1.22. In the following, we identify a function f : dom(Enc(q, s)) \ {ǫ} → Q with

the Q ∪ {2}-labelled tree f̂ : dom(Enc(q, s))→Q ∪ {2} where f̂ (d) =

(

2 if d = ǫ,

f (d) otherwise.

In the following, we analyse the existence of certificates for reachability. The existence

of certain loops plays an important role in this analysis. Thus, we first fix some notation

concerning the existence of returns and loops. Recall that we defined the functions #Retk,

#Loopk, etc. (cf. Definitions 2.4.15 and 2.4.46) that count up to threshold k the number

of returns and loops starting in a given configuration. Recall that there is a loop from (q, s)

to (q′, s) if and only if #Loopk(s)(q, q′)≥ 1 for all k ≥ 1.

Definition 3.1.23. We set

∃Loops(s) := {(q, q′) ∈Q×Q : #Loop1(s)(q, q′) = 1}.

∃Loops(s) contains those pairs of states q, q′ such that there exists at least one loop from

(q, s) to (q′, s). Completely analogously, we set

∃HLoops(s) := {(q, q′) ∈Q×Q : #HLoop1(s)(q, q′) = 1},

∃LLoops(s) := {(q, q′) ∈Q×Q : #LLoop1(s)(q, q′) = 1} and

∃Returns(s) := {(q, q′) ∈Q×Q : #Ret1(s)(q, q′) = 1}.

These sets contain the pairs of initial and final states of low loops, high loops and returns

starting with stack s.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 109

Remark 3.1.24. Due to Remark 3.1.17 and due to Proposition 2.4.47, the function that

assigns

d 7→ ∃Loops(LStck(d, Enc(q, s)))

is calculated by some automaton for all configurations (q, s). Analogous, the function that

assigns

d 7→ ∃HLoops(LStck(d, Enc(q, s)))

is also calculated by some automaton.

Using this notation, we can prove the first important lemma concerning certificates for

reachability.

Lemma 3.1.25. For every CPG G, there is an automatonA that checks for each map

f : dom(Enc(q, s)) \ {ǫ} →Q

whether f is a certificate for the reachability of (q, s). This means thatA accepts Enc(q, s)⊗ f

if f = Cρ for some run ρ from the initial configuration to (q, s).

Proof. As before, we identify f with a Q∪{2}-labelled tree encoding f . Due to the previous

remark, it is sufficient to prove that there is an automaton which accepts

Enc(q, s)⊗ f ⊗ TLp⊗ THLp

if and only if f = Cρ for some run ρ,

where TLp is a tree encoding the value of ∃Loops(LStck(d, Enc(q, s))) at each node

d ∈ dom(Enc(q, s)) and THLp is a tree encoding the value of ∃HLoops(LStck(d, Enc(q, s)).

We write T := Enc(q, s) as an abbreviation. We start with an informal description what we

have to check at some node d ∈ dom(T). According to Corollary 2.4.9, it is sufficient to

check the following facts.

1. Assume that d, d0 ∈ dom(t). We know that LStck(d, T) = pop1(LStck(d0, T)). By

definition, we know that f can only be a certificate for reachability if there is a

run ρ′ from
�

f (d), LStck(d, T)
�

to
�

f (d0), LStck(d0, T)
�

that starts with some push

operation followed by a high loop of LStck(d0, T). This requirement can be checked

by an automaton when it reads the labels t(d) and t(d0) as follows.

We assume that the automaton has stored the information about the topmost symbol

σ of LStck(d, T). When it reads t(d) it guesses nondeterministically a pair (q′, (σ′, i))

for q′ ∈Q, σ′ ∈ Σ and i ∈ {1, 2} such that there is a pushσ′,i transition from state f (d)

and topmost symbol σ going to state q′. Reading the label t(d0) it checks whether

Enc(q, s)(d0) = (σ′, i) and whether
�

q′, f (d0)
�

∈ ∃Loops (LStck(d0, T)). If this is the

case then the automaton guessed the right push transition and there is a run from

(f (d), LStck(d, T)) to (f (d0), LStck(d0, T)).

110 3. Main Results

2. Consider the case where d ∈ dom(T) but d0 /∈ dom(T) and where d has a successor

d ′ in lexicographic order. This implies that the direct successor of LStck(d, T) in

MS(s) is of the form

s′ := popm
1
(clone2(LStck(d, T))).

In this case there is a maximal prefix d0 ≤ d and some d1 ∈ {0, 1}∗ such that d = d00d1

and d ′ = d01 ∈ dom(T). Due to Lemma 3.1.20, we know that s′ = LStck(d ′, T).

From our observations about milestones we know that we have to verify that there is

some run ρ′ := ρ0◦λ0◦ρ1◦λ1◦ρ2◦λ2 . . .ρm◦λm where λi is a loop for all 0≤ i ≤ m

and ρ0 is a run that performs one clone operation and for j > 0 the run ρ j performs

either one pop1 or one collapse of level 1 such that ρ′ starts in
�

f (d), LStck(d, T)
�

and ends in
�

f (d ′), LStck(d ′, T)
�

.

An automaton can verify this because the path from d0 to d encodes the topmost

stack symbols and collapse levels of popm′

1
(clone2(LStck(d, T))) for m′ ≤ m. Since

the existence of loops only depends on the topmost word, an automaton can check

the existence of ρ′ while processing the path from d to d0.

3. Finally, we have to consider the lexicographically minimal and maximal element in

the encoding of the stack. Let d be the rightmost leaf of T . Recall that LStck(d, T) = s.

f can only be a certificate for reachability for (q, s) if it labels d with the last state in

which s is visited. But if ρ is a run to (q, s) then this last state must be q. Thus, the

condition for the rightmost leaf d is that f (d) = q.

Recall that LStck(0, T) = [⊥]. Due to Corollary 2.4.9, the run starts with a loop from

the initial configuration to some configuration (q̂, [⊥]). Hence, we have to check

whether f (0) = q̂.

The lemma claims that there is an automaton A checking these conditions. Instead of

a concrete construction of A , we present an MSO formula χ that checks at each node

d ∈ dom(Enc(q, s)) the corresponding condition. Due to the correspondence between

MSO definability and automata recognisability, the automatonA can be constructed from

this formula using standard constructions.

1. For the first condition consider the formula

χ1 := ∀x∀y(¬Root(x)∧ y = x0)→






∨

(q1,σ,γ,q2,pushτ,i)∈∆

Sym(x) = σ ∧ Top(y) = (τ, i)∧ f (x) = q1 ∧ (q2, f (y)) ∈ HLp(y)






,

where

• Root(x) is the formula stating that x is the root of the tree, i.e., x has no prede-

cessor,

• Sym(x) = σ is an MSO formula stating that the maximal 1-ancestor z of x

satisfies Enc(q, s)(z) = (σ, i) for some i ∈ {1, 2},

• Top(y) = (τ, i) is a formula stating that Enc(q, s)(y) = (τ, i), and

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 111

• (q2, f (y)) ∈ HLp(y) asserts that THLp(q2, f (y)) = 1, i.e., it asserts that

(q2, f (y)) ∈ ∃HLoops(LStck(y, T)).

This formula asserts exactly the conditions of the first case at all nodes x that have a

left successor. Note that we exclude the root of the tree because it encodes the state

of the configuration and not a part of the stack.

2. For the second case, let ϕ(x , y, X) be an MSO formula that is valid if x does not have

a left successor, if y is the successor of x with respect to lexicographic ordering and

if X contains the path connecting the predecessor of y with x .

Assume that there is a triple (x , y, X) that satisfies ϕ on Enc(q, s). Then there are a

node z ∈ dom(Enc(q, s)), a number k ∈ N and numbers n1, n2, . . . , nk ∈ N such that

y = z1 and x = z01n101n2 . . . 01nk . Then X = {a : z ≤ a ≤ x}. For each node a ∈ X ,

there is some 0 ≤ l ≤ k and a number n′
l
≤ nl such that a = y01n101n2 . . . 01nl−101n′

l .

Since the path to a encodes the topmost word of the left stack induced by a, setting

ka := k− l we obtain that

top2(LStck(a, Enc(q, s))) = top2(pop
ka

1 (clone2(LStck(x , Enc(q, s))))).

Furthermore,

LStck(y, Enc(q, s)) = popk
1
(clone2(LStck(x , Enc(q, s)))).

We will use the following abbreviations:

sa := LStck(a, Enc(q, s)) and

ŝa := pop
ka

1 (clone2(LStck(x , Enc(q, s)))).

By definition, ∃Loops(sa) = ∃Loops(ŝa). We use a as the representative for ŝa.

We next define a formula χ2. χ2 asserts the existence of a function g : X →Q that

labels each node a ∈ X with a state qa such that there is a pop1 or collapse of level

1 followed by a loop which connects (qa, ŝa) with (qb, ŝb) for b ≤ a some node such

that kb = ka+1. Furthermore, the formula asserts that there is a run from
�

f (x), sx

�

to
�

g(x), ŝx

�

=
�

g(x), clone2(sx)
�

and it asserts that g(z) = f (y). Note that such a

labelling g is exactly a witness for a run ρ′ = ρ0 ◦λ0 ◦ρ1 ◦λ1 ◦ρ2 ◦λ2 . . .ρm ◦λm as

described above.

Let χ2 be the formula

∀x , y∀X
�

ϕ(x , y, X)→

∃g : X →Q







∨

(q1,σ,γ,q2,clone2)∈∆

�

Sym(x) = σ ∧ f (x) = q1 ∧ (q2, g(x)) ∈ Lp(x)
�

∧ψ(g, X)∧ ∃z(z1= y ∧ f (y) = g(z))
�

�

112 3. Main Results

where

ψ(g, X) := ∀v , z ∈ X
�

(z = v 1→ g(z) = g(v))∧
�

z = v 0→ (ψp ∨ψc)
��

,

ψp(v , z) :=
∨

(q1,σ,γ,q2,pop1)∈∆

�

Sym(z) = σ ∧ g(z) = q1 ∧ (q2, g(v)) ∈ Lps(v)
�

and

ψp(v , z) :=
∨

(q1,σ,γ,q2,collapse)∈∆

�

Top(z) = (σ, 1)∧ g(z) = q1 ∧ (q2, g(v)) ∈ Lps(v)
�

.

Note that the function g has finite range whence it may be encoded in a finite number

of set-variables. Thus, χ2 can be formalised in MSO.

3. Let χ3 be the formula asserting that

a) the rightmost leaf d of Enc(q, s) satisfies f (d) = q, and that

b) (q0, f (0)) ∈ ∃Loops([⊥]), i.e., if TLp(0)(q0, f (0)) = 1.

Now, Enc(q, s)⊗ f ⊗ TLp ⊗ THLp |= χ := χ1 ∧ χ2 ∧ χ3 if and only if f = Cρ for some run ρ

from the initial configuration to (q, s).

Since regular tree-languages are closed under projection, there is an automaton that

nondeterministically guesses the existence of a certificate for reachability for each encod-

ing of a reachable configuration.

Corollary 3.1.26. For every collapsible pushdown system S of level 2, there is an automaton

A that accepts a tree T if and only if T = Enc(q, s) for a reachable configuration (q, s) of S .

Proof. Note that T = Enc(q, s) for an arbitrary configuration if and only if T ∈ TEnc which is

a regular set. Furthermore, the set of encodings of reachable configurations forms a regular

subset of TEnc due to the previous lemma and due to the closure of regular languages under

projection.

3.1.3 Regularity of the Stack Operations

In the previous section, we have seen that the function Enc translates the reachable con-

figurations of a collapsible pushdown graph S (of level 2) into a regular tree language.

In order to prove that CPG(S) is automatic, we have to define automata recognising the

transition relations ⊢γ for every γ ∈ Γ. In fact, we will prove that for each transition

(q,σ,γ, q′, op) ∈Q×Σ× Γ×Q×OP the set

�

(Enc(q, s), Enc(q′, s′)) : Sym(s) = σ and op(s) = s′
	

is regular. In preparation of this proof, we analyse the relationship between the encodings

of the stack s and the stack s′ := pop2(s).

Lemma 3.1.27. Let c = (q, s) and c′ = (q′, s′) be configurations of a pushdown system S

such that s′ = pop2(s). There is a unique element t ∈ Enc(c′) such that t ∈ Enc(c) \ Enc(c′)

For D := {d ∈ dom(Enc(c)) : t1 6≤ d}, we have

dom(Enc(c)) \ dom(Enc(c′))⊆ t10∗

and Enc(c′) = Enc(c)↾D (see Figure 3.3).

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 113

(σ, l) ǫ . . . ǫ ǫ

(τ, k)

...

(σ′, l ′)

(σ, l) ǫ . . . ǫ

Figure 3.3.: pop2 operation in the tree-encoding.

Proof. The proof is by induction on the structure of Enc(s, (⊥, 1)) and Enc(s′, (⊥, 1)). In

fact, we prove the following stronger claim.

Claim. Let τ ∈ (Σ× {1, 2})∪ {ǫ}. Let t be the maximal element such that

• t is in the rightmost path of dom(Enc(s,τ)),

• t ∈ dom(Enc(s′,τ)) and

• t1 ∈ dom(Enc(s,τ)) \ dom(Enc(s′,τ)).

Set D := {d ∈ dom(Enc(s,τ)) : t1 6≤ d}. It holds that

dom(Enc(s,τ)) \ dom(Enc(s′,τ))⊆ t10∗

and Enc(s′,τ) = Enc(s,τ)↾D (see Figure 3.3).

Recall that for some stack consisting of just one word w1, its encoding Enc(w1,ǫ) is a path

with 0-edges only, i.e., dom(Enc(w1,ǫ))⊆ {0}∗.

Let s := w1 : w2 : · · · : wn : wn+1 and correspondingly s′ := w1 : w2 : · · · : wn. In the case

that |w1| ≥ 1, let τ1,τ2 ∈ Σ ∪ (Σ× {2} ×N) and w′
1

some word such that w1 = τ1τ2w′
1
.

We prove the lemma by induction on the size of s. We distinguish the following cases.

1. For all i ≤ n there are words w′
i

such that wi = τ1τ2w′
i
, but τ1τ2 6≤ wn+1. Then the

root in Enc(s′,τ) has only a left successor and Enc(s,τ) extends Enc(s′,τ) by a right

subtree of the root which is Enc(wn+1,ǫ). Due to our initial remark on the structure

of the encoding of a single word, the claim follows immediately.

2. For all i ≤ n+ 1, there are words w′
i

such that wi = τ1τ2w′
i
. In this case Enc(s,τ)

and Enc(s′,τ) coincide on their roots, these roots do not have right successors and

the subtrees induced by the left successor are

Enc
�

τ2 \ (w
′
1

: · · · : w′
n

: w′
n+1
),
�

Sym(τ2), CLvl(τ2)
�
�

and Enc
�

τ2 \ (w
′
1

: · · · : w′
n
),
�

Sym(τ2), CLvl(τ2)
�
�

.

Now, we apply again the same case distinction to the subtrees encoding these parts

of the stacks.

114 3. Main Results

...
ǫ

...

(σ, 2) ǫ . . . ǫ ǫ

...

Figure 3.4.: collapse operation of level 2 (if the collapse is of level 1 then it is identical to

the pop1 operation).

3. There is some j < n such that τ1τ2 ≤ wi for all i ≤ j and τ1τ2 6≤ wi for all i > j.

In this case the claim of the lemma reduces to the claim that the lemma holds for

t := w j+1 : w j+2 : · · · : wn : wn+1 and t ′ := w j+1 : w j+2 : · · · : wn. Since the left

subtrees of the encodings of s and s′ agree and their right subtrees encode t and t ′,

respectively, we can apply again this case distinction to t and t ′.

4. The last case is that |w1|= 1. If n> 1, the claim reduces to the claim that the lemma

holds for t := w2 : w3 : · · · : wn : wn+1 and t ′ := w2 : w3 : · · · : wn because w1

is encoded in the root of Enc(s,τ) and Enc(s′,τ) and the right subtree of the trees

encode t and t ′, respectively.

If n = 1, this leads to the fact that Enc(s′,σ) is only a tree of one element and

Enc(s,σ) extends this root by a right subtree, namely Enc(wn+1,ǫ). In this case the

lemma holds due to our initial remark.

In each iteration of the case distinction, the stacks get smaller. Thus, we eventually reach

the first case or the last case with condition n = 1. This observation completes the proof

of the lemma.

Analogously to the case of pop2, one proves a similar result for the collapse operation:

Lemma 3.1.28. Let s, s′ be stacks of a pushdown system S such that CLvl(s) = 2 and

s′ := collapse(s). Let t ′ be the maximal element in the rightmost path of Enc(s, (⊥, 1))

which is labelled by some (σ, 2) for σ ∈ Σ. Furthermore, let t be the maximal ancestor of t ′

such that t1≤ t ′. For D := {d ∈ dom(Enc(s, (⊥, 1))) : t1 6≤ d}, it holds that

Enc(s′, (⊥, 1)) = Enc(s, (⊥, 1))↾D (see Figure 3.4).

Proof. Note that the rightmost leaf of Enc(s, (⊥, 1)) is of the form t ′1n for some n ∈ N.

Hence, the topmost element of s is a clone of the element encoded at t ′. Thus,

collapse(s) = pop2(LStck(t ′, Enc(s, (⊥, 1)))).

Using the previous lemma, the claim follows immediately.

With these auxiliary lemmas we can now prove that Enc turns the relations of collapsible

pushdown graphs into automatic relations.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 115

ǫ ǫ ǫ

(σ, l) (σ, l) ǫ

Figure 3.5.: The two versions of clone2 operations.

Lemma 3.1.29. Let S = (Q,Σ,Γ,∆, q0) be a collapsible pushdown system. For each δ ∈∆,

there is an automatonAδ such that for all configurations c1 and c2

Aδ accepts Enc(c1)⊗ Enc(c2) iff c1 ⊢
γ c2.

Proof. Consider a transition δ := (q,σ,γ, q′, op). We show that there is an automaton that

accepts Enc(c1) ⊗ Enc(c2) if and only if δ induces a transition from c1 to c2. Thus, we

have to define an automaton that accepts Enc(c1) ⊗ Enc(c2) if and only if the following

conditions are satisfied.

1. c1 = (q, s1) for some stack s1,

2. c2 = (q
′, s2) for some stack s2,

3. Sym(c1) = σ, and

4. op(s1) = s2.

The states of c1 and c2 may be checked directly at the root of Enc(c1)⊗ Enc(c2). Sym(c1)

is encoded in the last node of the rightmost path in Enc(c1) that is not labelled ǫ. Hence,

the remaining problem is to construct an automaton for each stack operation op which

recognises Enc(s1, (⊥, 1))⊗ Enc(s2, (⊥, 1)) if and only if s2 = op(s1).

We proceed by a case distinction on the stack operation.

• If s2 = pushσ,2(s1) or s2 = clone2(s1), then Enc(s1, (⊥, 1)) and Enc(s2, (⊥, 1)) differ

only in one node, which is the rightmost leaf of Enc(s2, (⊥, 1)) (cf. Figures 3.5 and

3.7). This can easily be checked by an automaton.

• If s2 = pushσ,1(s1), we have to distinguish two cases. In most cases, this operation

behaves analogous to pushσ,2 and Enc(s2, (⊥, 1)) is the extension of Enc(s1, (⊥, 1))

by a left successor of the rightmost leaf of Enc(s1, (⊥, 1)). This new node is labelled

(σ, 1).

116 3. Main Results

But there is one case that is different, namely, when s1 decomposes as

s1 = s′
1

:
�

w \
�

σw1 : σw2 : · · · : σwn : ǫ
��

.

This case is depicted in Figure 3.6. In this case,

top1(w)σw1 : top1(w)σw2 : · · · : top1(w)σwn

forms a block b of the stack s1. top1(w) \ ǫ forms another block which is encoded in

the rightmost leaf of Enc(s1, (⊥, 1)). Now,

s2 = s′
1

: (w \ σw1 : σw2 : · · · : σwn : σ)

i.e., in Enc(s2, (⊥, 1)) the whole block top1(w) \ σw1 : σw2 : · · · : σwn : σ is encoded

in a single subtree. This subtree extends the subtree encoding the block b by exactly

one ǫ-labelled node as depicted in Figure 3.6. Thus, s2 = pushσ,1(s1) if the following

conditions are satisfied:

1. there is a node d1 ∈ Enc(s1, (⊥, 1))⊗Enc(s2, (⊥, 1)) such that d1 is the rightmost

leaf of Enc(s1, (⊥, 1)),

2. d1 /∈ Enc(s2, (⊥, 1)),

3. Enc(s2, (⊥, 1)) extends Enc(s1, (⊥, 1)) by one node of the form d01m,

4. d0 is labelled by (σ, 1) in Enc(s1, (⊥, 1)) and Enc(s2, (⊥, 1)), and

5. the two trees coincide on all nodes but d1 and d01m.

These conditions are clearly MSO-definable whence there is an automaton recognis-

ing these pairs of trees.

Note that the case distinction is also MSO-definable. For d1 the rightmost leaf

of Enc(s1, (⊥, 1)), the second case applies if and only if d0 has label (σ, 1) in

Enc(s1, (⊥, 1)). Again, the correspondence between MSO and automata yields an

automaton that accepts Enc(s1, (⊥, 1))⊗Enc(s2, (⊥, 1)) if and only if s2 = pushσ,1(s1).

• Consider s2 = pop1(s1). Since pop1 is a kind of inverse of pushσ,i, we make a similar

case distinction as in that case.

The different possibilities are depicted in the Figures 3.8 and 3.9. Note the similarity

of Figure 3.8 and of Figure 3.6, as well as the similarity of Figure 3.9 and Figure 3.7.

Both cases can be distinguished by an automaton. Enc(s1, (⊥, 1)) and Enc(s2, (⊥, 1))

are as in Figure 3.8 if and only if the rightmost leaf of Enc(s1, (⊥, 1)) is a right suc-

cessor.

Analogously to the push case, we conclude that there is an automaton that recognises

Enc(s1, (⊥, 1))⊗ Enc(s2, (⊥, 1)) if and only if s2 = pop1(s1).

• For the case of pop2, recall Lemma 3.1.27 and Figure 3.3. An automaton recognising

the pop2 operation only has to guess the set D from Lemma 3.1.27 and check whether

the second tree is the restriction of the first tree to D. Note that the last element

of D along the rightmost path may be guessed nondeterministically and then the

automaton may check that its guess was right.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 117

(σ, 1) ǫ . . . ǫ

ǫ

(σ, 1) ǫ . . . ǫ ǫ

Figure 3.6.: pushσ,1 operation with top2(pushσ,1(s1))≤ top2(pop2(s1)).

(σ′, l ′)

ǫ

(σ′, l ′)

ǫ

(σ, l)

(σ′, l ′) (σ′, l ′)

(σ, l)

Figure 3.7.: The two versions of pushσ,l operation otherwise.

• For the case of collapse, we have a case distinction due to the collapse level of the

stack s1. Either CLvl(s1) = 1 or CLvl(s2) = 2. If it is 1, the collapse operation on s1 is

equivalent to a pop1 operation. Otherwise, the collapse level of s1 is 2. This case can

be treated as in the case of a pop2, but using Lemma 3.1.28 instead of Lemma 3.1.27.

Since the case distinction only depends on the collapse level stored in the label of

the maximal node in the rightmost path of Enc(s1, (⊥, 1)) which is not labelled ǫ, an

automaton may nondeterministically guess which case applies and verify its guess

during the run on Enc(s1, (⊥, 1))⊗ Enc(s2, (⊥, 1)).

(σ, l) ǫ . . . ǫ ǫ (σ, l) ǫ . . . ǫ

ǫ

Figure 3.8.: pop1 operation on a cloned element.

118 3. Main Results

(σ, l)

Figure 3.9.: pop1 operation otherwise.

We have seen that for each collapsible pushdown system the class of encodings of valid

configurations of this system is a set of regular trees. Furthermore, all operations of a

collapsible pushdown system are automata-recognisable in this encoding. Putting these

facts together we obtain the following theorem.

Theorem 3.1.30. Given a collapsible pushdown system S of level 2, one can effectively com-

pute an automatic presentation of the collapsible pushdown graph generated by S .

A direct corollary of this theorem is the decidability of the first-order model checking on

collapsible pushdown graphs (cf. Theorem 3.0.4).

Corollary 3.1.31. The FO(∃∞,∃mod, (Ramn)n∈N)-theory of every level 2 collapsible pushdown

graph is decidable.

3.1.4 Tree-Automaticity of Regular Reachability Predicates

In this section we show that regular reachability predicates are also automatic via Enc.

In the first part, we expand a collapsible pushdown graph CPG(S) by the binary relation

REACH (cf. Definition 2.1.12) and prove that this predicate is automatic in our encoding.

In the second part, we use the closure of collapsible pushdown systems under products

with automata in order to provide the automaticity of all regular reachability predicates.

In order to show the regularity of the reachability predicate, we start with an observa-

tion about the general form of a run between two configurations. Let c1 = (q1, s1) and

c2 = (q2, s2). For every run ρ from c1 to c2 there are configurations (q3, s3), (q4, s4), (q5, s5),

positions i3 ≤ i4 ≤ i5 ∈ dom(ρ), and numbers m2, m3, m5 ∈ N such that the following

holds:

1. ρ(i3) = (q3, s3) and s3 = pop
m2
2 (s1),

2. ρ(i4) = (q4, s4), s4 = pop
m3
1 (s3) and s4 is a common substack of s1 and s2,

3. ρ(i5) = (q5, s5), s4 = pop
n5
1 (s5) and s5 = pop

m5
2 (s2), and

4. ρ does not visit any proper substack of s4.

For any run ρ, s4 is found as follows: it is the minimal substack of s1 that is visited by ρ.

i4 is then an arbitrary position in ρ that visits s4. The existence of i5 follows directly from

the fact that s5 is a milestone of s2 and the fact that ρ visits s4, which is a substack of s5.

The existence of i3 is clear from the fact that the run ρ has to reach a stack of width |s4| at

first, before it can change the |s4|-th word of the stack, i.e., before it can reach s3.

We use this decomposition for proving the regularity of REACH as follows.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 119

Definition 3.1.32. Given a collapsible pushdown system S , we define the following four

relations on the configurations of S :

1. Let A ⊆ CPG(S)× CPG(S) be the relation containing those pairs of configurations

(c1, c2) with c1 = (q1, s1) and c2 = (q2, s2) such that

a) s2 = popm
2
(s1),

b) there is a run ρ from c1 to c2 and

c) ρ does not visit a proper substack of s2.

2. Let B ⊆ CPG(S)× CPG(S) be the relation containing those pairs of configurations

(c1, c2) with c1 = (q1, s1) and c2 = (q2, s2) such that

a) s2 = popm
1
(s1),

b) there is a run ρ from c1 to c2 and

c) ρ does not visit a proper substack of s2.

3. Let C ⊆ CPG(S)× CPG(S) be the relation containing those pairs of configurations

(c1, c2) with c1 = (q1, s1) and c2 = (q2, s2) such that

a) s1 = popm
1
(s2),

b) there is a run ρ from c1 to c2 and

c) ρ does not visit a proper substack of s1.

4. Let D ⊆ CPG(S)× CPG(S) be the relation containing those pairs of configurations

(c1, c2) with c1 = (q1, s1) and c2 = (q2, s2) such that

a) s1 = popm
2
(s2) ,

b) there is a run ρ from c1 to c2 and

c) ρ does not visit a substack of s1 after its initial configuration.

Remark 3.1.33. Since we allow runs of length 0, the relations A, B, C and D are reflexive,

i.e., for all configurations c, (c, c) ∈ A, (c, c) ∈ B, (c, c) ∈ C and (c, c) ∈ D.

The relation REACH can be expressed via A, B, C and D in the sense that for arbitrary

configurations c1, c2, (c1, c2) ∈ REACH holds if and only if there are configurations x , y, z

such that (c1, x) ∈ A, (x , y) ∈ B, (y, z) ∈ C and (z, c2) ∈ D. Since projections of regular sets

are regular, REACH is an automatic relation via the encoding Enc if the relations A, B, C

and D are automatic via Enc. Proving the regularity of these relations is our next goal. We

first prove the regularity of A. This proof requires an analysis of runs from some stack s to

some stack popn
2
(s) for every n ∈ N. We obtain a characterisation of these runs that can be

checked by an automaton.

Regularity of the Relation A

At a first glance one might think that a run from some stack s to a stack popn
2
(s) only

consists of a sequence of returns. But this is only true if we do not use the collapse

operation. A collapsible pushdown system may start by writing a lot of information with

clone2 and pushσ,l operations onto the stack, then use a couple of pop1 operations to come

to an element with a small collapse link and finally use the collapse to jump to a very small

120 3. Main Results

substack of s without using any other substack of s in between. Such a run does not contain

any returns at all.

In order to cope with such runs, we introduce the notion of a level-1-loop. A level-

1-loop is a kind of loop of the topmost word which increases the number of words on

the level 2 stack. We prove that the pairs of initial and final states of these new loops

are computable in a similar way as for ordinary loops. Furthermore, we show that every

run from s to popn
2
(s) decomposes mainly into parts that are basically returns, loops or

1-loops. These parts are connected by application of either a pop1 or a collapse operation.

First, we introduce 1-loops. Then we show the decomposition result we mentioned above.

Finally, we use this decomposition for showing the regularity of the relation A. For this

purpose, we introduce certificates for substack reachability. We consider a certificate as

the abstract representation of the decomposition of some (potentially existing) run. The

certificate consists of the final state of each part of the decomposition of this run. Using

these certificates, we reduce the problem whether a run exists to the problem whether the

subruns that form the parts of the decomposition exist. This is a much simpler problem

because each of these subruns can only have a very special form. Finally, we show that an

automaton can check the existence of these subruns while processing the certificate and

the trees encoding the initial and final configuration of the run.

Definition 3.1.34. Let s be some stack and w some word. A run λ of length n is called a

level-1-loop (or 1-loop) of s : w if the following conditions are satisfied.

1. λ(0) = (q0, s : w) for some q0 ∈Q,

2. λ(n) = (qn, s : s′ : w) for some nonempty stack s′ and some state qn ∈Q,

3. for every i ∈ dom(λ), |λ(i)|> |s|, and

4. for every i ∈ dom(λ) such that w ≤ top2(λ(i − 1)) and top2(λ(i)) = pop1(w), there

is some j > i such that λ↾[i, j] is a return.

Remark 3.1.35. Under condition 2, condition 3 is equivalent to the condition that λ never

passes the stack s. An example of a 1-loop can be found in Figure 3.10. Note that the last

two conditions imply that a 1-loop does never visit a proper substack of s : w.

Definition 3.1.36. For a fixed collapsible pushdown system S and some stack s we denote

by ∃1-LoopsS (s) the set

�

(q1, q2) ∈Q×Q : there is an s′ ∈ Stacks(Σ) and a 1-loop of S from (q1, s) to (q2, s′)
	

.

If S is clear from the context, we omit it.

We use this rather technical definition of a 1-loop due to two important properties.

Firstly, we obtain a similar computational behaviour of 1-loops as for loops and returns:

∃1-Loops(s) only depends on the returns of pop1(s), CLvl(s) and Sym(s). Secondly, this

notion is strong enough to capture all parts of a run from a stack s to popn
2
(s) that are not

captured by the notions of loops and returns. This idea is made precise in Lemma 3.1.39.

Lemma 3.1.37. There is an algorithm that determines for every stack s the set ∃1-Loops(s)

from the input Sym(s), CLvl(s) and ∃Returns(top2(pop1(s))).

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 121

q0,⊥ab :⊥acd

clone2

q1,⊥ab :⊥acd :⊥acd

pop1

q2,⊥ab :⊥acd :⊥ac

pop1

q3,⊥ab :⊥acd :⊥a

pushe,2

q4,⊥ab :⊥acd :⊥a(e, 2, 2)

clone2

q5,⊥ab :⊥acd :⊥a(e, 2, 2) :⊥a(e, 2, 2)

collapse

q6,⊥ab :⊥acd

pushe,2

q7,⊥ab :⊥acd(e, 2, 1)

clone2

q8,⊥ab :⊥acd(e, 2, 1) :⊥acd(e, 2, 1)

pop1

q9,⊥ab :⊥acd(e, 2, 1) :⊥acd

clone2

q10,⊥ab :⊥acd(e, 2, 1) :⊥acd :⊥acd

Figure 3.10.: Example of a 1-loop of s := ⊥ab : ⊥acd. The part between q2 and q6 forms

a return of a stack with topmost word top2(pop1(s)). Note that the run up to

q9 also forms a 1-loop.

122 3. Main Results

Proof (sketch). First of all note the similarity of the claim to the corresponding lemmas

concerning returns, loops, low loops and high loops. The main ingredients of this proof

are variants of Lemma 2.3.28 and Lemma 2.4.43.

• Analogously to Lemma 2.3.28, it is decidable whether there is some reachable

configuration of the form c = (q, s′) with |s′| ≥ 3 and |top2(s
′)| = 3. Note

that by definition of the return-simulator Rtk
s
(S), |top2(s

′)| = 3 is equivalent to

top2(s
′) = ⊥⊤(Sym(s), CLvl(s),κ(CLvl(s))) for all configurations of some return sim-

ulator for all stacks s and s′. The decidability follows by reduction to Lµ model

checking. We equip the pushdown system with a testing device. This testing devices

first tries to perform two pop1 operations. If it then reaches the bottom of stack,

it tries to perform two pop2-operations. If this is possible, then the stack is of the

desired form.

• Analogously to the return case 2.4.43, one proves that (q1, q2) ∈ ∃1-Loops(s) if

and only if the graph of the return simulator Rtk
s
(S) contains some run from

(q1,⊥⊤top1(s)2 : ⊥⊤top1(s)) to (q2, s′) where |s′| ≥ 3 and top2(s
′) = ⊥⊤top1(s).

Analogously to the return case, each such run corresponds to a 1-loop starting in

(q1, s) and ending in state q2. Again, we copy the transitions of such a simulation

one to one to a run starting in (q1, s). Whenever we come to a transition on topmost

symbol ⊤, we replace the following pop2-transition by a return of some stack with

topmost word pop1(top2(s)).

Putting these two facts together, we obtain that ∃1-Loops(s) can be computed from

Rtk
s
(S), Sym(s) and CLvl(s). But the definition of the return simulator only depends

on ∃Returns(pop1(s)). This concludes the proof.

Of course, we can turn the previous proof into a definition of an automaton calculating

the 1-loops of all milestones of a stack. This is completely analogous to Propositions 2.4.19

and 2.4.47.

Corollary 3.1.38. For each collapsible pushdown system S of level 2, we can compute

an automaton A that calculates for each configuration c at each d ∈ Enc(c) the set

∃1-LoopsS (LStck(d, Enc(c))).

Now, we analyse the form of any run from some stack s to some substack s′ = popn
2
(s).

Lemma 3.1.39. Let s and s′ be stacks such that s′ = popm
2
(s) for some m ∈ N. Let ρ be a

run from s to s′ such that ρ does not visit a proper substack of s′. Then ρ decomposes as

ρ1 ◦ρ2 ◦ · · · ◦ρn ◦λ where λ is a high loop of s′ and each ρi is of one of the following forms.

F1. ρi is a return,

F2. ρi is a 1-loop followed by a collapse of collapse level 2,

F3. ρi is a loop followed by a collapse of collapse level 2,

F4. ρi is a loop followed by a pop1 (or a collapse operation of collapse level 1) and there is a

j > i such that ρ j is of the form F2 or F3 and there is no i < k < j such that ρk is of the

form F1,

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 123

F5. ρi is a 1-loop followed by a pop1 operation (or a collapse of collapse level 1) and there

is a j > i such that ρ j is of the form F2 or F3 and there is no i < k < j such that ρk is of

the form F1.

Proof. Let s′ = popn
2
(s) for n ≥ 0 and ρ a run from s to s′ not passing any proper substack

of s′.

First of all, note that the case n= 0 is trivial. If n= 0, ρ is by definition a high loop of s.

For the case n > 0, we proceed by induction on the length of ρ. We write (qi, si) for the

configuration ρ(i). Firstly, consider the case where there is some m ∈ dom(ρ) such that

ρ1 := ρ↾[0,m] is a return. Then ρ1 is of the form F1. By induction hypothesis, ρ↾[m, ln(ρ)]

decomposes as desired.

Otherwise, assume that there is no m ∈ dom(ρ) such that ρ↾[0,m] is a return.

Nevertheless, there is a minimal m ∈ dom(ρ) such that for all i < m, it holds that

|si| ≥ |s| and |sm| < |s|. The last operation of ρ̂ := ρ↾[0,m] is a collapse such that

top2(sm−1)≤ top2(s) (otherwise ρ̂ would be a return).

Writing w := top2(sm−1), we distinguish two cases.

1. First consider the case that w = top2(s). Note that this implies CLvl(s) = 2 because

the last operation of ρ̂ is a collapse of level 2.

Furthermore, we claim that ρ̂ does not visit pop1(s). Heading for a contradiction,

assume that ρ̂(i) = pop1(s) for some i ∈ dom(ρ̂). Since ρ̂ does not visit pop2(s)

between i and m−1, top2(ρ̂(m−1)) = w is only possible if CLnk(w) = |s|−1 (smaller

links cannot be restored by ρ̂). But then ρ̂↾[i,m] is a return of pop1(s) whence ρ̂ is a

return of s. This contradicts the assumption that ρ̂ is no return.

Hence, ρ̂ does not pass pop1(s) and we distinguish the following cases

• Assume that the stack of ρ̂(m − 1) is s. Then ρ̂ is a high loop followed by a

collapse: the stack at ρ̂(0) and ρ̂(m− 1) is s and the run does not visit pop2(s)

or pop1(s) in between whence its restriction to [0, m− 1] is a high loop. Thus,

ρ1 := ρ̂ is of the form F3 and the claim follows by induction hypothesis.

• Assume that the stack of ρ̂(m− 1) is s′ = s : t : w for some nonempty 2-word t.

We claim that ρ̂ is a 1-loop plus a collapse operation: We have already seen that

ρ̂ does not visit any proper substack of s. Thus, it suffices to show that ρ̂ reaches

a stack with topmost word pop1(w) only at positions where a return starts.

Let i be some position such that w ≤ ρ̂(i − 1) and top2(ρ̂(i)) = pop1(w). Recall

that top2(sm−1) = w, CLnk(w) = 2 and CLvl(w) ≤ |s| − 1. Since |ρ̂(i)| > |s|,

we cannot restore top1(w) by a push operation. Thus, there is some minimal

position j > i such that |ρ̂(j)| < |ρ̂(i)|. Since the level 2 links of w point below

pop2(s) and no proper substack of s is reached by ρ̂↾[0,m−1], the links stored in

w are not used in ρ̂↾[i, j]. It follows immediately that ρ̂↾[i, j] is a return.

Thus, ρ1 := ρ̂ is of the form F2.

2. For the other case, assume that w < top2(s). Then there is a minimal i ∈ dom(ρ̂)

such that top2(ρ̂(i)) = pop1(w) and there is no j > i such that ρ̂↾[i, j] is a return.

We claim the following: if ρ̂(i) = pop1(s), then ρ̂1 is of the form F4, otherwise ρ̂ is

of the form F5. Due to the definition, ρ1 := ρ̂↾[0,i] is a loop or 1-loop followed by

124 3. Main Results

a a

c b (a, 2, 3) (a, 2, 3)

(c, 2, 1) (c, 2, 1) (c, 2, 1) (c, 2, 1)

s := ⊥ ⊥ ⊥ ⊥ ⊥

Figure 3.11.: The stack s of example 3.1.40.

a pop1 or a collapse. Hence, it suffices to check the side conditions on the segments

following in the decomposition of ρ. For this purpose set ρ′ := ρ↾[i,ln(ρ)]. By induc-

tion hypothesis ρ′ decomposes as ρ′ = ρ2 ◦ρ3 ◦ · · · ◦ρn ◦λ where the ρi and λ satisfy

the claim of the lemma.

Now, by definition of i, ρ′ does not start with a return. Thus, ρ2 is of one of the forms

F2–F5. But all these forms require that there is some j ≥ 2 such that ρ j is of form F2

or F3 and for all 2≤ k < j, ρk is not of the form F1.

From this condition, it follows directly that ρ = ρ1 ◦ ρ
′ = ρ1 ◦ ρ2 ◦ ρ3 ◦ · · · ◦ ρn ◦ λ

and ρ1 is of the form F4 or F5.

The following example illustrates the lemma.

Example 3.1.40. Consider the stack s in Figure 3.11 and the following transitions:

1. (q1, a, q2, clone2),

2. (q2, a, q3, collapse),

3. (q3, a, q2, clone2),

4. (q3, b, q2, pushb,2),

5. (q1, c, q4, pushb,1),

6. (q2, b, q1, collapse),

7. (q2, c, q1, collapse),

8. (q4, b, q2, pop1).

Since these transitions form a deterministic relation, there is a unique run starting in

(q1, s). This run ρ is generated by using the transitions in the following order: (1),

(2), (3), (2), (4), (6), (5), (8), (7), (5), (8), (7). The run ρ ends in the configuration

(q1,⊥2) = (q1, pop4
2(s)). According to the decomposition of Lemma 3.1.39, ρ↾[0,2] is of the

form F5, ρ↾[2,4] is of the form F2, ρ↾[4,6] is of the form F1, ρ↾[6,9] is of the form F4, and

ρ↾[9,12] is of the form F3.

The previous lemma tells us that any run to a substack decomposes into subruns of three

forms:

1. returns,

2. subruns that decrease the length of the topmost word by one, or

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 125

3. subruns that end in a collapse of level 2 applied to some stack with the same topmost

word as their initial stack.

If subruns of the second case occur, then they are followed by a subrun of the third form

before any return occurs. Since runs of the third form end in a collapse of level 2, it does

not matter whether runs of the second or third form have increased the width of the stack

in between: eventually we perform a collapse operation on a prefix of the initial topmost

word. This collapse then deletes all the new words that were created in between.

The decomposition of a run according to Lemma 3.1.39 is the starting point for deciding

whether there is a run from some configuration (q, s) to some (q′, popn
2
(s)). The basic

idea is that we guess the form and the final state of each segment the run consists of. We

then attach this guess to the encoding of the two configurations. We will call such a guess

certificate for substack reachability. Finally, we prove that there is an automaton that can

check whether a certificate for substack reachability actually encodes some run from (q, s)

to (q′, popn
2
(s)).

This approach is quite similar to the proof that the reachable configurations of a given

collapsible pushdown system form a regular set. Let us first recall the basic idea of

that proof. We used each node of d ∈ Enc(q, s) as representative for the milestone

LStck(d, Enc(q, s)) and a certificate for reachability labelled every node with the state in

which some run visited the corresponding milestone.

Now, we do a similar thing. Given a run ρ from (q1, s) to (q2, popm
2
(s)), let

ρ = ρ1 ◦ρ2 ◦ · · · ◦ρn ◦λ be its decomposition according to Lemma 3.1.39. We want to

find a representative for the initial configuration of each of the ρ j and label this represen-

tative with a description of ρ j. In fact, we label the representative with the final state of

ρ j and the type of ρ j according to the classification from Lemma 3.1.39.

Let us first explain the system of representation. Let d ∈ Enc(q, s) be some node. We

write sd := LStck(d, Enc(q, s)) for the milestone induced by d. Now, we will use d as a

representative for any stack ŝd that has the following two properties:

1. pop2(sd) = popk
2
(ŝd) for some k ∈ N and

2. top2(sd) = top2(ŝd).

This implies that d may represent sd or some stack pop2(sd) : s′ : top2(sd) for s′ an arbitrary

top2(sd) prefixed stack.

Let us explain why this form of representation is sufficient for our purpose. Recall that

the existence of 1-loops and loops only depends on the topmost word of a stack. Thus,

we only need to know the topmost word of some stack in order to verify the existence of

1-loops or loops for certain pairs of initial and final states. Furthermore, if we know the

topmost word of some stack, we can easily derive the topmost word of the stack reached

via pop1 or collapse of level 1. Moreover, if d is a representative for some stack ŝd , then

a collapse of level 2 from ŝd and from sd result in the same stack: if d represents ŝd then

top2(sd) and top2(ŝd) coincide. Thus, level 2 collapse links in the topmost word of ŝd point

to some substack of pop2(sd) (because the links of sd have this property by definition of

a stack). Since pop2(sd) = popk
2
(ŝd), the collapse link of sd and of ŝd point to the same

substack of pop2(sd).

Hence, the representatives that we use are sufficiently similar to the represented stacks

in the following sense. The existence of subruns of the forms F2–F5 can be decided by

126 3. Main Results

considering the representatives. Note that subruns of the form F1, which are returns,

occur as an initial part of the run or after the application of some collapse of level 2.

At such positions, the corresponding node d represents a stack ŝd such that ŝd = sd .

Thus, pop2(ŝd) = pop2(sd) is determined by d. Hence, we can find a node d ′ such that

sd′ = ŝd′ = pop2(ŝd).

Having explained the system of representation, let us introduce certificates for substack

reachability. Before we come to the formal definition, we explain the underlying idea.

Given a tree Enc(q1, s1)⊗ Enc(q2, s2) such that s2 = popn
2
(s1), we want to label this tree

with information witnessing the existence of a run from (q1, s1) to (q2, s2). Assume that

there is such a run ρ. Let ρ = ρ1 ◦ρ2 ◦ . . .ρn ◦λ be its decomposition into parts according

to Lemma 3.1.39. Recall that the rightmost leaf d of Enc(q1, s1) represents the stack s1.

Since ρ1 starts with stack s1, this d is the position in Enc(q1, s1) ⊗ Enc(q2, s2) which we

want to label with information concerning ρ1. We will label this node with the final state

of ρ1 and the type of this run according to the classification from Lemma 3.1.39. If ρ1 is

of the form F1 (i.e., ρ1 is a return), we label it by 1, if it is of the form F2, we label it by 2,

etc.

Now, assume that there is some node d that represents some stack s′ such that s′ is the

initial stack of ρ j for some 1≤ j ≤ n. The type of ρ j defines a representative for the initial

stack of ρ j+1, which is the final stack of ρ j, as follows.

1. If ρ j is a return, the initial stack of ρ j+1 is pop2(sd). There is a node d ′ such that

sd′ = pop2(sd). This node is the representative of ρ j+1.

2. If ρ j ends in a collapse of level 2 (from a stack with topmost word top2(sd)) the initial

stack of ρ j+1 is collapse(sd). There is a node d ′ such that sd′ = collapse(sd).

3. Finally, if ρ j ends in a pop1 or a collapse of level 1, we need to find a representative d ′

such that top2(sd′) = top2(pop1(sd)). We take the lexicographically maximal node d ′

such that LStck(d ′, Enc(q1, s1)) is a milestone of sd with topmost word top2(pop1(sd)).

We call the representative d ′ of the initial stack of ρ j+1 the successor of d. Keep in mind

that this successor depends on the label of d ′. Furthermore, note that the successor is

MSO-definable on Enc(q1, s1) if the label of d is known: the pop2 or collapse successor of

sd is clearly definable due to the regularity of the operations pop2 and collapse. For the

third case, note that the successor of d is the unique ancestor of d such that d = d ′01m for

some m ∈ N.

Since we have found a representative for ρ j+1, we label it again by the final state of

ρ j+1 and by the type of ρ j+1. We continue this process until we have defined a repre-

sentative for each segment of the run ρ. We will soon see that an automaton can check

whether an arbitrary labelling of the nodes of Enc(q1, s1)⊗Enc(q2, s2) is indeed a labelling

corresponding to an existing run from (q1, s1) to (q2, s2) in this sense.

Let us now formally introduce certificates for substack reachability. We will call such a

certificate valid if it witnesses the existence of a run from the larger configuration to the

smaller one.

Definition 3.1.41. Let c1 = (q1, s1), c2 = (q2, s2) be configurations such that s2 = popn
2
(s1)

for some n ∈ N. We call a function

fCSR : dom(Enc(c1)) \ dom(Enc(c2))→ {1, 2, 3, 4, 5} ×Q

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 127

a certificate for substack reachability for c1 and c2.

Remark 3.1.42. Due to the finite range of a certificate for substack reachability, we can ex-

press quantification over certificates for substack reachability for c1 and c2 on the structure

Enc(c1)⊗ Enc(c2) in MSO.

Even though these certificates are defined on domain dom(Enc(c1)) \ dom(Enc(c2)), we

will only use some of the information, namely those labels assigned to nodes that represent

one of the stacks we pass on some run from c1 to c2. The first component represents a guess

on the kind of segment starting at the corresponding stack. The numbers correspond to

the enumeration in Lemma 3.1.39. The second component asserts the final state of the

corresponding segment.

As already mentioned, for each encoding of two configurations and each certificate for

substack reachability on this encoding, there is a successor function. This successor func-

tion chooses, according to the label of one representative, the representative for the next

stack.

Definition 3.1.43. Let c1, c2 be configurations such that c2 = popn
2
(c1) for some n ∈ N.

Furthermore, let f be a partial function from dom(Enc(c1)) to {1, 2, 3, 4, 5} × Q. For

d ∈ dom(f), the successor of d with respect to f is defined by case distinction on the first

component of f (d), denoted by π1(f (d)), as follows.

1. π1(f (d)) = 1: If d ∈ {0}∗, there is no successor of d with respect to f .

Otherwise, let d ′ be the ancestor of d such that d = d ′10m for some number

m ∈ N. Let d ′′ ∈ {ǫ} ∪ {0{0, 1}∗} be the lexicographically maximal word such that

d ′d ′′ ∈ dom(Enc(c1)) (d ′d ′′ is the maximal element in the subtree rooted at d ′0 if d ′0

is in the tree, otherwise we have d ′d ′′ = d ′). We say d ′d ′′ is the successor of d with

respect to f .

2. π1(f (d)) ∈ {2, 3}: If d ∈ {0}∗{1}∗ the successor of d with respect to f is undefined.

Otherwise, let d ′ be the element such that d = d ′10m1n where m > 0 and

n ∈ N. Let d ′′ ∈ {ǫ} ∪ {0{0, 1}∗} be the lexicographically maximal word such that

d ′d ′′ ∈ dom(Enc(c1)). We say d ′d ′′ is the successor of d with respect to f .

3. π1(f (d)) ∈ {4, 5}: If d ∈ {ǫ}∪ {0}{1}∗, then the successor of d with respect to fCSR is

undefined.

Otherwise, let d ′ be the unique element such that d = d ′01n for some n ∈ N. Then d ′

is the successor of d with respect to f .

Remark 3.1.44. As already said in the informal description, the motivation of the previous

definition are the following observations.

1. If π1(f (d)) = 1, then the successor d̂ of d is chosen such that

LStck(d̂, Enc(c1)) = pop2(LStck(d, Enc(c1))).

If this is not possible, i.e., if |LStck(d, Enc(c1))|= 1, the successor is undefined.

128 3. Main Results

2. If π1(f (d)) ∈ {2, 3}, then the successor d̂ is chosen such that

LStck(d̂, Enc(c1)) = collapse(LStck(d), Enc(c1))

(assuming that CLvl(LStck(d, Enc(c1))) is 2). If such an element does not exist, then

the successor is undefined.

3. If π1(f (d)) ∈ {4, 5}, then the successor d̂ of d is chosen such that LStck(d̂, Enc(c1))

is the maximal milestone of LStck(d, Enc(c1)) satisfying

top2(LStck(d̂, Enc(c1))) = top2(pop1(LStck(d, Enc(c1)))).

If this is not possible, i.e., if top2(LStck(d, Enc(c1))) = ⊥, then the successor is unde-

fined.

Example 3.1.45. Recall the run ρ from example 3.1.40.

The decomposition of ρ induces a certificate for substack reachability on

Enc(q1, s)⊗ Enc(q1,⊥2).

This certificate is depicted in Figure 3.12 (the bold labels are the values of the certificate).

We only state the values of the certificate on the rightmost leaf of Enc(q1, s) and the chain

of successors with respect to this certificate. These are the important values that witness

the existence of ρ.

We will show that there is a close connection between runs from some configuration

(q, s) to another configuration (q̂, ŝ) where ŝ = popn
2
(s) and certificates for substack reach-

ability. We prove that every such run induces a certificate with certain properties. Since

these properties are rather technical, we postpone the detailed description of these prop-

erties for a short while. In the following, we first explain how to obtain such a certificate

from the run. Then we present the characterising properties of these certificates. Finally,

we show that each certificate with these properties actually represents a run from (q, s) to

(q̂, ŝ). Hence, deciding the existence of such a run reduces to deciding whether there is

such a certificate. We then show that the latter problem is MSO-definable on the encoding

of the configurations. From this, the regularity of the relation A follows.

Lemma 3.1.46. Let c = (q, s) and ĉ = (q̂, ŝ) be configurations such that ŝ = popm
2
(s) for

some m ∈ N. Let ρ be a run from c to ĉ such that ρ does not pass a proper substack of ŝ.

Assume that ρ decomposes as ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρn ◦ λ according to Lemma 3.1.39. Then

there is a certificate for substack reachability f
ρ

CSR on Enc(c)⊗Enc(ĉ) such that the following

conditions hold.

There is a finite sequence t̄ = t1, t2, . . . , tn ∈ dom(Enc(c)) \ dom(Enc(ĉ)) such that

1. t1 is the rightmost leaf of Enc(c)⊗ Enc(ĉ),

2. for each 1 ≤ i ≤ n, f
ρ

CSR(t i) = (ki, qi) where ki is the form of ρi according to Lemma

3.1.39 and qi is the final state of ρi.

3. t i+1 is the successor of t i with respect to f
ρ

CSR for every 1≤ i < n, and

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 129

a a

c b (a, 2, 3) (a, 2, 3)

(c, 2, 1) (c, 2, 1) (c, 2, 1) (c, 2, 1)

s := ⊥ ⊥ ⊥ ⊥ ⊥

(a, 1),2,
ǫ,2
(5,q3)

(c, 1),2
(4,q1)

(b, 1),2
(1,q1)

(a, 2),2
(2,q3)

(c, 2),2
(3,q1)

ǫ,2 ǫ,2

(⊥, 1), (⊥, 1) ǫ,2

(q1, q1)

Figure 3.12.: Example of a valid certificate for substack reachability for Enc(q1, s) ⊗

Enc(q1,⊥2).

4. the successor of tn with respect to f
ρ

CSR is the rightmost leaf of Enc(ĉ).

Proof. First of all, we define inductively the sequence t1, t2, . . . , tn and the values of f
ρ

CSR

on these elements.

We write ki for the form of ρi and qi for the final state of ρi. Let t1 be the rightmost leaf

of Enc(q, s). We define f
ρ

CSR(t1) := (k1, q1). Now assume that we have already defined t i

for some 1≤ i < n. We define f
ρ

CSR(t i) := (ki, qi). If the successor of t i with respect to f
ρ

CSR

exists, it is uniquely defined and we call it t i+1. We proceed with this definition until i = n

or until there is some l < n such that the successor of t l with respect to f
ρ

CSR is not defined.

In order to prove that f
ρ

CSR can be extended to a well-defined certificate for substack

reachability satisfying conditions 1–4, we show a stronger claim. For 1 ≤ i ≤ n+ 1 such

that t i is defined, set sti
:= LStck(t i, Enc(c)). For 1 ≤ i ≤ n let si be the stack of ρi(0). Let

sn+1 be the stack of λ(0).

Claim. For all 1 ≤ i ≤ n such that t i is defined, t i+1 is also defined. Furthermore, if t i is

defined for some 1≤ i ≤ n+ 1, then si and sti
are similar in the following sense:

1. top2(si) = top2(sti
) and

2. there is an ni ≥ 1 such that pop2(sti
) = pop

ni

2 (si).

3. Moreover, if i = 1 or ρi−1 is of the form F1, F2, or F3. (with respect to Lemma

3.1.39), then si = sti
. This means that the substack represented by t i is the initial

stack of ρi whenever ρi−1 ended in a pop2 or collapse of level 2.

130 3. Main Results

Before we prove the claim, let us explain how the lemma follows from the claim. Note

that t1 is defined and st1
= LStck(t1, Enc(q, s)) = s = s1 = ρ1(0). Due to the claim,

t1, t2, t3, . . . , tn+1 are defined. According to Lemma 3.1.39, ρn is of the form F1, F2, or

F3. Thus, the claim implies that LStck(tn+1, Enc(c)) = stn+1
= sn+1 = λ(0) = ŝ. Thus,

tn+1 is the rightmost leaf of Enc(ĉ). Since the successor with respect to f
ρ

CSR of some

node is always lexicographically smaller than this node, t i >lex tn+1 for all 1 ≤ i ≤ n.

Hence, {t1, t2, . . . , tn} ⊆ dom(Enc(c)) \dom(Enc(ĉ)). Thus, we can extend the partial defi-

nition of f
ρ

CSR to a map from dom(Enc(c))\dom(Enc(ĉ)) to {1, 2, 3, 4, 5}×Q. Furthermore,

t̄ = t1, t2, . . . , tn satisfies items 1–3 by definition of the t i. t̄ also satisfies item 4 because

we proved that the successor tn+1 of tn is the rightmost leaf of Enc(ĉ).

Now, we prove the claim. Assume that there is some i ≤ n such that t i is defined.

Furthermore, assume that si and sti
are similar, i.e., si and sti

satisfy conditions 1–3 of the

claim. We distinguish the following cases according to the form of t i:

1. Consider the case ki = 1. In this case, ρi is a return. If i > 1, then Lemma 3.1.39

implies that ρi−1 is of the form F1, F2, or F3. Thus, item 3 of the claim implies that

si = sti
.

Due to ki = 1, the successor of t i – if defined – is a node t i+1 such that

LStck(t i+1, Enc(c)) = pop2(LStck(t i, Enc(c))) = pop2(sti
).

ρi is a return starting at si = sti
whence ρi ends in si+1 := pop2(sti

). Thus, we

conclude that |sti
| ≥ 2 whence t i+1 is defined. Furthermore, note that

sti+1
= LStck(t i+1, Enc(c)) = pop2(sti

) = si+1

whence t i+1 satisfies item 3 of the claim.

2. Consider the case ki ∈ {2, 3}. This means that ρi ends with a collapse of level 2

from a stack with topmost word top2(si). Thus, CLvl(si) = 2. Since ki ∈ {2, 3}, the

successor of t i – if defined – is a node t i+1 such that

LStck(t i+1, Enc(c)) = collapse(LStck(t i, Enc(c)) = collapse(sti
).

Due to the form of ρi, collapse(si) is defined. Due to item 1 of the claim, top1(sti
) and

top1(si) coincide. Thus, collapse(sti
) is also defined. But then t i+1 is defined whence

the first part of the claim holds. Furthermore, item 2 of the claim implies that that

sti+1
= collapse(sti

) = collapse(si) = si+1

whence t i+1 satisfies the second part of the claim.

3. Consider the case ki ∈ {4, 5}. This means that ρi is a loop or 1-loop followed by

a pop1 or collapse of level 1. Since the topmost word of si and the topmost word

before the last operation of ρi agree, |top2(si)|> 1 holds. Due to item 1 of the claim,

|top2(sti
)| > 1 follows. This implies that there is some node d ∈ Enc(c) such that

t i = d01l for some l ∈ N. Since ki ∈ {4, 5}, d is the successor of t i with respect to

f
ρ

CSR, i.e., t i+1 = d whence the first part of the claim holds.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 131

For the second part, note that there is some m ≥ 1 such that pop2(si) = popm
2
(si+1)

due to the definition of loops and 1-loops.

Since the left stack induced by t i+1 is a milestone of the one induced by t i, there is

an n ≥ 1 such that pop2(sti+1
) = popn

2
(sti
). Thus, by item 2 of the claim, we obtain

that pop2(sti+1
) = pop

n+m+ni−2

2 (si+1). Since ni+1 := n+m+ ni − 2 ≥ 1, item 2 of the

claim holds for t i+1.

Furthermore, since top2(si+1) = top2(pop1(si)) and top2(sti+1
) = top2(pop1(sti

)), item

1 of the claim carries over from t i to t i+1. This completes the proof that si+1 and sti+1

are similar in the sense of the claim.

Remark 3.1.47. In the following we say that a certificate for substack reachability fCSR

represents ρ if it coincides with f
ρ

CSR on {t1, t2, . . . , tn}.

In the next lemma, we collect important properties of a certificate which represents some

run. Afterwards, we turn these properties into the defining conditions of valid certificates.

This terminology is justified because each valid certificate represents in fact some run.

Lemma 3.1.48. Let (q, s), (q̂, ŝ) be configurations such that ŝ = popm
2
(s) for some m ∈ N. Let

fCSR be a certificate representing a run ρ from (q, s) to (q̂, ŝ).

Then there is an n ∈ N and a finite sequence t1, t2, . . . , tn ∈ dom(Enc(q, s))\dom(Enc(q̂, ŝ))

with the following properties (setting (ki, qi) := fCSR(t i) and q0 := q):

A1. t1 is the rightmost leaf of Enc(q, s),

A2. for all 1≤ i < n, the successor of t i with respect to fCSR is t i+1,

A3. the successor of tn with respect to fCSR is the rightmost leaf of Enc(q̂, ŝ),

A4. kn ∈ {1, 2, 3},

A5. (qn, q̂) ∈ ∃HLoops(ŝ), i.e., there is a high loop from (qn, ŝ) to (q̂, ŝ),

A6. if ki ∈ {4, 5} for some i < n then there is a j > i such that k j ∈ {2, 3} and kl 6= 1 for all

i < l < j,

A7. For each 1 ≤ i ≤ n, the stack induced by t i satisfies in dependence of the value of ki a

certain assertion as follows:

a) if ki = 1 then (qi−1, qi) ∈ ∃Returns(LStck(t i, Enc(q, s))),

b) if ki = 2 then CLvl(LStck(t i, Enc(q, s))) = 2 and there is a q′ ∈ Q and a γ ∈ Γ such

that

(qi−1, q′) ∈ ∃1-Loops(LStck(t i, Enc(q, s))) and

(q′, Sym(LStck(t i, Enc(q, s))),γ, qi, collapse) ∈∆,

c) if ki = 3 then CLvl(LStck(t i, Enc(q, s))) = 2 and there is some q′ ∈ Q and some

γ ∈ Γ such that

(qi−1, q′) ∈ ∃Loops(LStck(t i, Enc(q, s))) and

(q′, Sym(LStck(t i, Enc(q, s))),γ, qi, collapse) ∈∆,

132 3. Main Results

d) if ki = 4 then there is some q′ ∈Q and some γ ∈ Γ such that

(qi−1, q′) ∈ ∃Loops(LStck(t i, Enc(q, s)))) and either

(q′, Sym(LStck(t i, Enc(q, s))),γ, qi, pop1) ∈∆ or

CLvl(LStck(t i, Enc(q, s))) = 1 and (q′, Sym(LStck(t i, Enc(q, s))),γ, qi, collapse) ∈∆.

e) if ki = 5 then there is a q′ ∈Q such that

(qi−1, q′) ∈ ∃1-Loops(LStck(t i, Enc(q, s)))) and either

(q′, Sym(LStck(t i, Enc(q, s))),γ, qi, pop1) ∈∆ or

CLvl(LStck(t i, Enc(q, s))) = 1 and (q′, Sym(LStck(t i, Enc(q, s))),γ, qi, collapse) ∈∆.

Proof. Let fCSR represent a run ρ.

There is a unique sequence t1, t2, . . . , tn of maximal length that satisfies A1 and A2.

Furthermore, the previous lemma showed that tn satisfies A3.

From the previous lemma we also know that fCSR(t i) encodes the form and the final

state of ρi where ρ = ρ1 ◦ρ2 ◦ · · · ◦ρn ◦λ is the decomposition of ρ according to Lemma

3.1.39. Thus, kn is the form of ρn. Hence, Lemma 3.1.39 implies that kn ∈ {1, 2, 3}.

qn is the final state of ρn and due to Lemma 3.1.39, λ is a high loop from (qn, ŝ) to (q̂, ŝ).

Thus, λ witnesses that (qn, q̂) ∈ ∃HLoops(ŝ). This is exactly the assertion of A5.

A6 is also a direct consequence of Lemma 3.1.39: if there is some ρi of the form F4 or

F5, then there is a j > i such that ρ j is of the form F2 or F3, and for all i < k < j, ρk is not

of the form F1. From the correspondence between the form of ρl and the value of kl for

all 1≤ l ≤ n, A6 follows directly.

A7 is a consequence of the claim in the previous proof. There we showed that

top2(LStck(t i, Enc(q, s))) = top2(ρi(0)). (3.1)

Thus, ∃Returns,∃Loops and ∃1-Loops agree on the stacks LStck(t i, Enc(q, s)) and ρi(0).

We conclude by case distinction on ki as follows.

ki = 1 This implies that ρi is a return from ρi(0) to (qi, pop2(ρi(0))). By definition, the state

of ρi(0) is qi−1. Thus, ρi witnesses

(qi−1, qi) ∈ ∃Returns(ρi(0)) = ∃Returns(LStck(t i, Enc(q, s))).

ki = 2 This implies that ρi is a 1-loop followed by a collapse of level 2. Let j be the position

just before this collapse, i.e., j := ln(ρi) − 1. Let q′ be the state of ρi(j). Now,

ρi↾[o, j] witnesses the existence of a 1-loop from state qi−1 to state q′ on topmost

word top2(ρi(0)). Thus, (qi−1, q′) ∈ ∃1-Loops(LStck(t i, Enc(q, s))).

Due to (3.1) and the definition of 1-loops, we have

top1(LStck(t i, Enc(q, s))) = top1(ρi(0)) = top1(ρi(j)).

By definition of ρi, CLvl(ρi(j)) = 2. We conclude that

CLvl(LStck(t i, Enc(q, s))) = CLvl(ρi(j)) = 2.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 133

Since ρi performs a collapse at j, there is some transition

(q′, Sym(ρ(j)),γ, qi, collapse) ∈∆.

Due to Sym(ρ(j)) = Sym(LStck(t i, Enc(q, s))), this transition witnesses that

(q′, Sym(LStck(t i, Enc(q, s))),γ, qi, collapse) ∈∆.

ki = 3 Replacing the role of 1-loops by loops, we can copy the proof from the previous case

word by word.

ki = 4 This implies that ρi is a loop followed by a pop1 transition or a collapse of level 1.

We set j := ln(ρi)− 1 and q′ to be the state of ρi(j). Completely analogous to the

previous case, one derives that (qi−1, q′) ∈ ∃Loops(LStck(t i, Enc(q, s))).

The transition at ρi(j) is a pop1 or a collapse of level 1. Thus, this transition is either

(q′, Sym(ρi(j)),γ, qi, pop1) or (q′, Sym(ρi(j)),γ, qi, collapse) and CLvl(ρi(j)) = 1.

Due to (3.1), top2(LStck(t i, Enc(q, s))) = top2(ρi(j)). Thus, this transition is also

applicable to LStck(t i, Enc(q, s)). This completes the proof in the case ki = 4.

ki = 5 This case is completely analogous to the previous one: we only have to replace loops

by 1-loops.

Definition 3.1.49. Let c = (q, s) and ĉ = (q̂, ŝ) be configurations such that ŝ = popn
2
(s̄). Let

fCSR : dom(Enc(c))\dom(Enc(ĉ)→ {1, 2, 3, 4, 5}×Q be a certificate for substack reachabil-

ity on c and ĉ. Setting q0 := q, we call fCSR valid if there is an n ∈ N and a finite sequence

t1, t2, . . . , tn ∈ dom(Enc(c))\dom(Enc(ĉ)) which satisfies conditions A1 – A7 from Lemma

3.1.48.

The next lemma shows the tight correspondence between valid certificates of substack

reachability and runs. For q, q̂ ∈ Q two states, s some stack and ŝ = popn
2
(s) for some

n ∈ N, there is a run from (q, s) to (q̂, ŝ) if and only if there is a valid certificate for

substack reachability for (q, s) and (q̂, ŝ).

Lemma 3.1.50. Let c = (q, s) and ĉ = (q̂, ŝ) be configurations such that ŝ = popm
2
(s) for

some m ∈ N. There is a run from c to ĉ which does not visit proper substacks of ŝ if and only

if there is a valid certificate for substack reachability

fCSR : dom(Enc(c)) \ dom(Enc(ĉ))→ {1, 2, 3, 4, 5} ×Q.

Proof. The implication from left to right follows from Lemma 3.1.46.

For the proof from right to left assume that fCSR is a valid certificate for substack reach-

ability for c and ĉ.

Then there is a sequence t1, t2, . . . , tn in dom(fCSR) that witnesses the conditions A1–A7.

We now construct runs ρ0,ρ1,ρ2, . . . ,ρn,ρn+1 such that ρi is an initial segment of ρi+1

for each i ≤ n. The run ρn+1 is then a run from c to ĉ.

Before we start the construction, let us define some notation. For all 1 ≤ i ≤ n, let

(qi, ki) := fCSR(t i) and let sti
:= LStck(t i, Enc(c)). Furthermore, for reasons of conve-

nience, we set q0 := q and we set tn+1 to be the rightmost leaf of Enc(ĉ). As soon as ρi−1

is defined for some 1≤ i ≤ n, we denote by si the last stack of ρi−1.

We define ρ0 to be a run of length 0 with ρ0(0) := c.

During the construction of ρi for 1≤ i ≤ n, we preserve the following conditions:

134 3. Main Results

1. the last state of ρi−1 is qi−1,

2. top2(si) = top2(sti
), and

3. there is an ni ≥ 1 such that pop2(sti
) = pop

ni

2 (si).

4. Moreover, if i = 1 or ki−1 ∈ {1, 2, 3}, then si = sti
.

Note that ρ0(0) = (q, s0) = (q0, st0
) by definition whence for i = 1 these conditions are

satisfied.

Now assume that ρi−1 is defined for some 1 ≤ i ≤ n such that these conditions are

satisfied. By case distinction on the value of ki we define ρi as follows.

ki = 1 Since fCSR satisfies A6, i = 1 or ki−1 ∈ {1, 2, 3}. Thus, si = sti
by induction hypothesis.

Due to A7, we have (qi−1, qi) ∈ ∃Returns(sti
) = ∃Returns(si). Hence, there is a return

ρ̂ from (qi−1, si) to (qi, pop2(si)). We set

ρi := ρi−1 ◦ ρ̂.

Due to A2 and A3, the successor of t i with respect to fCSR is t i+1. Since ki = 1,

sti+1
= LStck(t i+1, Enc(c)) = pop2(sti

) = pop2(si) = si+1.

ki = 2 Due to A7, CLvl(sti
) = 2 and there is a q′ ∈Q and a γ ∈ Γ such that

(qi−1, q′) ∈ ∃1-Loops(sti
)

and δ := (q′, Sym(sti
),γ, qi, collapse) ∈∆.

Since the topmost words of si and sti
agree, there is some stack s′ such that there is a

1-loop λ̂ from (qi−1, si) to (q′, s′). By definition of a 1-loop,

top2(s
′) = top2(si) = top2(sti

).

Thus, CLvl(s′) = 2 and λ̂ can be extended by δ. We write λ̂+ for λ̂ extended by one

application of δ. Since λ̂ is a 1-loop, it does not visit any substacks of pop2(si). Thus,

collapse(si) = collapse(s′). Set ρi := ρi−1 ◦ λ̂
+. By assumption, we conclude that

sti+1
= collapse(sti

) = collapse(si) = collapse(s′) = si+1.

Thus, the last configuration of ρi is (qi, sti+1
).

ki = 3 We can copy the argument from the case ki = 2: just replace 1-loops by loops. Then

we obtain a run ρi that ends in (qi, sti+1
).

ki = 4 Due to condition A7, there is a q′ ∈ Q and a γ ∈ Γ such that (qi−1, q′) ∈ ∃Loops(sti
)

and δp := (q′, Sym(sti
),γ, qi, pop1) ∈∆ or δc := (q′, Sym(sti

),γ, qi, collapse) ∈∆ and

CLvl(sti
) = 1.

Since the topmost words of si and sti
agree, there is a loop λ̂ from (qi−1, si) to (q′, si).

Due to top2(si) = top2(sti
), it follows that CLvl(si) = CLvl(sti

). We conclude that δc

(or δp, respectively) can be applied to the last configuration of λ̂. In both cases, the

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 135

resulting configuration is (qi, pop1(si)). Writing λ̂+ for λ̂ extended by δp or δc, we

set ρi := ρi−1 ◦ λ̂
+.

By definition of t i+1, sti+1
is the maximal milestone of sti

such that

top2(sti+1
) = top2(pop1(sti

)) = top2(si+1).

We still have to show that there is some ni+1 ≥ 1 such that pop2(sti+1
) = pop

ni+1

2 (si+1).

Since sti+1
is a milestone of sti

, there is some j ≥ 1 such that pop2(sti+1
) = pop

j

2(sti+1
).

Since λ̂ is a loop, we have pop2(si+1) = pop2(si). By assumption on ρi−1, we obtain

that

pop2(sti+1
) = pop

j

2(sti
) = pop

j+ni−1

2 (si) = pop
j+ni−1

2 (si+1).

Let ni+1 := j + ni − 1. We conclude by noting that ni+1 ≥ 1.

ki = 5 This case is analogous to the previous one. We can replace the loop λ̂ in the previous

case by some 1-loop from (qi−1, si) to some (q′, s′) where pop2(si) is a substack of s′

and top2(s
′) = top2(si). The rest of the argument is then completely analogous.

Repeating this construction for all i ≤ n, we define a run ρn with last state qi. Due to A4,

the last step in this construction uses one of the first three cases. Thus,

sn+1 = stn+1
= LStck(tn+1, Enc(c)) = ŝ.

Note that the last equality is due to A3. Thus, ρn ends in (qn, ŝ).

Due to A5, there is a high loop λ from (qn, ŝ) to (q̂, ŝ). We set ρn+1 := ρn ◦ λ. This

completes the proof because ρn+1 is a run from (q, s) to (q̂, ŝ) that does not visit any

proper substack of ŝ.

We have seen that there is a run from c = (q, s) to ĉ = (q̂, ŝ) for ŝ = popn
2
(s) if and only if

there is a valid certificate for substack reachability on Enc(c)⊗Enc(ĉ). The final step of the

analysis of runs of this form is the following lemma. We prove that the set of all pairs of

configurations (c, ĉ) of the form mentioned above is an automatic relation via the encoding

Enc. We show that the set of encodings of such pairs is MSO-definable. The automaticity

of the relation follows from the correspondence of MSO and automata on trees.

Lemma 3.1.51. There is a formula in MSO that defines the set

S := {(Enc(c), Enc(ĉ)) : ∃ fCSR : dom(Enc(c)) \ dom(Enc(ĉ))→ {1, . . . , 5} ×Q, fCSR is valid}

Proof. Certificates for substack reachability are only defined for configurations c = (q, s)

and ĉ = (q̂, ŝ) where ŝ = popm
2
(s) for some m ∈ N. Note that this necessary condition

is satisfied by a pair (c, ĉ) if and only if there is some node d ∈ dom(Enc(c)) such that

d0 /∈ dom(Enc(c)) and LStck(d, Enc(c)) = ŝ. These pairs of configurations are obviously

MSO definable.

In this proof, we use the following claim.

136 3. Main Results

Claim. There is an MSO formula ϕ such that for each certificate for substack reachability

fCSR on c and ĉ the following holds. fCSR is valid if and only if

Enc(c)⊗ Enc(ĉ)⊗ fCSR⊗ TH L ⊗ TL ⊗ T1L ⊗ TR |= ϕ

where TH L, TL, T1L, TR are trees such that

TH L encodes the mapping d 7→ ∃HLoops(LStck(d, Enc(c))),

TL encodes the mapping d 7→ ∃Loops(LStck(d, Enc(c))),

T1L encodes the mapping d 7→ ∃1-Loops(LStck(d, Enc(c))), and

TR encodes the mapping d 7→ ∃Returns(LStck(d, Enc(c))).

Before we prove this claim, we show that it implies the lemma. Due to Propositions 2.4.19,

2.4.47, and 3.1.38, the trees TH L, TL, T1L and TR are definable on Enc(c) using MSO.

Furthermore, in Remark 3.1.42 we saw that MSO can express the existence of a certifi-

cate for substack reachability on Enc(c)⊗Enc(ĉ). Thus, given the formulaϕ from the claim,

we can construct a formula ψ asserting that “there is a certificate for substack reachability

fCSR on Enc(c)⊗ Enc(ĉ) such that

Enc(c)⊗ Enc(ĉ)⊗ fCSR⊗ TH L ⊗ TL ⊗ T1L ⊗ TR |= ϕ”.

This MSO formula defines the set S.

Let us now prove the claim. As an abbreviation, we write

A := Enc(c)⊗ Enc(ĉ)⊗ fCSR⊗ TH L ⊗ TL ⊗ T1L ⊗ TR.

We provide formulas that assert the conditions A1–A7. The rightmost leaf of Enc(c) is of

course MSO-definable in A. Furthermore, the successor of a given node d with respect to

fCSR is also MSO-definable. Thus, the uniquely defined maximal set T := {t1, t2, . . . , tn}

such that the sequence t1, t2, . . . , tn satisfies condition A1 and A2 is MSO-definable.

Note that i < j is equivalent to t j ≤lex t i. Since the lexicographic order on dom(Enc(c))

is MSO-definable, the successor of t with respect to fCSR is definable for each t ∈ T . But

this implies directly that the lexicographically minimal element in T is tn. Thus, tn is

definable and we can express “the successor of tn with respect to fCSR is the rightmost leaf

of Enc(q̂, ŝ)” in an MSO formula. This formula expresses A3.

Furthermore, we conclude that “ fCSR(tn) = (kn, qn) such that kn ∈ {1, 2, 3}” is definable

because tn is definable. Thus, we can express A4.

Next, we define a formula expressing A5. The label of the root of A encodes the state q̂.

“(qn, q̂) ∈ ∃HLoops(ŝ)” is expressible because q̂ is encoded in the label of tn and ∃HLoops(ŝ)

is encoded in the label of the rightmost leaf of Enc(q̂, ŝ). This leaf is definable in A. Thus,

we conclude that A5 is expressible by some MSO formula.

Condition A6 says that after some t i with ki ∈ {4, 5} there is a t j with k j ∈ {2, 3} before

the next occurrence of some kl = 1. Since the order of the t i is definable and since the ki

are encoded in the labels of the t i, this is clearly MSO-definable.

Finally, note that condition A7 only depends on the values of fCSR on the t i and on the

values of ∃Returns, ∃Loops and ∃1-Loops for LStck(t i, Enc(c)). But all these information

are encoded in the labels of the t i whence condition A7 is MSO-definable

Thus, we conclude that the validity of a certificate for substack reachability is expressible

in an MSO formula on A. This proves the claim. The lemma follows from the claim as

indicated above.

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 137

g

f

b d e

a c c

s = ⊥ ⊥ ⊥

b d e

a c c

ŝ = ⊥ ⊥ ⊥

g,2 : d

f ,2

b, b d, d e, e : d̂

a, a c, c ǫ,ǫ

⊥,⊥ ǫ,ǫ

Figure 3.13.: Illustration of the first case of the proof of lemma 3.1.53. For better orien-

tation, we have marked the rightmost leaves of the two encodings by d and

d̂.

The following corollary summarises the results obtained so far.

Corollary 3.1.52. LetS be some collapsible pushdown system. The relation A from Definition

3.1.32 is a regular relation via Enc.

Having shown the regularity of A, we prove the regularity of B, C and D in the following.

We then obtain the regularity of REACH as a corollary.

Regularity of the Relation B

B contains pairs (c, ĉ)where c = (q, s), ĉ = (q̂, ŝ), and ŝ = popm
1
(s) such that there is a run

from c to ĉ not passing any proper substack of ŝ. By definition, such a run is a composition

of high loops and pop1 or collapse of level 1.

Recall that we already dealt with a similar problem. In the previous section we investi-

gated milestones m1, m2 where m2 = popn
1
(clone2(m1)) and proved that the existence of a

run from m1 to m2 with a given initial and final state is MSO-definable (cf. Lemma 3.1.25).

The following lemma adapts the same idea and proves the regularity of B.

Lemma 3.1.53. B is regular via Enc.

Proof. Let us first recall the structure of Enc(c)⊗ Enc(ĉ) where c = (q, s), ĉ = (q̂, ŝ) and

ŝ = popn
1
(s) for some n ∈ N. There are two cases.

1. Let us first assume that ŝ is a milestone of s. Figure 3.13 shows an example of this

case. Let d̂ be the rightmost leaf in Enc(ĉ). dom(Enc(c)) extends dom(Enc(ĉ)) by the

138 3. Main Results

nodes d̂0, d̂00, . . . , d̂0n. The labels on the path from d̂0 to the rightmost leaf d := d̂0n

of Enc(c) encode the suffix w such that top2(s) = top2(ŝ) ◦w.

Note that this condition on the domains of Enc(c) and Enc(ĉ) is MSO-definable

whence the pairs of configurations of this form are regular via Enc.

2. Now assume that ŝ is not a milestone of s. Figure 3.14 shows an example of this case.

Let d be the rightmost leaf of Enc(c) and analogously let d̂ be the rightmost leaf of

Enc(ĉ). Let e be the second rightmost element in Enc(c) without left successor. In

fact, e is the second rightmost leaf of ŝ. There are nodes f̂ < f ≤ e such that

a) d̂ = f̂ 1,

b) d = f 10m for some m< n and

c) LStck(e, Enc(c)) = LStck(e, Enc(ĉ)), i.e., the encodings of s and ŝ agree on the

elements that are lexicographically smaller than e.

Moreover, the path from f̂ 0 to d encodes the suffix v such that top2(s) = top2(ŝ) ◦ v .

Note that these conditions on the domains of Enc(c) and Enc(ĉ) are MSO-definable

whence the pairs of configurations of this form are regular via Enc.

We conclude that the encodings of pairs of configurations such that the stack of the second

one is obtained from the first one by a sequence of pop1 operations forms a regular set S.

We show that there is an MSO formula ψ that defines the relation B from Lemma 3.1.32

relatively to S.

We only present the proof for configurations of the second form. The proof for the first

case is analogous by replacing f̂ 0 by d̂0.

Recall that ŝ = popn
1
(s). There are nodes

f̂ =: g0 < g1 < g2 < · · ·< gn−1 < gn ≤ d

(uniquely determined) such that gi ∈ {0, 1}∗0. These are uniquely determined because

there are exactly n letters encoded on the path from f̂ to d and each left-successor on this

path corresponds to one of the letters.

Let wi be the topmost word of LStck(gi, Enc(c)). These form a chain

top2(ĉ) = w0 < w1 < w2 < w3 < · · ·< wn = top2(c)

where wi+1 extends wi by exactly one letter. Thus,

∃HLoops(popm
1
(c)) = ∃HLoops(LStck(gn−m, Enc(c))) for all m≤ n.

Since ∃HLoops(LStck(gn−m, Enc(c))) is definable at gn−m in Enc(c), we can MSO-definably

access the pairs of initial and final states of all popm
1
(c).

Recall that we are looking for a run from c to ĉ that do not visit proper substacks of s.

Such a run consists of a sequence of high loops combined with pop1 or collapse of level 1.

Since the set {gi : 0 ≤ i ≤ n} is MSO-definable and since their order is also MSO-

definable, there is a formula which is satisfied by Enc(c)⊗ Enc(ĉ) if and only if there is a

run from c to ĉ: given a function f that labels each gi with some state qi, we can check

whether there is a loop followed by a pop1 or collapse of level 1 from (qn−m, popm
1
(s)) to

(qn−m−1, popm+1
1 (s)) such that the following holds:

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 139

e g

d f

b c c c

a a a a

s = ⊥ ⊥ ⊥ ⊥

e

d

b c c

a a a a

ŝ = ⊥ ⊥ ⊥ ⊥

e, e : e g,2 : d

d, d, f ,2

b, b c, c ǫ,ǫ : f ǫ,2

a, a ǫ,ǫ : f̂ 2,ǫ : d̂

⊥,⊥

Figure 3.14.: Illustration of the second case of the proof of lemma 3.1.53. For better orien-

tation, we have marked the nodes d, d̂, e, f, and f̂.

1. qn = q i.e., qn is the state of c = (q, s) and

2. there is loop from (q0, ŝ) to ĉ = (q̂, ŝ).

The function f can be encoded by |Q| many sets. Thus, there is a formula asserting that

there is a function f which satisfies the conditions mentioned above.

For all configurations (c, ĉ) ∈ S, Enc(c) ⊗ Enc(ĉ) satisfies this formula if and only if

(c, ĉ) ∈ B, i.e., if there is a run from c to ĉ that does not visit a proper substack of ĉ.

Since we have already seen that S is also MSO-definable, we conclude that the Relation

B is regular via Enc.

Regularity of the Relation C

Recall that the relation C contains a pair of configurations (c, ĉ) with c = (q, s) and

ĉ = (q̂, ŝ) if and only if the following holds: s = popm
1
(ŝ) for some m ∈ N and there is a

run from c to ĉ that does not pass a proper substack of s. We prove the regularity of C

analogously to the proof of Lemma 3.1.53.

Lemma 3.1.54. The relation C from Definition 3.1.32 is a regular relation via Enc.

Proof. We proceed completely analogous to Lemma 3.1.53.

Let us first recall the structure of Enc(c)⊗ Enc(ĉ) where c = (q, s), ĉ = (q̂, ŝ) and ŝ can

be generated from s by a sequence of pushσ,i of length m ∈ N. There are two cases.

1. Let us first assume that s is a milestone of ŝ. Let d be the rightmost leaf in Enc(c).

dom(Enc(ĉ)) extends dom(Enc(c)) by the nodes d0, d00, . . . , d0m. The labels on the

140 3. Main Results

path from d0 to the rightmost leaf d̂ := d0m of Enc(ĉ) encode the suffix w such that

top2(ŝ) = top2(s) ◦w.

Note that this condition on the domains of Enc(c) and Enc(ĉ) is MSO-definable

whence the pairs of configurations of this form are regular via Enc.

2. Now assume that s is not a milestone of ŝ. Let d be the rightmost leaf of Enc(c) and

d̂ be the rightmost leaf of Enc(ĉ). Let e be the second rightmost element in Enc(ĉ)

without left successor. In fact, e is the second rightmost leaf of Enc(c). There are

nodes f < f̂ ≤ e such that

a) d = f 1,

b) d̂ = f̂ 10m for some m< n, and

c) LStck(e, Enc(c)) = LStck(e, Enc(ĉ)), i.e., the encodings of s and ŝ agree on the

elements that are lexicographically less or equal to e.

Moreover, the path from f 0 to d̂ encodes the suffix w such that top2(ŝ) = top2(s)◦w.

Note that these conditions are similar to those in the proof of lemma 3.1.53 with

exchanged roles for s and ŝ.

But in this proof there is one further condition on the encodings of c and ĉ. The path

from f 0 to f̂ may only encode letters with link level 1. This stems from the following

fact.

Since top2(s) is a prefix of top2(ŝ) and s is no milestone of ŝ, top2(s) is a proper prefix

of the greatest common prefix of the two topmost words of ŝ, i.e.,

top2(s)≤ top2(ŝ)⊓ top2(pop2(ŝ)).

Furthermore, f̂ is defined in such a way that LStck(f̂ 1, Enc(ĉ)) is the minimal mile-

stone of ŝ that has width |ŝ|. Thus, the elements encoded along the path from f 0 to

f̂ are also contained in the second topmost word of ŝ. Thus, if any of these is of link

level 2, then it points strictly below pop2(ŝ). But such a link cannot be constructed

from s by application of push operations because a push applied to a stack of width

|ŝ| cannot generate an element that points below pop2(ŝ).

Note that these conditions are MSO-definable on Enc(c)⊗ Enc(ĉ).

Thus, the pairs of configurations (c, ĉ) where the stack of ĉ can be generated from the stack

of c by a sequence of push operations form a regular set via Enc. Let S denote the set of

these pairs of configurations. Next, we show that there is an MSO formula ψ defining the

relation C from Definition 3.1.32 with respect to S.

We only present the proof for configurations of the second form. The proof for the first

case is analogous, just replace f 0 by d0.

Recall that n= |top2(ŝ)| − |top2(s)|. By definition of the encoding, there are nodes

f 0= g0 < g1 < g2 < · · ·< gn−1 < gn ≤ d̂

(uniquely determined) such that gi ∈ {0, 1}∗0 for all 1≤ i ≤ n.

Let wi be the topmost word of LStck(gi, Enc(ĉ)). We obtain a chain

top2(s) =: w0 < w1 < w2 < w3 < · · ·< wn = top2(ŝ)

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 141

where wi+1 extends wi by exactly one letter. Thus,

∃HLoops(popm
1
(ŝ)) = ∃HLoops(LStck(gn−m, Enc(ĉ))) for all 0≤ m≤ n.

Since ∃HLoops(LStck(gn−m, Enc(ĉ))) is MSO-definable at gn−m in Enc(ĉ), we can MSO-

definably access the pairs of initial and final states of high loops of all popm
1
(ŝ).

Since we are looking for runs from c to ĉ that do not visit a proper substack of the stack

of c, these consist of a sequence of high loops and push-operations.

Since the set of the gi, 0 ≤ i ≤ n, is MSO-definable and since their order is also MSO-

definable, there is a formula which is satisfied by Enc(c)⊗ Enc(ĉ) if and only if there is

such a run from c to ĉ not passing a substack of pop2(c): given a function f that labels gi

with a state qi, a formula can assert that there is a high loop followed by a push operation

from (qn−m, popm
1
(ĉ)) to (qn−(m−1), popm−1

1 (c)) for each 0 ≤ m < n such that the following

holds:

1. q0 = q, i.e., q0 is the state of c and

2. there is a high loop from (qn, ŝ) to ĉ = (q̂, ŝ).

The function f can be encoded by |Q| many sets. Thus, there is a formula ψ which asserts

that there is a function f which satisfies the conditions mentioned above.

For all configurations c, ĉ such that the stack of ĉ can be created from c by a sequence

of push transitions, Enc(c)⊗ Enc(ĉ) satisfies ψ if and only if there is a run from c to ĉ not

passing a proper substack of c.

Since we have already seen that the set S of pairs (c, ĉ) such that ĉ can be created from

c by a sequence of push transitions is also MSO-definable, we conclude that the Relation

C is regular via Enc.

Regularity of the Relation D

Recall that the relation D contains a pair (c, ĉ) of configurations for c = (q, s) and

ĉ = (q̂, ŝ) if and only if the following holds: s = popm
2
(ŝ) and there is a run from c to ĉ

not passing any substack of s after its initial configuration.

Recall that s = popn
2
(ŝ) implies that s is a milestone of ŝ. Hence, the existence of a run

from c to ĉ can be checked in a similar manner as the existence of a run from the initial

configuration to ĉ. Any run of the latter form passes s. If it passes s in state q this is a

witness for (c, ĉ) ∈ D.

Lemma 3.1.55. D is regular via Enc.

Proof. Fix a collapsible pushdown system S . The set

S := {Enc(c)⊗ Enc(ĉ) : c = (q, s), ĉ = (q̂, ŝ) ∈ CPG(S) and s = popn
2
(ŝ) for some n ∈ N}

is regular (cf. the proof of 3.1.51).

Let c, ĉ be configurations such that (c, ĉ) ∈ S. We write c = (q, s) and ĉ = (q̂, ŝ). Further-

more, since c ∈ CPG(S), there is a run ρ0 from (q0,⊥) to c.

There is a run ρ from c to ĉ if and only if there is a run ρ̂ := ρ0 ◦ ρ from (q0,⊥2) to ĉ

passing c.

142 3. Main Results

From the previous section, we know that there is a certificate for reachability Cρ̂ induced

by ρ̂ which labels each node e ∈ Enc(ĉ) by the last state in which ρ̂ passes LStck(e, Enc(ĉ)).

Since s is a milestone of ŝ, the rightmost leaf d of Enc(c) is a node in Enc(ĉ) such that

s = LStck(d, Enc(ĉ)).

If ρ does not visit any substack of c after its initial configuration, then Cρ̂(d) = q.

On the other hand, if Cρ̂(d) = q then there is a run ρ̂ and some i ∈ dom(ρ̂) such that

ρ̂(i) = (q, s) = c, ρ̂ ends in ĉ and after i no substack of s is visited. Thus, ρ̂↾[i+1,ln(ρ̂)]

witnesses (c, ĉ) ∈ D.

Since d is MSO-definable, there is a formula ψ such that Enc(c)⊗ Enc(ĉ) |=ψ for some

(c, ĉ) ∈ S, if and only if there is a certificate Cρ̂ for ĉ such that Cρ̂(d) = q. This means that

ψ defines D relatively to S. Since S is regular, we conclude that D is also regular.

Regularity of Reach

As already indicated, the regularity of A, B, C , and D directly implies the regularity of

REACH. We obtain the following corollary.

Corollary 3.1.56. Let S be a collapsible pushdown system of level 2. The expansion of the

graph of S by the reachability predicate is automatic, i.e., the graph (CPG(S), REACH) is

automatic. Thus, the FO(REACH)-theory of CPG(S) is decidable.

Regularity of ReachL

In the previous section, we proved that the reachability predicate REACH on collapsible

pushdown graphs is automatic via Enc. We improve this result and show that reachability

by a path that satisfies a regular expression is automatic.

Recall that for L ⊆ Γ∗ some regular language, REACHL is the binary relation that con-

tains configurations (c, ĉ) if and only if there is a run ρ from c to ĉ such that the labels of

the transitions used in ρ form a word w such that w ∈ L.

Let L be some regular language. We show that REACHL is automatic via Enc by con-

structing a version of the product of S with the automaton AL corresponding to L.

We show that CPG(S) is first-order interpretable in this product and we show that the

predicate REACHL on CPG(S) can be expressed via REACH on this product.

Before we state the lemma, we introduce some abbreviations. For x a variable and q a

state of some collapsible pushdown system S , we write x ∈ q for the FO formula stating

that x is a configuration with state q. This is definable because we assume that the label

of an incoming transition encodes the state of the node. Furthermore, all configurations

but the initial one have at least one incoming edge. Since the set Q of states is finite, we

also write x ∈Q′ where Q′ ⊆Q for the formula
∨

q∈Q′ x ∈ q.

Lemma 3.1.57. Let S = (Q,Σ,Γ, qi,∆) be a 2-CPS. Furthermore, let L1, L2, . . . , Ln ⊆ Γ
∗ be

regular languages. Then (CPG(S), (REACHLi
)1≤i≤n) is automatic via Enc.

Proof. Without loss of generality, we assume that n = 1 and write L for L1. The general

case is proved by iterating the following construction. Let AL = (F,Γ, fi, f f ,∆L) be the

finite string-automaton corresponding to L.

We define the product of S andAL to be the collapsible pushdown system

S̄ = (Q̄,Σ,Γ∪ {ǫi,ǫ f }, qi, ∆̄) where

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 143

• Q̄ :=Q ∪ (Q× F) and

• ∆̄ is the union

∆

∪ {(q,σ,ǫi, (q, fi), id) : σ ∈ Σ, q ∈Q}

∪ {(q,σ,ǫ f , (q, f f), id) : σ ∈ Σ, q ∈Q}

∪ {((q, f),σ,γ, (q′, f ′), op) : (q,σ,γ, q′, op) ∈∆ and (f ,γ, f ′) ∈∆L}.

Note that CPG(S) is FO definable in CPG(S̄): both graphs have the same initial con-

figuration and S̄ extends S only by transitions that lead to configurations with states in

Q× F . Hence, the restriction of CPG(S̄) to the set {x ∈ CPG(S̄) : x ∈Q} is isomorphic to

CPG(S).

On the other hand, by construction there is a path from ((q, fi), s) to ((q′, f f), s′) in

CPG(S̄) if and only if there is a path from (q, s) to (q′, s′) in CPG(S̄) whose path corre-

sponds to an accepting word of AL. Hence, (x , y) ∈ REACHL on CPG(S) corresponds

to

∃x ′∃y ′
�

x ⊢ǫi x ′ ∧ y ⊢ǫ f y ′ ∧ (x ′, y ′) ∈ REACH
�

on CPG(S̄). The closure of automaticity under first-order interpretations yields the desired

result.

3.1.5 Combination of FO and LµModel Checking

We have obtained an FO model checking algorithm for collapsible pushdown graphs of

level two. Recall that Hague et al. [27] have shown that there is an Lµ model check-

ing algorithm for the class of all collapsible pushdown graphs. It is a natural question

whether these two results can be combined. In order to give an answer to this question,

we investigate the following three questions.

1. Let CLµ be the class of graphs obtained by Lµ-interpretation from the class of level 2

collapsible pushdown graphs. Is the FO model checking problem on CLµ decidable?

2. Let CFO be the class of graphs obtained by FO-interpretation from the class of level 2

collapsible pushdown graphs. Is the Lµ model checking problem on CFO decidable?

3. Is MLFP4 model checking decidable on level 2 collapsible pushdown graphs?

Due to a recent result of Broadbent et al. [13], the first question can be answered posi-

tively. They proved the following result:

Theorem 3.1.58 ([13]). The global Lµ model checking for collapsible pushdown graphs is

decidable.5

4 Monadic least fixpoint logic (MLFP) is the smallest logic encompassing the expressive power of Lµ and

FO that has sensible closure properties.
5 The global model checking problem asks the following: given a formula ϕ ∈ Lµ and a graph G, what

are the nodes of G that satisfy ϕ, i.e., what is the set {g ∈G : G, g |= ϕ}?

144 3. Main Results

For the proof of this theorem, Broadbent et al. introduced an encoding of a collapsible

pushdown stack as a word with back-edges. A word with back-edges looks similar to a

nested word, but the back-edges are not well nested. Via this encoding, Lµ definable sets

of stacks are turned into sets of words with back-edges that are recognised by deterministic

automata on such words with back-edges. These automata work like finite automata on

ordinary words, but they propagate the state at a position in the word to the next position

and to those positions reachable via a back-edge. Broadbent et al. provide a construction

of an automaton on words with back-edges that corresponds to a given formula ϕ ∈ Lµ.

Using this construction one can then decide the global model checking problem.

For collapsible pushdown graphs of level two, their techniques imply that Lµ-definable

subsets are automatic via Enc as follows. Let S be a set of level 2 stacks. If the set of words

with back-edges encoding S is regular in the sense of Broadbent et al., then S is automatic

via Enc.

Hence, from the results of Broadbent et al. the next corollary follows immediately.

Corollary 3.1.59 ([13]). The Lµ-definable subsets in a 2-CPG are transformed into regular

sets of trees by the encoding function Enc.

From the decidability of model checking on automatic structures, we directly conclude

that first-order logic on collapsible pushdown graphs expanded by Lµ-definable predicates

is decidable.

Corollary 3.1.60. The graph of a collapsible pushdown system of level 2 enriched by Lµ-

definable predicates is automatic. Hence, its FO(Reg, (Ramn)n∈N, (∃
k,m)k,m∈N)-theory is de-

cidable.

Of course, this result is compatible with Lemma 3.1.57. Thus, Theorem 3.0.1 follows

directly from these two results.

After the positive answer to our first question, we give negative answers to the other two

questions. We show the undecidability of the Lµ model checking on graphs obtained by

first-order interpretations from collapsible pushdown graphs of level 2.

This negative answer to our second question implies also a negative answer to the third:

MLFP encompasses FO and Lµ whence for each FO-interpretation I and each Lµ-formula

ϕ there is a MLFP formulaψ such that A |=ψ if and only if IStr(A) |= ϕ for all structures A.

Since we show the undecidability of the second problem, the first one is also undecidable.

Recall that Lemma 2.2.2 shows the undecidability of the Lµ model checking on the

bidirectional half-grid (recall Figure 2.1). Due to this result, the following lemma implies

that Lµ model checking is undecidable on CFO.

Lemma 3.1.61. The bidirectional half-grid H is FO interpretable in a certain CPG of level 2.

Proof. Extending the idea for the MSO-undecidability result of Hague et al. [27], we con-

sider the following collapsible pushdown graph.

Let Q := {0, 1, 2},Σ := {⊥, a}, and∆ is given by (0,−, Cl1, 1, clone2), (1,−, A, 0, pusha,2),

(0,−, Cl2, 2, clone2), (2, a, P1, 2, pop1), (2, a, Co, 0, collapse), and (2, a, P2, 0, pop2) where

“−” denotes any letter from Σ. We call this example graph G (cf. Figure 3.15).

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 145

0,⊥
Cl1

2

1,⊥ :⊥
A

0,⊥ :⊥a
Cl1

Cl2

1,⊥ :⊥a :⊥a
A

0,⊥ :⊥a :⊥aa
Cl1

Cl2

. . .

2,⊥ :⊥ 2,⊥ :⊥a :⊥a
P1

P2
Co

2,⊥ :⊥a :⊥aa :⊥aa
P1

P2
Co

. . .

2,⊥ :⊥a :⊥ 2,⊥ :⊥a :⊥aa :⊥a
P1

P2

Co

. . .

2,⊥ :⊥a :⊥aa :⊥ . . .

Figure 3.15.: The collapsible pushdown graph G.

In order to interpret H = (H,→,↓,←,↑) in G, we first have to define the domain of this

interpretation. Let

ϕ(x) := ∃y x ⊢P2 y.

This formula defines all elements that are not in the first row of G and which have a pop2

and a collapse successor. Set

ϕnd(x , y) := ∃z∃z′
�

x ⊢Co z ∧ y ⊢P1 z′ ∧ z′ ⊢Co z
�

.

ϕnd defines the relation “y is on the diagonal to the right of the diagonal of x”. Set

ϕnc(x , y) := ∃z∃z′∃z′′
�

z ⊢Cl1 z′ ⊢A z′′ ∧ x ⊢P2 z ∧ y ⊢P2 z′′
�

.

This formula defines the relation “y is on the column to the right of the column of x”.

Now, y is the right neighbour of x if and only if

ϕ→ := ϕnd(x , y)∧ϕnc(x , y)

holds.

Hence, the FO-interpretation I := (ϕ,ϕ→,⊢P1 ,ϕ−1
→

, (⊢P1)−1) yields H= StrI(G).

In the following, we summarise observations concerning the optimality of our result.

A first question is whether the complexity of the FO model checking algorithm may be

improved. As we mentioned in Chapter 2.3, using automatic representations for model

checking purposes leads to nonelementary complexity of the model checking algorithm.

In the first part of this section we show a matching lower bound: any FO model checking

algorithm has nonelementary complexity. Then we briefly discuss a negative result con-

cerning model checking on higher levels of the collapsible pushdown hierarchy: Broadbent

[12] has shown that FO is undecidable on the third level of the collapsible pushdown hi-

erarchy.

3.1.6 Lower Bound for FO Model Checking

Recall that FO model checking on automatic structures has nonelementary complexity.

In the following theorem we show that there is no elementary algorithm for FO model

checking on collapsible pushdown graphs. The proof is by reduction to the nonemptyness

problem for star-free regular expressions. As an auxiliary step, we prove that FO model

checking on the full infinite binary tree is nonelementary.

146 3. Main Results

Lemma 3.1.62. The expression complexity of FO model checking on the full infinite binary

tree T := (T,≺, S1, S2) with prefix order ≺ and successor relations S1, S2 is nonelementary.

Proof. For each first-order sentence ϕ, there is a first-order sentence ϕ′(x) such that for

all t ∈ T, T |= ϕ′(t) if and only if T↾{t′:t′≺t} |= ϕ. Note that T↾{t′:t′≺t} can be considered as

a finite word structure over the alphabet {1, 2}: We identify an incoming S1 edge with the

label 1 and an incoming S2 edge with the label 2.

In this sense, the model checking problem for the formula ∃xϕ′(x) on T is equivalent to

the satisfiability problem for ϕ with respect to the class of word-structures. Via the classical

result of McNaughton and Papert [51] this problem is equivalent to the nonemptyness

problem for languages defined by star-free regular expressions. Since the latter problem

has nonelementary complexity [58], the claim follows.

Now, we present a reduction of the FO model checking on the full infinite binary tree to

the FO model checking on collapsible pushdown graphs.

Theorem 3.1.63. The expression complexity of any FO model checking algorithm for level 2

collapsible pushdown graphs is nonelementary.

Proof. For the proof of this theorem we modify the graph of example 3.15. Note that

(ω,<) is first order definable in this graph: restrict the domain to all elements with state

0. The order < is then defined via ϕ<(x , y) := ∃z z ⊢pop2 y ∧ z ⊢collapse x .

In order to obtain a binary tree from a collapsible pushdown graph we create an infinite

tree-like graph where every branch is a copy of the graph from example 3.15. The copies

are ordered in such a way that the first-order interpretation from above yields the full

binary tree when applied to this graph.

To this end, we duplicate the letter a and the label A. We introduce a new letter a′ and a

new label A′. Furthermore, for each transition where a occurs, we add the corresponding

transition where a is replaced by a′ as follows: we add the transitions (1,−, A′, 0, pusha′,2),

(2, a′, P1, 2, pop1), (2, a′, P2, 0, pop2), and (2, a′, Co, 0, collapse) where A′ is a new edge-

label.

On the resulting graph restricted to the configurations with states 0, the formula

ϕ<(x , y) from above defines the prefix order of the full infinite binary tree. Further-

more, the formulas ϕL(x , y) := ∃z x ⊢Cl z ⊢A y and ϕR(x , y) := ∃z x ⊢Cl z ⊢A′ y define the

left successor, respectively, the right successor relation.

Lemma 3.1.62 implies the desired result.

3.1.7 Model Checking on Higher-Order Collapsible Pushdown Graphs

Recently, Broadbent [12] developed a reduction of Post’s correspondence problem (PCP,cf.

[54]) to FO model checking on collapsible pushdown graphs of level 3. Since the PCP is un-

decidable, it follows that the FO model checking problem on level 3 collapsible pushdown

graphs is undecidable.

In fact, Broadbent’s proof comes in two variants: firstly, there is a fixed level 3 collapsible

pushdown graph with undecidable FO-theory. On this fixed graph, there is a first-order

formula for each instance of the PCP with the following property. The graph satisfies

this formula if and only if the corresponding instance of the PCP has a solution. Secondly,

3.1. Level 2 Collapsible Pushdown Graphs are Tree-Automatic 147

Broadbent provides a fixed formulaϕ ∈ FO such that there is a classC of level 3 collapsible

pushdown graphs such that the following holds. For each instance of the PCP there is a

graph G ∈ C such that G |= ϕ if and only if this instance of the PCP has a solution.

Thus, FO model checking on level 3 collapsible pushdown graphs is undecidable even

for either fixed structure or fixed formula.

3.2 An FO Model Checking Algorithm on Nested Pushdown Trees

This section analyses the FO model checking problem on the class of nested pushdown

trees. In the first part we reduce the FO(REACH) model checking problem to the FO(Reg)

model checking problem for level 2 collapsible pushdown automata. We show that there

is a first-order interpretation I such that for each nested pushdown tree N there is a col-

lapsible pushdown graph G of level 2 such that StrI(G) = N. Furthermore, I transfers

the reachability predicate on nested pushdown trees into a certain regular reachability

predicate on the collapsible pushdown graph.

In Sections 3.2.2–3.2.4 we have a closer look at the complexity of FO model check-

ing on nested pushdown trees. We develop several versions of the pumping lemma for

pushdown systems which are compatible with the jump edges in the following sense: ap-

plication of these lemmas to a run yields a short run with equivalent first-order type. The

bounds obtained by this lemma can be used as a constraint for Duplicator’s strategy in the

Ehrenfeucht-Fraïssé game on two identical copies of some nested pushdown tree. As in-

dicated in Section 2.1.1, this result can be turned into a model checking algorithm. Using

this approach, we show that the complexity of FO model checking on nested pushdown

trees is in 2-EXPSPACE.

3.2.1 Interpretation of NPT in CPG

In this section, we show that any nested pushdown tree can be first-order interpreted in

some collapsible pushdown graph of level 2. For this purpose, we fix a pushdown system

N = (Q,Σ,Γ,∆, q0). We show that there is a collapsible pushdown system of level 2 and a

first-order interpretation that yields the nested pushdown tree generated by the pushdown

system.

The basic idea is the following: every vertex of the nested pushdown tree generated by

N is a run, i.e., a list of configurations that are passed by this run. Every configuration

is a level 1-stack s and a state q. We write the state q on top of the stack s and obtain

the stack pushq(s). Then we represent a run (q1, s1) ⊢ (q2, s2) ⊢ . . . ⊢ (qn, sn) by the stack

pushq1
(s1) : pushq2

(s2) : · · · : pushqn
(sn). Using this encoding, we can simulate every

transition of the pushdown system by at most four stack operations of the collapsible

pushdown system and the nesting edges can be simulated by reverse collapse edges.

The following definition provides the details of this simulation.

Definition 3.2.1. LetN = (Q,Σ,Γ,∆, q0) be a pushdown system generating NPT(N). We

define a corresponding collapsible pushdown system

C(N) := (QC ,ΣC ,ΓC ,∆C , PUSH(q0))

of level 2 as follows:

148 3. Main Results

PUSH(q0), ⊥

γPush

q0,⊥

γ1

CLONE, ⊥q0

γClone

POP, ⊥q0 :

γPop

⊥q0

q0, ⊥q0 :

γ1

⊥

PUSH(q1), ⊥q0 :

γPush

⊥a

q1,⊥a

γ2

CLONE, ⊥q0 :

γClone

⊥aq1

POP, ⊥q0 :

γPop

⊥aq1 : ⊥aq1

q1, ⊥q0 :

γ2

⊥aq1 : ⊥a

PUSH(q2), ⊥q0 :

γPush

⊥aq1 : ⊥a

q2,⊥a

γ3

CLONE, ⊥q0 :

γClone

⊥aq1 : ⊥aq2

POP, ⊥aq0 :

γPop

⊥aq1 : ⊥aq2 : ⊥aq2

q2, ⊥q0 :

γ3

⊥aq1 : ⊥aq2 : ⊥a

γ,→

PUSH(q3), ⊥q0 :

γPush

⊥aq1 : ⊥aq2 : ⊥

q3,⊥ CLONE, ⊥q0 : ⊥aq1 : ⊥aq2 : ⊥q3

Figure 3.16.: Simulation of a nested pushdown tree in a collapsible pushdown graph of

level 2.

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 149

• ΣC :=Q ∪Σ.

• ΓC := Γ∪{γ,→,γClone,γPop,γPush} for γ,→,γClone,γPop,γPush new symbols not contained

in Γ.

• QC := {POP, CLONE}∪Q∪{PUSH(q) : q ∈Q}, where POP and CLONE, and PUSH(q)

are new auxiliary states used to perform exactly the stack operation indicated by the

name.

• ∆C consists of the following transitions:

– For q ∈Q and σ ∈ Σ, let

(PUSH(q),σ,γPush, CLONE, pushq,1),

(CLONE, q,γClone, POP, clone2), and

(POP, q,γPop, q, pop1)

be in ∆C . These transitions are auxiliary transitions that write the state of the

run onto the topmost word and create a clone of the topmost word preparing

the simulation of the next transition.

– For (q,σ,γ, p, id) ∈∆, set (q,σ,γ, PUSH(p), id) ∈∆C .

– For (q,σ,γ, p, pushτ) ∈∆ add (q,σ,γ, PUSH(p), pushτ,2) ∈∆C .

– For (q,σ,γ, p, pop1) ∈∆, set (q,σ,γ, PUSH(p), pop1) ∈∆C . This transition simu-

lates the pop1 transition. Moreover, whenever a pop1 occurs, we also have to sim-

ulate the jump-edge. For this purpose, we set (q,σ,γ,→, CLONE, collapse) ∈∆C .

Figure 3.16 shows a path in a nested pushdown tree generated by a pushdown system

N and the corresponding path in C(N). The following lemma shows that the original

nested pushdown tree is first-order definable in the graph generated by C(N).

Lemma 3.2.2. If N is a pushdown system that generates a nested pushdown tree NPT(N),

then NPT(N) is FO3-interpretable in CPG(C(N)).

Proof. First of all, note that C(N) is deterministic whenever it is in one of the states

{POP, CLONE} ∪ {PUSH(q) : q ∈Q}.

For all q ∈ Q, w ∈ Σ∗ and s a stack, we say that (CLONE, s) ∈ CPG(C(N)) represents a

run to (q, w) of N if top2(s) = wq (in this equality we forget about the links stored in s, of

course).

The following holds for all configurations (CLONE, s) that represent some run to some

configuration (q, w).

• (q,σ, p, id) ∈ ∆ iff there is a path from (CLONE, s) to (CLONE, s : w̄) for w̄ a word

such that (σ, s : w̄) represents a run to (p, w). If such a path exists, it consists of the

operations clone2; pop1; id; pushp.

• (q,σ, p, pushτ) ∈ ∆ iff there is a path from (σ, s) to (σ, s : w̄) for w̄ a word such

that (σ, s : w̄) represents a run to (p, wτ). If such a path exists, it consists of the

operations clone2; pop1; push(τ,2); pushp. Furthermore note, that τ has a link to the

stack s.

150 3. Main Results

• (q,σ, p, pop1) ∈ ∆ iff there is a path from (σ, s) to (σ, s : w̄) for w̄ a word such that

(σ, s : w̄) represents a run to (p, pop1(w)). If such a path exists, it consists of the

operations clone2; pop1; pop1; pushp.

From these observations, an easy induction shows that there is a bijection from the

domain of NPT(N) to those configurations of CPG(C(N)) which are in state CLONE. Fur-

thermore, the transition relation of NPT(N) is FO3-definable on this subset of CPG(C(N)).

Finally, we have to show the FO3-definability of the jump-edges of NPT(N) in

CPG(C(N)). For this purpose, note that a pushτ-transition in NPT(N) corresponds to

a pushτ,2-transition in the collapsible pushdown graph. From the analysis of the existence

of pushτ-transitions in N , we obtain directly that this (τ, 2) has a pointer to the config-

uration representing the run to the configuration precisely before this pushτ-transition is

simulated. When we later simulate a pop1-transition of NPT(N) that corresponds to this

pushτ-transition, then we remove one of the clones of the corresponding (τ, 2) from the

stack. From this, one easily sees that if (CLONE, s) represents a run to some configuration

(q, w) such that the last operation of this run was a pop1, then the prefix of the run up

to the step before the corresponding pushτ,2-transition is encoded in the unique config-

uration (CLONE, s′) such that there are configurations c, d such that c ⊢γ,→ (CLONE, s′)

and c ⊢γ d ⊢γPush (CLONE, s). It is also easy to see that all configurations that satisfy this

condition correspond to positions that simulate corresponding pushτ and pop1-transitions.

Hence, the jump-edges are actually FO2-definable in CPG(C(N)).

Corollary 3.2.3. The FO model checking of nested pushdown trees is decidable.

A closer look at the pushdown system C(N) even gives a better result: FO(REACH)

model checking on nested pushdown trees is decidable. First of all observe that reacha-

bility in a nested pushdown tree NPT(N) coincides with reachability in NPT(N) without

the use of jump-edges because jump-edges only connect vertices x and y where y is a

run extending the run x . But there is a one-to-one correspondence between reachability

along the transitions of the pushdown system N and reachability in CPG(C(N)) without

use of the collapse transitions. This is due to the fact that all transitions in C(N) that do

not perform a collapse are used to simulate at least one of the transitions of N . Hence,

the predicate REACH on NPT(N) reduces to REACH(ΓC\{γ,→})
∗ on CPG(C(N)). Thus, we

obtain the following extension of the previous corollary.

Theorem 3.2.4. FO(REACH) model checking on nested pushdown trees is decidable.

Remark 3.2.5. Moreover, FO(REACHL1
, REACHL2

, . . . , REACHLn
) is decidable on NPT(N)

if the Li are regular languages over Γ (i.e., not using ,→). This is due to the fact that each

γ ∈ Γ has a direct translation into a fixed sequence of labels in the simulating collapsible

pushdown graph.

Having shown that nested pushdown trees are first-order interpretable in collapsible

pushdown graphs of level 2, the question arises whether the reverse statement also holds.

Are collapsible pushdown graphs interpretable in the class of nested pushdown trees?

The answer to this question is negative if we restrict our attention to uniform first-order

interpretations.

In Lemma 3.1.62, we proved that the first-order model checking on collapsible push-

down graphs of level 2 has nonelementary complexity. In the next section, we present an

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 151

elementary first-order model checking algorithm for nested pushdown trees. Since first-

order interpretations can be used to transfer the first-order model checking problem, we

obtain the following theorem.

Theorem 3.2.6. There is no first-order interpretation I such that for each collapsible push-

down graph G of level 2, there is a nested pushdown tree NPT(N) such that

G= StrI(NPT(N)).

Proof. Heading for a contradiction, assume that such an interpretation I exists. Fix some

collapsible pushdown graph G such that its first-order model checking has nonelementary

expression complexity. Set N := NPT(N) such that G = StrI(N). By definition of a first-

order interpretation, for each sentence ϕ ∈ FO over the vocabulary of G, there is a formula

FrmI(ϕ) such that G |= ϕ if and only if N |= FrmI(ϕ). As we will see in the following

section, the question “N |= FrmI(ϕ)?” has elementary expression complexity. By definition

of I , FrmI(ϕ) has length linear in the length of ϕ which implies that the algorithm has

also elementary complexity in the size of ϕ. But then we obtain an elementary algorithm

deciding G |= ϕ by just calculating FrmI(ϕ) and solving N |= FrmI(ϕ). This contradicts

our assumption on G.

Remark 3.2.7. More generally, we can weaken our assumption on the interpretation I .

Assume that there is an elementary algorithm that, on input a collapsible pushdown

graph G of level 2, computes an interpretation I and a pushdown system N such that

G= StrI(NPT(N)). Let f be an elementary bound on the running time of this algo-

rithm in terms of the size of the pushdown system and the formula. Then we obtain

the following elementary model checking algorithm on the class of collapsible pushdown

graphs of level 2. Given G and a formula ϕ, we compute N , I and FrmI(ϕ) such that

GStrI(NPT(N)) in time f (|G|, |ϕ|). Note that |N | and the size of FrmI(ϕ) are bound by

f (|G|, |ϕ|). Using the model checking algorithm on nested pushdown trees, we can decide

whether NPT(N) |= FrmI(ϕ) in exp(exp(exp(f (|G|, |ϕ|)))).

This solves the model checking problem on collapsible pushdown graphs in running time

three-fold exponential in the elementary function f . This contradicts the result that FO

model checking on collapsible pushdown graphs has nonelementary complexity.

We have seen that first-order interpretations cannot be used to define collapsible push-

down graphs in nested pushdown trees. The question remains open whether there is

another logical interpretation that allows to interpret all collapsible pushdown graphs in

the class of nested pushdown trees. Before one could give a precise answer to this ques-

tion, we would have to specify what kind of interpretation we would like to consider.

Nevertheless, we conjecture that the answer to this question is negative for all meaningful

concepts of logical interpretation. We want to point out two facts that make it hard to

imagine an interpretation of all collapsible pushdown graphs in nested pushdown trees.

We already mentioned the gap in the complexity of Lµ model checking between the two

classes. Recall Theorem 2.3.24 which states that the Lµ model checking problem of level

2 collapsible pushdown graphs is 2-EXPTIME complete. On the other hand, recall that

Theorem 2.3.10 states that the Lµ model checking problem for nested pushdown trees is

in EXPTIME. This implies that any such interpretation would have to imply an exponential

152 3. Main Results

blowup in the size of the nested pushdown tree that is used to interpret some graph or the

interpretation cannot preserve Lµ formulas.

The second fact relies on comparison of the unfoldings of collapsible pushdown graphs

and nested pushdown trees. Recall that the class of collapsible pushdown graphs of level 2

encompasses also all higher-order pushdown graphs and these graphs are contained in the

second level of the Caucal hierarchy. Furthermore, recall that the third level of the Caucal

hierarchy is generated by applying graph unfoldings followed by MSO-interpretations to all

graphs in the second level. Hence, applying unfoldings followed by MSO-interpretations

to the collapsible pushdown graphs of level 2, we generate a class of graphs that contains

the third level of the Caucal hierarchy. If we apply the same transformation to nested

pushdown trees, we end up in the second level of the Caucal hierarchy due to the following

lemma.

Lemma 3.2.8. The unfolding U of a nested pushdown tree N is the ǫ-contraction of the

unfolding of a pushdown graph. Thus, any MSO-interpretation on U yields a graph in the

second level of the Caucal hierarchy.

Proof. Recall that a nested pushdown tree N is almost unfolded, in the sense that it is a tree

except for the jump-edges. Thus, the unfolding of N is obtained by the following operation.

We remove each jump-edge ρ ,→ π and we append a new copy of the subtree rooted at

π to ρ via a ,→-edge. Due to the definition of ,→, the stacks in the last configuration

of ρ and π agree and the run from ρ to π does only “see” the topmost element of this

stack. Hence, generating the unfolding boils down to the generation of the right number of

copies of the configuration (q2, s) for each run ρ ∈N ending in (q1, s) and to attaching the

subtrees induced by this configuration via ,→ to ρ. As we already mentioned, the number

of outgoing jump-edges from ρ to some position with state q2 only depends on the topmost

symbol of ρ and the pair (q1, q2). Using new states and ǫ-contraction, we can easily design

a pushdown system S that behaves as the one generating N, but which furthermore

generates the right number of copies of π at each configuration (by writing and removing

nondeterministically sufficiently many dummy symbols onto/from the stack).

We next show that first-order model checking on nested pushdown trees has elementary

complexity. More precisely, we present an algorithm that uses doubly exponential space

in the size of the pushdown system and the size of the formula. For this purpose, we

first investigate variants of the pumping lemma for pushdown systems that are compatible

with nested pushdown trees in the following sense. Application of the pumping lemma

to some run yields a shorter run such that both runs share the same first-order theory up

to a certain quantifier rank. In Section 3.2.4 we apply these lemmas in order to derive

a dynamic small-witness property for nested pushdown trees. This means that for any

existential quantification that is satisfied by some nested pushdown tree, there is a short

run witnessing this quantification. As explained in Section 2.1.1, this property gives rise

to a model checking algorithm. We prove that this algorithm is in 2-EXPSPACE.

3.2.2 A Modularity Result for Games on Graphs of Small Diameter

We prepare the pumping lemmas mentioned above by a general result on Ehrenfeucht-

Fraïssé games on certain graphs. We show that certain tuples of a given graph have the

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 153

same ≃ρ-type. This argument forms the back-bone of the modification of the pumping

lemma (Lemma 2.3.7) in order to obtain ≃ρ-preserving pumping lemmas.

Our lemma looks like a Gaifman-locality argument, but it can be used in situations where

ordinary locality arguments fail. It uses a locality argument on induced substructures

whence it can be applied to certain graphs that have a small diameter. The crucial property

of these graphs is that there are some generic edges that make the diameter small in the

sense that a lot of vertices are connected to the same vertex, but when these edges are

removed the diameter becomes large. Therefore, on the graph obtained by removing

these generic edges we can apply Gaifman-like arguments in order to establish partial

isomorphisms and ≃ρ-equivalence. Since disjoint but isomorphic neighbourhoods in such

a graph have generic edges to the same vertices (in the full graph), moving a tuple from

one neighbourhood to the other does not change the ≃ρ-type of the tuple.

We use the following notation.

For some structure G = (V, E1, E2, . . . , En) with binary relations E1, E2, . . . , En and sets

A, B ⊆ V we say that A and B touch if A∩ B 6= ; or if there are a ∈ A, b ∈ B such that

(a, b) ∈ Ei or (b, a) ∈ Ei for some i ≤ n. For a tuple ā ∈ A we define inductively the

l-neighbourhood of ā with respect to A, denoted An(ā), by setting A0(ā) := {ai ∈ ā}, and

Al+1(ā) := Al(ā)∪ {b ∈ A : there are i ≤ n and c ∈ Al(ā) s.t. (b, c) ∈ Ei or (c, b) ∈ Ei}.

In terms of Gaifman-neighbourhoods, Al(ā) is the l-local neighbourhood of ā with respect

to G↾A.

We say that A and B are isomorphic over C ⊆ V and write A ≃C B if there is some

isomorphism ϕ : G↾A ≃ G↾B such that for all a ∈ A, all c ∈ C , and all 1≤ i ≤ n,

(a, c) ∈ Ei iff (ϕ(a), c) ∈ Ei and (c, a) ∈ Ei iff (c,ϕ(a)) ∈ Ei.

Lemma 3.2.9. Let G = (V, E1, E2, . . . , En) be some structure, A, B ⊆ V not touch-

ing and let ϕ : A≃ B be an isomorphism of the induced subgraphs. Let ā ∈ A and

c̄ ∈ C := V \
�

A2ρ(ā)∪ B2ρ(ϕ(ā))
�

. Then

ϕ↾A2ρ−1(ā) : A2ρ−1(ā)≃C B2ρ−1(ϕ(ā)) implies G, ā,ϕ(ā), c̄ ≃ρ G,ϕ(ā), ā, c̄.

Proof. If ρ = 0, the claim holds trivially: since A and B do not touch, there are no edges

between the elements from ā and ϕ(ā); furthermore ϕ preserves all edges between ā and

c̄.

We prove the lemma by induction on ρ. We consider the first round of the Ehrenfeucht-

Fraïssé-game on G, ā,ϕ(ā), c̄ and G,ϕ(ā), ā, c̄. By symmetry, we may assume that Spoiler

extends the left-hand side ā,ϕ(ā), c̄, by some d ∈ V . We present a winning strategy for

Duplicator. The general idea is the following.

If Spoiler has chosen an element in A∪ B that is close to ā or ϕ(ā), then Duplicator

responds with applying the isomorphism ϕ. Otherwise, Duplicator just responds choosing

the same element as Spoiler. The details are as follows:

Local case: if d ∈ A2ρ−1(ā) set a′ := d and if d ∈ ϕ(A2ρ−1(ā)) set a′ := ϕ−1(d). We set

ā′ := ā, a′.

Since A2ρ−1(ā′)⊆ A2ρ(ā), we have

c̄ ∈ C ′ := V \
�

A2ρ−1(ā′)∪ϕ(A2ρ−1(ā′))
�

.

154 3. Main Results

By definition, there is some set

D ⊆
�

A\ A2ρ−1(ā′))∪ (B \ B2ρ−1(ϕ(ā′))
�

such that C ′ = C ∪ D.

We claim that there is no edge between any element in D and any element in A2ρ−1−1(ā
′).

If some d ∈ D satisfies d ∈ A, then by definition it has distance at least 2 from any

a ∈ A2ρ−1−1(ā
′). If d ∈ D satisfies d ∈ B then it has distance at least 2 from a ∈ A2ρ−1−1(ā

′)

because A and B do not touch.

Analogously, one proves that there is no edge between elements in D and elements in

ϕ(A2ρ−1−1(ā
′)).

Thus, we conclude that A2ρ−1−1(ā
′) ≃C ′ ϕ(A2ρ−1−1(ā

′)). By induction hypothesis, it

follows that

G, ā′,ϕ(ā′), c̄ ≃ρ−1 G,ϕ(ā′), ā′, c̄.

Nonlocal case: otherwise,

d ∈ C ′ := V \
�

A2ρ−1(ā)∪ϕ(A2ρ−1(ā))
�

and we set c̄′ := c̄, d.

Similarly to the local case, we conclude that A2ρ−1−1(ā) ≃C ′ ϕ(A2ρ−1−1(ā)) because A and

B do not touch and the distance between elements in A2ρ−1−1(ā) and elements in C ′ ∩A is

at least 2. Hence, by induction hypothesis

G, ā,ϕ(ā), c̄′ ≃ρ−1 G,ϕ(ā), ā, c̄′.

Thus, this strategy is winning for Duplicator in the ρ-round game.

3.2.3 ≃α-Pumping on NPT

Recall that ≃α coincides with ≡α. Thus, it describes equivalence with respect to FOα for-

mulas. In this section we want to develop a version of the pumping Lemma for pushdown

systems (Lemma 2.3.7) that preserves ≃α-types in the following sense. Given a tuple ρ̄ of

runs and another run ρ such that ρ is very long compared to the runs of ρ̄, then we want

to apply the pumping lemma in such a way that the resulting run ρ̂ is shorter than ρ and

such that ρρ̄ ≃α ρ̂ρ̄.

In order to achieve this, we use the game argument developed in the previous section

and we make a clever choice in the pumping argument. Let us first explain this choice: we

want to apply the pumping lemma to ρ and obtain a shorter run ρ̂. We apply the lemma

in such a way that ρ and ρ̂ share a long prefix and they share a long suffix in the sense

that the last n transitions of ρ and ρ̂ agree for some large n ∈ N. Later we specify what

long exactly means, but we first want to explain how this enables us to use the general

game argument in order to show that ρρ̄ ≃α ρ̂ρ̄.

The 2α-neighbourhood of ρ divides into two parts. The first part, denoted by Aρ, consists

of runs ρ′ that are very similar to ρ in the sense that there is a large common prefix of ρ

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 155

and ρ′. The other part, denoted by Cρ, consists of runs that are only reachable from ρ via

paths that pass a very small prefix of ρ. Now, the 2α-neighbourhood of ρ̂ is isomorphic to

the one of ρ in the following sense.

The elements in Aρ are reachable from ρ via a path such that every edge of this path only

changes a small final part of the runs connected by this edge. Thus, every intermediate

step shares a large initial prefix with ρ. Since ρ̂ coincides with ρ on the final transitions,

the path from ρ to an element in Aρ can be copied edge by edge. We obtain an element in

the neighbourhood of ρ̂ that has a large common prefix with ρ̂ because each edge that we

use only changes a small final part of the runs connected by this edge. Since this argument

applies to all runs in Aρ, we obtain an isomorphic copy Bρ̂ in the neighbourhood of ρ̂.

Now, we consider an element π ∈ Cρ. Any path from ρ to π starts with an initial part

that is contained in Aρ and then at some point we use a ,→-edge that connects an element

π′ ∈ Aρ with a short prefix π′′ of this element. Since all elements in Aρ share a large

common prefix, π′′ is a prefix of ρ. Since ρ and ρ̂ agree on an initial part, π′′ is also a

prefix of ρ̂. Now, the crucial observation is that we can copy the path from ρ to π′ edge

by edge to a path from ρ̂ to some π̂′ such that π′′ and π̂′ are connected by an ,→-edge.

Since this argument applies to all elements in Cρ, one derives that Cρ is also part of the

neighbourhood of ρ̂.

Using the game argument from the previous section, the isomorphism between Aρ and

Bρ̂ can be used to show that ρρ̄ ≃α ρ̂ρ̄.

In fact, we divide this≃α-preserving pumping lemma into three steps. The first translates

a given run into an equivalent run that ends in a configuration with small stack. The second

step translates such a run with small final stack into an equivalent run that only passes

small stacks. The last step translates a run that only uses small stacks into an equivalent

short run.

Later, we use the ≃α-preserving pumping argument in order to derive an elementary

bound for the complexity of FO model checking on nested pushdown trees.

In the following, we first state the three pumping lemmas that we want to prove in this

section. Afterwards, we will present the proof of each of these lemmas.

Before we state the first pumping lemma, we want to recall the necessary notation. Let

ρ be some run of a pushdown system ending in configuration c = (q, w) where q ∈ Q and

w ∈ Σ∗. Recall that, e.g., we write pop1(c) for pop1(w) and similarly we write top1(ρ) for

top1(c) = top1(w). Since we only consider level 1 pushdown systems, top2(ρ) is the final

stack of ρ. Recall that wdt(ρ) = wdt(w) denotes the width of the stack, i.e., wdt(ρ) = |w|.

Now, the first pumping lemma reduces the size of the last configuration of a given run,

while preserving its ≃α-type.

Lemma 3.2.10. Let N := NPT(N) be a nested pushdown tree. Let ρ̄ = ρ1,ρ2, . . . ,ρm ∈N

be runs and ρ ∈N another run such that

wdt(ρ)> wdt(ρi) + (2+ 2α+1)|Q| · |Σ|+ 2α+ 1 for all i ≤ m.

There is a ρ̂ ∈N such that wdt(ρ̂)< wdt(ρ) and N, ρ̄,ρ ≃α N, ρ̄, ρ̂.

In the second pumping lemma, we want to bound the size of all the stacks occurring in

a run. For this purpose, we define the following notation.

156 3. Main Results

Definition 3.2.11. Let max(ρ) denote the size of the largest stack occurring within ρ, i.e.,

max(ρ) :=max{wdt(ρ(i)) : i ∈ dom(ρ)}.

The second pumping lemma takes a run ρ and transforms ρ into an equivalent run ρ̂

such that max(ρ̂) is bounded in terms of wdt(ρ̂) = wdt(ρ).

Lemma 3.2.12. Let ρ̄ = ρ1,ρ2, . . . ,ρm ∈N and ρ ∈N such that

max(ρ)>max(ρi) + |Q|
2|Σ|+ 1 for all 1≤ i ≤ m, and such that

max(ρ)> |wdt(ρ)|+ |Q|2|Σ|+ 2α+ 1.

Then there is some ρ̂ ∈N such that

1. ρ̂ and ρ agree on their final configuration,

2. max(ρ̂)<max(ρ), and

3. N, ρ̄,ρ ≃α N, ρ̄, ρ̂.

In the third pumping lemma, we want to translate a run ρ into an equivalent run ρ̂

such that the length of ρ̂ is bounded in terms of max(ρ̂) ≤ max(ρ). For this purpose we

introduce a new measure Ξ for the length of a run. We first define Ξ. Then we present

the pumping lemma that transforms a run ρ into an equivalent run ρ̂ such that Ξ(ρ̂) is

bounded in terms of max(ρ̂)≤max(ρ). Afterwards, we show that the length of a run ρ̂ is

polynomially bounded in max(ρ̂) and Ξ(ρ̂).

Definition 3.2.13. Let ρ be a run of length n of some pushdown system. We denote the

number of occurrences of a stack w in ρ by |ρ|w :=
�

�{i ∈ N : ∃q ρ(i) = (q, w)}
�

�. By

SR(w,ρ) := {ρ̂ : ∃i, j ρ̂ = ρ↾[i, j], wÅρ} we denote the set of subruns of ρ whose stacks

are all prefixed by w. Then we define the maximal number of connected occurrences of some

stack to be

Ξ(ρ, w) :=max
�

|ρ̂|w : ρ̂ ∈ SR(w,ρ)
	

and

Ξ(ρ) :=max{Ξ(ρ, w) : w ∈ Σ∗}.

We first state the third pumping lemma. Then we show that it indeed bounds the length

of a run. The lemma is based on the fact that a long run ρ that does not visit large stacks

has to visit some configuration a lot of times. We can then safely delete a subrun ρ↾[i, j]
that connects this configuration with itself. The crucial observation is that this does not

change the isomorphism type of the neighbourhood if ρ↾[i, j] is approximately the middle

part of ρ.

Lemma 3.2.14. Let ρ̄ = ρ1,ρ2, . . . ,ρn ∈N := NPT(N) such that there is a BΞ ∈ N satisfy-

ing Ξ(ρi)≤ BΞ for all 1≤ i ≤ n. For ρ ∈N, there is some ρ̂ ∈N such that

1. max(ρ̂)≤max(ρ),

2. ρ and ρ̂ agree on their final configuration,

3. Ξ(ρ̂)≤ BΞ+ (2
α+1+ 2)|Q|+ 2α+ 1, and

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 157

4. N, ρ̄,ρ ≃α N, ρ̄, ρ̂.

We derive a bound on the length of ρ̂ from the bound on Ξ(ρ̂) by using the following

lemma.

Lemma 3.2.15. Let N be a pushdown system and ρ a run of N such that max(ρ) = h and

Ξ(ρ) = b, then ln(ρ)≤ bh+2−b

b−1
.

Proof. Set mh := b. For every w ∈ Σh and some subrun π ∈ SR(ρ, w) we have ln(π) ≤ mh

because the width of all stacks in s is h, which implies that all elements in s have stack w.

Now assume that every subrun π′ ∈ SR(ρ, v) for some v ∈ Σn+1 has ln(π′) ≤ mn+1. Let

w ∈ Σn be an arbitrary word and let π ∈ SR(π′, w). Then there are

0= e1 < e2 < · · ·< e f < e f +1 = ln(π)

such that for 0 ≤ i ≤ f , the stack at ei in π is w and π↾[ei+1,ei+1−1] is wi-prefixed for

some wi ∈ Σ
n+1. We have f ≤ b due to Ξ(π) ≤ Ξ(ρ) ≤ b. By assumption we get

ln(π)≤ (1+mn+1)b. Note that ρ ∈ SR(ρ,ǫ) whence

ln(ρ)≤ m0 = b+ bm1 = b+ b2+ b2m2 = · · ·= mh

h
∑

i=0

bi =
bh+2− b

b− 1
.

The rest of this section is concerned with the proofs of the pumping lemmas. The reader

who is not interested in these technical details may skip the rest of this section and con-

tinue reading Section 3.2.4.

We start with some auxiliary lemmas. These are concerned with the structure of runs

that are connected by a path of a given length n.

The first observation is that the final stack of runs ρ and ρ̂ that are connected by an edge

differ in at most one letter. Using this observation inductively, we obtain the following

lemma.

Lemma 3.2.16. Let ρ and ρ̂ be runs that are connected by a path of length n in some nested

pushdown trees. Then |wdt(ρ)−wdt(ρ̂)| ≤ n.

Next, we state another auxiliary lemma concerning prefixes of connected runs. Recall

that, for w some word and ρ some run, wÅρ holds if w is a prefix of all stacks occurring

in ρ.

Lemma 3.2.17. Let ρ and ρ̂ be runs of a pushdown system such that the following holds.

Setting n := ln(ρ), there is a word w ∈ Σ∗, a letter σ ∈ Σ, and numbers i < j ∈ dom(ρ)

such that top2(ρ(i)) = w, wÅρ↾[i,n] and wσÅρ↾[j,n].
For every ∗ ∈ {,→,←-,⊢,⊣}, if ρ ∗ ρ̂ then ρ̂ = ρ↾[0,i] ◦ ρ̂

′ for some ρ̂′ with wÅ ρ̂′.

Proof.

• If ρ̂ ⊢ ρ, then it follows immediately from i < j ≤ n that wÅ ρ̂′ := ρ̂↾[i,n−1].

158 3. Main Results

• If ρ ⊢ ρ̂, then ρ̂ extends ρ by one configuration. Since each stack operation al-

ters the height of the stack by at most one, top2(ρ(n)) = wσ implies directly that

wÅ ρ̂′↾[i,ln(ρ̂)].

• If ρ ,→ ρ̂, a similar argument as in the previous case applies. ρ̂ extends ρ only by

configurations that are prefixed by top2(ρ). Since the last stack of ρ is prefixed by w,

the claim follows immediately.

• Finally, consider the case that ρ̂ ,→ ρ. By definition of ,→, we have wσ ≤ ρ(i) for

all i ∈ dom(ρ) \ dom(ρ̂). Furthermore, ρ̂ is an initial segment of ρ. Thus, ρ↾[0,i] is

an initial segment of ρ̂. The claim follows because ρ̂↾[i,ln(ρ̂)] is an initial segment of

ρ↾[i,n] whence it is w prefixed.

Iterated use of the previous lemma yields the following corollary.

Corollary 3.2.18. Let ρ and ρ̂ be runs of a pushdown system such that the following holds.

Setting n := ln(ρ), there are words w, v ∈ Σ∗ with |v | ≥ m, and numbers i < j ∈ dom(ρ)

such that top2(ρ(i)) = w, wÅρ↾[i,n] and wv Åρ↾[j,n].
If ρ and ρ̂ are connected by a path of length m, then ρ̂ = ρ↾[0,i] ◦ ρ̂

′ such that wÅ ρ̂′.

Proof. The proof is by induction on m. The case m = 0 is trivial and the case m = 1 is

exactly the previous lemma. Assume that the claim holds for some m ∈ N. Let ρ and ρ̂ be

connected by a path of length m+ 1, i.e., ρ = ρ1 ∗ρ2 ∗ · · · ∗ρm = ρ̂ where each ∗ can be

replaced by an element of {,→,←-,⊢,⊣}.

For u := pop1(ρ), let k ∈ dom(ρ) be maximal such that top2(ρ(k)) = u for some q ∈ Q.

By definition uÅρ↾[k,n]. Due to the previous lemma, ρ↾[0,k] is an initial segment of ρ2 and

ρ2 = ρ↾[0,k] ◦ρ
′
2

with uÅρ′
2
.

Now, ρ2 and ρ̂ are connected by a path of length m− 1. Furthermore, ρ↾[0,i] is a prefix

of ρ2 and wÅρ2↾[i,ln(ρ2)]
. Moreover, there is some j such that pop1(wv)Åρ2↾[j,ln(ρ2)]

. By

induction hypothesis we conclude that ρ↾[0,i] is a prefix of ρ̂ and wÅ ρ̂′ := ρ̂↾[i,ln(ρ̂)].

We now prove the first pumping lemma that translates a given run ρ into an equivalent

one with small final stack.

Proof of Lemma 3.2.10. Let v := top2(ρ). Using the proof of Lemma 2.3.7, we find

w1 < w2 < v and numbers n1 < n2 ≤ ln(ρ) such that ρ(n1) = (q1, w1), ρ(n2) = (q2, w2)

and such that

ρ̂ := ρ↾[0,n1]
◦ρ↾[n2,ln(r)][w2/w1]

is a valid run. Because of the length of v , we can furthermore choose w1 and w2 such that

the following holds:

1. |w1|> wdt(ρi) for each i,

2. |v |> |w2|+ 2α, and

3. |w2| − |w1|> 1+ 2α+1.

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 159

We show that N, ρ̄,ρ ≃ρ N, ρ̄, ρ̂.

Recall that we write N2α(ρ) for the 2α-neighbourhood of ρ. Note that

wdt(ρ)−wdt(ρ̂) = |w2| − |w1|> 1+ 2α+1.

Using Lemma 3.2.16, one concludes that N2α(ρ) and N2α(ρ̂) do not touch.

Furthermore, due to condition 2 and Lemma 3.2.18 it follows that for all π ∈N2α(ρ) we

have π = ρ↾[0,n2]
◦ π′ for some run π′ with w2Åπ

′. Analogously, for all π ∈ N2α(ρ̂) we

have π = ρ↾[0,n1]
◦ π′ for some run π′ with w1Åπ

′. Lemma 2.3.6 and a straightforward

induction on the neighbourhoods of ρ and ρ̂ show that the function

ϕ : N2α(ρ)→N2α(ρ̂)

π 7→ ρ↾[0,n1]
◦π′[w2/w1] where

π′ := π↾[n2,ln(ρ)]

is a well-defined isomorphism between N2α(ρ) and N2α(ρ̂).

Finally, since wdt(ρ) > wdt(ρ̂) ≥ |w1| > wdt(ρi) + 2α, again by Lemma 3.2.18, ρi

cannot be in the 2α-neighbourhood of ρ or ρ̂. Hence, we apply Lemma 3.2.9 and obtain

that N, ρ̄,ρ ≃α N, ρ̄, ρ̂.

Next, we prove the second ≃α-type preserving pumping lemma that preserves the last

configuration of a run ρ, but reduces max(ρ). Recall that max(ρ) denotes the size of the

largest stack occurring in ρ.

Proof of Lemma 3.2.12. Let ρ1,ρ2, . . . ,ρm, and ρ be runs such that

max(ρ)>max(ρi) + |Q|
2|Σ|+ 1 for all 1≤ i ≤ m, and such that

max(ρ)> |wdt(ρ)|+ |Q|2|Σ|+ 2α+ 1.

We construct ρ̂ as follows.

Let i ∈ dom(ρ) be such that ρ(i) = (q, w) for some q ∈Q and w ∈ Σ∗ with |w|=max(ρ).

This implies |w|> |Q2||Σ|+ 2α+ 1+wdt(ρ).

Now, using the proof of Lemma 2.3.7 we find w1 < w2 ≤ w and numbers

n1 < n2 < m2 < m1

such that

1. max(ρi)< |w1|,

2. |w1|> wdt(ρ) + 2α+ 1, and

3. ρ̂ := ρ↾[0,n1]
◦ρ↾[n2,m2]

[w2/w1] ◦ρ↾[m1,ln(ρ)] is a valid run.

Now, we set

m′
1

:= m1− (n2− n1)− (m1−m2),

ρA := ρ↾[0,m1+1] and

ρB := ρ̂↾[0,m′
1
+1].

160 3. Main Results

Note that ρ̂ = ρB ◦ρ↾[m1+1,ln(ρ)].

We use Lemma 3.2.9 to show that N, ρ̄,ρ ≃α N, ρ̄, ρ̂. For this purpose we set

A :=
�

π ∈N2α(ρ) : π= ρA ◦π
′,π′ some run
	

and

B :=
�

π ∈N2α(ρ̂) : π= ρB ◦π
′,π′ some run
	

.

Observe that ρA /∈ A and ρB /∈ B: this is due to Lemma 3.2.16 and the fact that

wdt(ρA) = |w1| − 1> wdt(ρ) + 2α.

The proof for ρB and B is analogous. Furthermore, for all π ∈ A and all π′ ∈ B we have

π(m′
1
+ 1) = ρA(m

′
1
+ 1) 6= ρB(m

′
1
+ 1) = π′(m′

1
+ 1).

This is due to the fact that ρB ends in stack pop1(w1) (at position m′
1
+ 1) and

w1ÅρA(m
′
1
+ 1) because n1 ≤ m′

1
+ 1≤ m1.

We conclude that the greatest common prefix of some a ∈ A and some b ∈ B is a proper

initial prefix of both runs. Hence, a and b are not connected by an edge whence A and B

do not touch.

Furthermore, note that ρi /∈ A∪ B because for all π ∈ A∪ B, we have

max(π)≥max(ρB)≥ |w1|>max(ρi).

Recall that A2α(ρ) denotes the 2α-neighbourhood of ρ in the subgraph induced by A. We

claim that there is an isomorphism ϕ of the induced subgraphs

ϕ : A2α(ρ)≃ B2α(ρ̂)

ρA ◦π 7→ ρB ◦π.

For the proof of this claim, note that for any two runs π′,π′′ of length at least 1, and for

∗ ∈ {⊢,⊣, ,→,←-} we have

ρA ◦π
′ ∗ ρA ◦π

′′ iff

ρB ◦ π
′ ∗ ρB ◦π

′′.

From this observation it follows by induction on the distance from ρ that

ϕ(A2α(ρ))⊆ B2α(ρ̂).

Analogously, by induction on the distance from ρ̂ one shows that

B2α(ρ̂)⊆ ϕ(A2α(ρ)).

One concludes immediately that ϕ is an isomorphism.

In order to apply the game argument, we finally have to show that ϕ and ϕ−1 preserve

edges between N \ (A2α(ρ)∪ B2α(ρ̂)) and A2α−1(ρ) or B2α−1(ρ̂), respectively. Assume that

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 161

a ∈ A2α−1(ρ) and c ∈ N \
�

A2α(ρ) ∪ B2α(ρ̂)
�

. We claim that if a and c are connected by

some edge, then we have c ,→ a.

Note that a ⊢ c or a ,→ c implies that a is a subrun of c and therefor c ∈ A2α(ρ) by

definition of A. If c ⊢ a, then wdt(c)≤ wdt(ρ)|+2α < |w1|−1. Hence, c 6= ρA. Since ρA is

a proper initial segment of a, this implies c ∈ A2α(ρ).

Thus, if c ∈ N \
�

A2α(ρ)∪ B2α(ρ̂)
�

is connected to a then c ,→ a and c is a proper

initial segment of ρA. Since the last stack of a and c agree and wdt(a) < |w1|, c is

an initial segment of ρ↾[0,n1]
. Furthermore, if the stack at a(i) is prefixed by some

v < w1 for all n1 ≤ i ≤ ln(a), then the stack of ϕ(a)(j) is prefixed by some v < w1 for

all n1 ≤ j ≤ ln(ϕ(a)). Moreover, ρ↾[0,n1]
is an initial segment of ϕ(a) whence c ,→ ϕ(a).

An completely analogous analysis of ϕ−1 shows that ϕ−1 preserves edges between

B2α−1(ρ̂) and N \
�

A2α(ρ)∪ B2α(ρ̂)
�

.

Thus, we can apply Lemma 3.2.9 and obtain that

N, ρ̄,ρ ≃α N, ρ̄, ρ̂

and ln(ρ̂)< ln(ρ).

Now, either max(ρ̂) <max(ρ) or we can apply the same construction again to ρ̂. Since

ln(ρ) is finite and the length decreases in every step, we eventually construct a run ρ̂ with

max(ρ̂)<max(ρ).

By now, we have shown how to preserve the ≃α-type of a run while bounding the size

of all stacks that occur.

Recall the statement of Lemma 3.2.15: if the size of the stacks that occur in a run ρ is

bounded, then a bound on Ξ(ρ) can be used to calculate a bound on the length of ρ. Ξ(ρ)

is the maximal number of occurrences of a word w in a w prefixed subrun of ρ.

For the proof of the third pumping lemma, we need some insight into the relationship of

Ξ(ρ, w) and Ξ(π, w) for runs ρ and π that are connected in NPT(N). Before we come to

these insights, we introduce the following notation.

Definition 3.2.19. For ρ̂ = ρ↾[i, j] we call ρ̂ a left maximal subrun of ρ if ρ̂ ∈ SR(w,ρ)

and w 6≤ ρ(i− 1). Analogously, we call ρ̂ a right maximal subrun of ρ if ρ̂ ∈ SR(w,ρ) and

w 6≤ ρ(j + 1). We call ρ̂ maximal if it is left and right maximal.

Lemma 3.2.20. Let ρ = ρ1 ◦ρ2 ◦ρ3 be a run such that ρ2 ∈ SR(w,ρ) is maximal for some

w ∈ Σ∗. If ρ ,→ π or ρ ⊢ π for some run π, then π decomposes as π = ρ1 ◦ π2 ◦ π3 for

π2 ∈ SR(w,π) maximal. In this case, we have

|π2|w − |ρ2|w ∈ {0, 1}.

Proof. For ρ ⊢ π, the proof is trivial because π extends ρ by exactly one configuration.

It remains to consider the case ρ ,→ π. Due to the maximality of ρ2, we have ln(ρ3) = 0

or ρ3(1) < w. If ρ3(1) < w, then π = ρ1 ◦ ρ2 ◦ ρ3 ◦ π
′ for some run π′ which implies

π2 = ρ2.

Otherwise, if ln(ρ3) = 0, then ρ = ρ1◦ρ2. Hence, π= ρ1◦ρ2◦π
′ such that the last stacks

of ρ2 and π′ agree and w ≤ ρ2(ln(ρ2)) = π
′(ln(π′))< π′(i) for all 1≤ i < ln(π′). Thus, if

w is the stack of ρ2(ln(ρ2)) then |ρ2 ◦π
′|w = |ρ2|w + 1. Furthermore, if w < ρ2(ln(ρ2)),

then |ρ2 ◦π
′|w = |ρ2|w.

162 3. Main Results

This lemma has two corollaries that we are going to use in the proof of the third pumping

lemma.

Corollary 3.2.21. Let ρ,ρ′ be runs such that ρ ⊢ρ ′ or ρ ,→ ρ′. If ρ decom-

poses as ρ = ρ1 ◦ρ2 where ρ2 is a maximal, w-prefixed subrun, then ρ′ decomposes as

ρ′ = ρ1 ◦ρ2 ◦ρ
′
3

such that ρ2 ◦ρ
′
3

is maximal and w-prefixed such that

|ρ2 ◦ρ
′
3
|w − |ρ2|w ∈ {0, 1}.

Corollary 3.2.22. Let ρ = ρ1 ◦ ρ2 ◦ ρ3 be a run such that ρ2 ∈ SR(w,ρ) is maximal for

some w ∈ Σ∗. Let π be a run that is connected to ρ via a path of length n that only visits runs

π′ such that ρ1 is a prefix of π′, then π decomposes as π = ρ1 ◦π2 ◦π3 for π2 ∈ SR(w,π)

maximal. In this case, we have

|π2|w − |ρ2|w ≤ n.

A straightforward induction proves this corollary.

Using these results, we can prove the third pumping lemma, which bounds Ξ(ρ). The

proof relies on the fact that for some large run ρ, we find initial segments ρ1 and ρ2 of

ρ ending in the same configuration (q, w) such that |ρ1|w is much smaller than |ρ2|w for

some word w and some state q.

Proof of Lemma 3.2.14. Assume Ξ(ρ) is too big in the sense that there is a word w ∈ Σ∗

such that Ξ(ρ′, w) > BΞ + (2
α+1+ 2)|Q|+ 2α + 1 for some ρ′ ∈ SR(w,ρ), i.e., for some w

prefixed subrun ρ′ of ρ.

Then there is a decomposition of ρ as ρ = ρ1 ◦ρ2 ◦ρ3 ◦ρ4 ◦ρ5 such that the following

holds.

1. ρ2 ◦ρ3 ◦ρ4 ∈ SR(w,ρ),

2. ρ2(0) = ρ3(0) = (q, w) for some q ∈Q,

3. |ρ2|w ≥ 2α+1+ 2,

4. |ρ3|w > BΞ,

5. |ρ4|w = 2α, and

6. ρ4 is right maximal in SR(w,ρ), (this implies ln(ρ5) = 0 or w < ρ5(1)).

We set ρ̂ := ρ1 ◦ρ3 ◦ρ4 ◦ρ5 omitting ρ2 in ρ and claim that N, ρ̄,ρ ≃α N, ρ̄, ρ̂. The proof

uses again Lemma 3.2.9. Let

B := {π̂ ∈N : π̂= ρ1 ◦ρ3 ◦ π̂1 ◦ π̂2, π̂1 ∈ SR(w, π̂) right maximal and|π̂1|w ≤ 2α+1} and

A := {π ∈N : π= ρ1 ◦ρ2 ◦ρ3 ◦π1 ◦π2,π1 ∈ SR(w,π) right maximal and|π1|w ≤ 2α+1}.

First note that for all 1 ≤ i ≤ n, ρi /∈ A∪ B because Ξ(ρi) < BΞ < |ρ3|w ≤ Ξ(π) for all

π ∈ A∪ B.

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 163

Now, we show that A and B do not touch. Let

a = ρ1 ◦ρ2 ◦ρ3 ◦π1 ◦π2 ∈ A

such that π1 is right maximal in SR(a, w) and

b = ρ1 ◦ρ3 ◦ π̂1 ◦ π̂2 ∈ B

such that π̂1 is right maximal in SR(b, w).

Heading for a contradiction, we assume that there is some edge connecting a and b.

There are the following cases.

1. Assume that a ,→ b or a ⊢ b. In both cases we have b = a ◦ π′ for some run π′.

The assumption implies that ρ2 ◦ ρ3 is a prefix of ρ3 ◦ π̂1 ◦ π̂2. Note that ρ2 ◦ ρ3 is

w prefixed, while π̂2(1) is not w prefixed (if ln(π̂2) ≥ 1). Thus, we conclude that

ρ2 ◦ρ3 is a prefix of ρ3 ◦ π̂1. But this clearly contradicts

|ρ2 ◦ρ3|w ≥ BΞ+ 2α+1+ 2> BΞ+ 2α+1 ≥ |ρ3 ◦ π̂1|w.

2. Assume that b ,→ a or b ⊢ a. Due to |ρ2 ◦ρ3|w > |ρ3 ◦ π̂1|w, ρ3 ◦ π̂1 is a proper prefix

of ρ2 ◦ρ3.

It follows that ln(π̂2) = 0: otherwise, π̂2(1) = ρ3(j) for some j ∈ dom(ρ3). But this

leads to the contradiction that w 6≤ π̂2(1) = ρ3(j) due to the right maximality of π̂1

but w ≤ ρ3(j) by definition of ρ3.

Hence, Corollary 3.2.21 shows that

|ρ2 ◦ρ3 ◦π1 ◦π2|w ≤ |ρ3 ◦ π̂1|+ 1.

But this contradicts the fact that

|π̂1|w + 1≤ 2α+1+ 1< 2α+2+ 2≤ |ρ2|w.

Thus, A and B do not touch. Now, the map

ϕ : A→ B

ρ1 ◦ρ2 ◦π 7→ ρ1 ◦π

is clearly well-defined. Furthermore, it is an isomorphism. For ∗ ∈ {⊢,⊣, ,→,←-} and for

runs π,π′ with ρ2(0) = π(0) = π
′(0) we have

(ρ1 ◦ρ2 ◦π) ∗ (ρ1 ◦ρ2 ◦π
′)

iff π ∗ π′

iff (ρ1 ◦π) ∗ (ρ1 ◦π
′).

In order to apply Lemma 3.2.9, we have to show that ϕ and ϕ−1 preserve edges between

N \
�

A2α(ρ)∪ B2α(ρ̂)
�

and A2ρ−1(ρ) or B2ρ−1(ρ̂), respectively.

164 3. Main Results

Note that for k < 2α, Corollary 3.2.22 states that a ∈ Ak(ρ) implies

a = ρ1 ◦ρ2 ◦ρ3 ◦π1 ◦π2

for some right maximal π1 ∈ SR(w, a) such that |π1|w ∈ [2
α− k, 2α+ k].

One immediately concludes that a ⊢ c, c ⊢ a, or a ,→ c implies that c ∈ A2α(ρ) because

c = ρ1 ◦ρ2 ◦ρ3 ◦ π̂1 ◦ π̂2

for some right maximal subrun π̂1 ∈ SR(w, c) with |π̂1|w ∈ [2
α− k− 1, 2α+ k+ 1]. Since

this contradicts the assumption that c /∈ A2α(ρ), we only have to consider the case c ,→ a.

We analyse three possibilities.

1. If the last stack of a is w prefixed, then Corollary 3.2.21 implies that c ∈ A2α(ρ) which

contradicts the assumption on c.

2. If the last stack of a is not w prefixed and c is not a proper prefix of ρ1, then

c = ρ1 ◦ρ2 ◦ρ3 ◦π1 ◦ π̂2

where π̂2(1) = π2(1). But then c ∈ A2α(ρ) which again contradicts the assumption

on c.

3. Finally, we consider the case that c is a proper prefix of ρ1. Since the last stack of c is

then a proper prefix of w, one concludes immediately that

c ,→ ϕ(a) = ρ1 ◦ρ2 ◦π1 ◦π2.

Using the analogous arguments with reversed roles for A and B, one shows that ϕ−1 also

preserves the edges from B2α−1(ρ̂) to N \
�

A2α(ρ)∪ B2α(ρ̂)
�

.

Hence, Lemma 3.2.9 shows that

N, ρ̄,ρ ≃α Nρ̄, ρ̂.

Iteration of this construction eventually leads to the construction of some ρ̂ that satisfies

the lemma.

3.2.4 First-Order Model Checking on NPT is in 2-EXPSPACE

Using the three pumping lemmas we can now establish a dynamic small witness property

for nested pushdown trees: let ϕ(x1, x2, . . . , xn) be an FO formula that is satisfied by

some nested pushdown tree NPT(N) with parameters ρ1,ρ2, . . . ,ρn ∈ NPT(N). Then the

outermost existential quantification occurring in ϕ is witnessed by a small run ρ such that

the length of ρ is bounded in terms of the length of ρ1,ρ2, . . . ,ρn. In order to state this

fact in a precise manner, we first define the appropriate notion of a small run.

Definition 3.2.23. Let N = (Q,Σ,Γ,∆, q0) be a pushdown system. For j ≤ k ∈ N we say

that some ρ ∈ NPT(N) is (j, k)-small if

wdt(ρ)≤ 6|N |2 j2k, max(ρ)≤ 8|N |3 j2k, and Ξ(ρ)≤ 6|N | j2k.

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 165

Now, we can put all the pumping lemmas together in order to prove the existence of a

small ≃α-equivalent tuple for every tuple of elements.

Lemma 3.2.24. Let N = (Q,Σ,Γ,∆, q0) be a pushdown system and

ρ̄ = ρ1,ρ2, . . . ,ρi−1 ∈ NPT(N)

such that ρ j is (j,α)-small for all 1 ≤ j ≤ i − 1 and 1 ≤ i ≤ α ∈ N. For each ρi ∈ NPT(N),

there is an (i,α)-small ρ′
i
∈ NPT(N) such that

NPT(N), ρ̄,ρi ≃α−i NPT(N), ρ̄,ρ′
i
.

Proof. Given ρi, the first pumping lemma (Lemma 3.2.10) shows that there is some

a ∈ NPT(N) such that

N, ρ̄,ρi ≃α−i N, ρ̄, a and

wdt(a)≤ 6|N |2i2α+ |Q||Σ|(2+ 2(α−i)+1) + 2(α−i)+ 1≤ 6|N |2i2α.

Due to the second pumping lemma (Lemma 3.2.12), there is some b ∈N such that

N, ρ̄, a ≃α−i N, ρ̄, b,

b(ln(b)) = (q, w) = a(ln(a)) for some q ∈Q, w ∈ Σ∗, and

max(b)≤ 8|N |3i2α+ |Q|2|Σ|+ 1≤ 8|N |3i2α.

Finally, we apply the third pumping lemma (Lemma 3.2.14) and find some c ∈N such that

N, ρ̄, b ≃α−i N, ρ̄, c,

c(ln(c)) = (q, w) = b(ln(b)) for some q ∈Q, w ∈ Σ∗,

max(c)≤max(b), and

Ξ(c)≤ 6|N |i2α+ (2α−i+1+ 2)|Q|+ 2α−i + 1≤ 6|N |i2α.

In the terminology of Section 2.1.1, the previous lemma shows that there is a finitary

constraint S for Duplicator’s strategy in the Ehrenfeucht-Fraïssé game. We set

SNPT(N)(m) := {ρ1,ρ2, . . . ,ρm ∈ NPT(N)m : ρi is (i,α)-small for all i ≤ m}

and S := (Si)i≤α. With this notation, the previous lemma shows that Duplicator has an

S-preserving winning strategy in the α-round Ehrenfeucht-Fraïssé-game on two copies of

NPT(N). As explained in Section 2.1.1, such a strategy has a direct translation into a

model checking algorithm.

Theorem 3.2.25. The Algorithm 3 (see next page) solves the FO model checking problem

on nested pushdown trees, i.e., given a pushdown system N and a sentence ϕ ∈ FOα,

NPTModelCheck accepts the input (N ,α,;,ϕ), if and only if NPT(N) |= ϕ. The structure

complexity of this algorithm is in EXPSPACE, while its expression and combined complexity

are in 2-EXPSPACE.

166 3. Main Results

Algorithm: NPTModelCheck(N ,α, ā,ϕ(x̄))

Input: a pushdown system N generating N := NPT(N), α ∈ N, ϕ ∈ FOα, an

assignment x̄ 7→ ā for tuples x̄ , ā of arity m such that ā is (m,α)-small

if ϕ is an atom or negated atom then
if N, ā |= ϕ(x̄) then accept else reject;

if ϕ = ϕ1 ∨ϕ2 then

if NPTModelCheck(N,α, ā,ϕ1) = accept then accept else
if NPTModelCheck(N,α, ā,ϕ2)= accept then accept else reject;

if ϕ = ϕ1 ∧ϕ2 then
if NPTModelCheck(N,α, ā,ϕ1)= NPTModelCheck(N,α, ā,ϕ2)= accept then accept

else reject;
if ϕ = ∃xϕ1(x̄ , x) then

check whether there is an a ∈N such that a is (m+ 1,α)-small and

NPTModelCheck(N,α, āa,ϕ1)= accept;
if ϕ = ∀x iϕ1 then

check whether NPTModelCheck(N,α, āa,ϕ1)= accept holds for all (m+ 1,α)-small

a ∈N;

Algorithm 3: FO model checking on nested pushdown trees

Proof. The correctness of the algorithm follows directly from the correctness of Algorithm

2 and from Lemma 3.2.24.

We analyse the space consumption of this algorithm. Due to Lemma 3.2.15 an

(i,α)-small run ρ has bounded length. It can be stored as a list of exp(O(i|N |4αexp(α)))

many transitions. Thus, we need exp(O(i|N |4αexp(α))) log(N) space for storing one run.

Additionally, we need space for checking whether such a list of transitions forms a valid

run and for checking the atomic type of the runs. We can do this by simulation of N . The

size of the stack is bounded by the size of the runs. Since we have to store up to α many

runs at the same time and i is bounded by α≤ |ϕ|, the algorithm is in

DSPACE
�

|ϕ| log(|N |)exp(O(|N |4|ϕ|2 exp(|ϕ|)))
�

⊆

DSPACE
�

exp(O(|N |4 exp(2|ϕ|)))
�

⊆ 2-EXPSPACE(|N |+ |ϕ|).

If the formula ϕ is fixed, the space consumption of the algorithm is exponential in the size

of N . Thus, the structure complexity of first-order model checking on nested pushdown

trees is in EXPSPACE.

Remark 3.2.26. Recall that we proved the existence of a nonelementary FO(REACH)model

checking algorithm for nested pushdown trees. There is no hope in finding an elementary

algorithm. A straightforward adaption of the proof of Theorem 3.1.63 shows this. As

in the case of collapsible pushdown graphs, one can define a nested pushdown tree that

is the full binary tree where each branch looks like the graph in Example 2.2. For similar

arguments as in the proof of Theorem 3.1.63, FO model checking on the full infinite binary

tree can be reduced to FO(REACH) model checking on this nested pushdown tree.

3.2. An FO Model Checking Algorithm on Nested Pushdown Trees 167

3.3 Higher-Order Nested Pushdown Trees

In this chapter, we propose the study of a new hierarchy of graphs. We combine the

idea underlying the definition of nested pushdown trees with the idea of higher-order

pushdown systems and obtain a notion of a higher-order nested pushdown tree. We first

give a formal definition of this hierarchy. Afterwards, we compare this new hierarchy with

the hierarchies of higher-order pushdown graphs and collapsible pushdown graphs.

Recall that nested pushdown trees are FO-interpretable in collapsible pushdown graphs

of level 2. We show that this result extends to the whole hierarchy. Every nested pushdown

tree of level n is FO-interpretable in some collapsible pushdown graph of level n+ 1.

In the final part of this chapter we then prove the decidability of the first-order model

checking on level 2 nested pushdown trees. The approach is an adaption of the idea

underlying the decidability proof of the level 1 case: we prove that there is a strategy in

the Ehrenfeucht-Fraïssé game such that Duplicator always chooses small runs. But the

techniques involved in the proof of the existence of such a strategy are very different from

those in the level 1 case.

3.3.1 Definition of Higher-Order Nested Pushdown Trees

We want to define the notion of higher-order nested pushdown trees. Recall that a nested

pushdown tree is the unfolding of a pushdown graph extended by a jump-relation ,→ that

connects corresponding push- and pop operations. Extending this idea to higher levels, one

has to define what corresponding push- and pop operations in a level n pushdown system

are. In order to obtain well-nested jump-edges, we concentrate on the push- and pop op-

erations of the highest level, i.e., for a level n pushdown system we look at corresponding

clonen and popn operations.

Definition 3.3.1. Let N = (Σ,Γ,Q, q0,∆) be a pushdown system of level n.6 Then the

level n nested pushdown tree N := NPT(N) is the unfolding of the pushdown graph of N

expanded by the relation ,→ which connects each clonen operation with the corresponding

popn operation, i.e., for runs ρ1,ρ2 ofN we have ρ1 ,→ ρ2 if ρ2 decomposes as ρ2 = ρ1◦ρ

for some run ρ from (q, s) to (q′, s) of length n such that

ρ(0) ⊢clonen ρ(1),

ρ(n− 1) ⊢popn ρ(n), and

ρ(i) 6= (q̂, s) for all 1≤ i < n and all q̂ ∈Q.

Remark 3.3.2. Another view on the jump edges is the following. Some run ρ1 is connected

via ,→ to some other run ρ2 if ρ2 decomposes as ρ2 = ρ1 ◦ρ where ρ consists of a clonen

operation followed by a “level n return”. It is straightforward to show that ρ1 ,→ ρ2 if and

only if ρ2 = ρ1 ◦ ρ for some run ρ of length at least 2 such that |ρ(0)| = |ρ(ln(ρ)| and

|ρ(i)|> |ρ(0)| for all 0< i < ln(ρ).

In the following, we write n-NPT for “nested pushdown tree of level n”.

6 We stress that N is a pushdown system without links and without collapse-transitions.

168 3. Main Results

3.3.2 Comparison with Known Pushdown Hierarchies

The hierarchy of higher-order nested pushdown trees is a hierarchy strictly extending the

hierarchy of trees generated by higher-order pushdown systems. Furthermore, it is first-

order interpretable in the collapsible pushdown hierarchy. In fact, this relationship of the

hierarchies is level by level. In the following, we prove these claims.

We start by adapting the first-order interpretation of nested pushdown trees in collapsi-

ble pushdown graphs of level 2 to the interpretation of nested pushdown trees of level n

in collapsible pushdown graphs of level n+1. The approach is completely analogous. First

of all, each configuration (q, s) of a level n pushdown systemN is identified with the level

n stack pushq,1(s). A run ρ of N is a list of configurations ρ(0),ρ(1), . . . ,ρ(ln(ρ)). This

run is identified with the level n+ 1 stack sρ := ρ(0) : ρ(1) : · · · : ρ(ln(ρ)).

Each extension of ρ by one transition δ := (q,σ,γ, q′, op) can be simulated by a level

n+ 1 pushdown system by changing the stack to

sρ′ := pushq′,1(op(pop1(clonen+1(sρ)))).

It is a straightforward observation that sρ′ represents the run ρ′ which is ρ extended by δ.

Hence, the unfolding of a level n pushdown system can be simulated by some level n+ 1

collapsible pushdown system.

In order to simulate the nested pushdown tree generated byN , we also have to simulate

the jump-edges. A jump-edge connects a clonen transition with the corresponding popn

transition. Thus, the collapsible pushdown system simulating N has to keep track of the

positions where a clonen transition was performed.

For this purpose we introduce a clone-marker #. Before the collapsible pushdown system

performs a clonen transition, it applies a push#,n+1 operation. This means that it writes the

symbol # onto the stack. This symbol carries a link to the stack representing the run up to

the configuration before the clonen transition was applied.

Later, when the system simulates a popn transition, it finds a clone of this marker # on

top of the stack reached by this popn. The link of this clone still points to the position in the

run where the corresponding clonen was performed. Thus, using the collapse operation,

we can connect any position simulating a popn transition with the position that simulated

the corresponding clonen.

The following proposition provides the detailed construction of the simulating collapsi-

ble pushdown system.

Proposition 3.3.3. Let N be a pushdown system of level n ≥ 2. We can effectively compute

a collapsible pushdown system S of level n+ 1 and a first-order interpretation IN such that

NPT(N) is first-order interpretable in CPG(S) via IN .

Moreover, there is a uniform bound on the length of the formulas of IN for all higher-order

pushdown systems N .

Proof (Sketch). We prove this fact by a straightforward extension of the n = 1 case (cf.

Lemma 3.2.2). Figure 3.17 illustrates the simulation of a 3-NPT in a collapsible pushdown

graph of level 4.

Let N = (Q,Σ,Γ,∆, q0) be a pushdown system of level n> 1 generating N := NPT(N).

Then we define a collapsible pushdown system of level n+ 1 C(N) := (QC ,ΣC ,ΓC ,∆C , I)

as follows.

3.3. Higher-Order Nested Pushdown Trees 169

q0, [[⊥]]
γ1

q1, [⊥] : [⊥]
γ2

q2, [⊥] : [⊥ :⊥]
γ3

q3, [[⊥]]
γ4

q4, [[⊥a]]

PUSH(q0), [[[⊥]]]

γPush

CLONE, [[[⊥q0]]]

γClone

POP, [[[⊥q0]]]

γPop

: [[[⊥q0]]]

q0, [[[⊥q0]]]

γ1

: [[[⊥]]]

CPP(q1), [[[⊥q0]]]

γCPP

: [[[⊥(#, 4, 1)]]]

PP(q1), [[[⊥q0]]]

γPP

: [[⊥(#, 4, 1)]] : [[⊥(#, 4, 1)]]

PUSH(q1), [[[⊥q0]]]

γPush

: [[⊥(#, 4, 1)]] : [[⊥]]

CLONE, [[[⊥q0]]]

γClone

: [[⊥(#, 4, 1)]] : [[⊥q1]]

POP, [[[⊥q0]]]

γPop

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥q1]]

q1, [[[⊥q0]]]

γ2

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥]]

PUSH(q2), [[[⊥q0]]]

γPush

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥]]

CLONE, [[[⊥q0]]]

γClone

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]]

POP, [[[⊥q0]]]

γPop

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]]

q2, [[[⊥q0]]]

γ3

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥]]

PUSH(q3), [[[⊥q0]]]

γǫ

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[[⊥(#, 4, 1)]]]

γ,→

PUSH(q3), [[[⊥q0]]]

γPush

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[[⊥]]]

CLONE, [[[⊥q0]]]

γClone

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[[⊥q3]]]

POP, [[[⊥q0]]]

γPop

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[⊥q3]] : [[⊥q3]]

q3, [[[⊥q0]]]

γ4

: [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[[⊥q3]]] : [[[⊥]]]

PUSH(q4), [[[⊥q0]]] : [[⊥(#, 4, 1)]] : [[⊥q1]] : [[⊥(#, 4, 1)]] : [[⊥] : [⊥q2]] : [[[⊥q3]]] : [[[⊥a]]]

Figure 3.17.: Simulation of 3-NPT in level 4 collapsible pushdown graphs; γ1 is a clone3

transition, γ2 is a clone2 transition, γ3 is a pop3 transition and γ4 a pusha

transition.

170 3. Main Results

• ΣC :=Q ∪Σ∪ {#} for a new symbol # which is used to simulate the jump-edges.

• ΓC := Γ ∪ {γInit,γClone,γPop,γPush,γCPP,γPP,γ,→,γǫ} for new symbols not contained in

Γ.

• QC :=Q∪Σ∪{I , POP, CLONE}∪{PUSH(q) : q ∈Q}∪{CPP(q) : q ∈Q}∪{PP(q) : q ∈Q},

where I is the new initial state, and the other states are new auxiliary states for the

simulation process.

• ∆C consists of the following transitions.

1. For the initialisation, we add the transition (I ,⊥,γInit, PUSH(q0), id) ∈∆C .

2. For q ∈Q and σ ∈ Σ, let

(PUSH(q),σ,γPush, CLONE, pushq),

(CLONE, q,γClone, POP, clonen+1), and

(POP, q,γPop, q, pop1)

be in ∆C .7 These transitions are auxiliary transitions that write the state of the

run onto the topmost level n stack and create a clone of the topmost level n stack

preparing the simulation of the next transition.

3. For op 6= clonen and (q,σ,γ, p, op) ∈∆, set (q,σ,γ, PUSH(p), op) ∈∆C .

4. For (q,σ,γ, p, clonen) ∈∆, set (q,σ,γ, CPP(p), push#,n+1) ∈∆c.

5. We handle the jump-edge marker # with the following transitions. For all q ∈Q,

set

(CPP(q), #,γCPP, PP(q), clonen) ∈∆C ,

(PP(q), #,γPP, PUSH(q), pop1) ∈∆C ,

(PUSH(q), #,γǫ, PUSH(q), pop1) ∈∆C , and

(PUSH(q), #,γ,→, CLONE, collapse) ∈∆C .

The first and the second transition are used to create the jump-edge marker

whenever a clonen is simulated. The third transition is used to remove the

marker after the simulation of a popn. The last transition is used to simulate

the jump-edge.

We use those configurations with state PUSH(q) for all q ∈ Q that have no incoming

γǫ-edge as representatives of the runs of N . These configurations are defined by the

formula

ϕ(x) := ∃y x ⊢γǫ y ∨
�

x ⊢γPush y ∧∀z¬z ⊢γǫ x
�

.

Now, we turn to the formulas that interpret the transitions ⊢γ. Let ρ, ρ̂ ∈ N be connected

by some transition δ = (q,σ,γ, p, op) ∈ ∆. We denote by ρ′ the representative of ρ and

by ρ̂′ the representative of ρ̂ in C(N). We distinguish the following cases.

7 In the following, we write pushq for pushq,1.

3.3. Higher-Order Nested Pushdown Trees 171

1. Assume that the last transition of ρ is not a popn transition and op 6= clonen. Then

the transition ρ ⊢γ ρ̂ in N corresponds to a chain

ρ′ ⊢γPush x1 ⊢
γClone x2 ⊢

γPop x3 ⊢
γ ρ̂′

in CPG(C(N)).

2. Assume that the last transition of ρ is a popn transition and op 6= clonen. Then the

transition ρ ⊢γ ρ̂ in N corresponds to a chain

ρ′ ⊢γǫ x4 ⊢
γPush x1 ⊢

γClone x2 ⊢
γPop x3 ⊢

γ ρ̂′

in CPG(C(N)).

3. Assume that the last transition of ρ is not a popn transition and op = clonen. Then

the transition ρ ⊢γ ρ̂ in N corresponds to a chain

ρ′ ⊢γPush x1 ⊢
γClone x2 ⊢

γPop x3 ⊢
γ x5 ⊢

γCPP x6 ⊢
γPP ρ̂′

in CPG(C(N)).

4. Assume that the last transition of ρ is a popn transition and op = clonen. Then the

transition ρ ⊢γ ρ̂ corresponds to a chain

ρ′ ⊢γǫ x4 ⊢
γPush x1 ⊢

γClone x2 ⊢
γPop x3 ⊢

γ x5 ⊢
γCPP x6 ⊢

γPP ρ̂′

in C(N).

Moreover, every chain that starts and ends in nodes defined by ϕ and that is of one of the

forms mentioned in the case distinction corresponds to a transition in N.

This claim is proved by induction on the length of the shortest path to some node satis-

fying ϕ. It is completely analogous to the corresponding proof in Lemma 3.2.2.

Finally, we give an interpretation for the jump-edge relation ,→. The jump-edges corre-

spond to the edges defined by

ϕ,→(x , y) := ∃z(x ⊢γPush z ∧ y ⊢γ,→ z).

The previous proposition shows that higher-order nested pushdown trees are (modulo

FO-interpretations) contained in the collapsible pushdown hierarchy. The hierarchy of

nested pushdown trees is also an extension of the pushdown tree hierarchy. This is shown

in the following lemma.

Lemma 3.3.4. The unfoldings of graphs of level n−1 pushdown systems are contained in the

n-th level of the nested pushdown tree hierarchy.

Proof. Consider any level n − 1 pushdown system S as a level n system that does not

use clonen. Then S generates a level n nested pushdown tree which coincides with the

unfolding of the configuration graph of S .

172 3. Main Results

Remark 3.3.5. Recall that the unfoldings of higher-order pushdown graphs form the push-

down tree hierarchy. The previous lemma shows that the nested pushdown tree hierarchy

is an extension of the pushdown tree hierarchy.

It is an interesting open question what the exact relationship between the hierarchy of

pushdown graphs and the hierarchy of nested trees is. Since there are nested pushdown

trees that have undecidable MSO-theory (cf. Lemma 2.3.11), the hierarchy of nested

pushdown trees is not contained in the hierarchy of pushdown graphs. But it is an open

question whether there is some logical interpretation that interprets every nested push-

down tree in some higher-order pushdown graph. Lemma 2.3.11 only implies that there

is no 1-dimensional MSO interpretation that interprets nested pushdown trees in higher-

order pushdown graphs.

The previous lemma and Proposition 3.3.3 locate the hierarchy of nested pushdown

trees between the hierarchy of pushdown trees and the hierarchy of collapsible pushdown

graphs. We propose the study of this new hierarchy in order to obtain new insights into the

relationship of the hierarchies of collapsible pushdown graphs and higher-order pushdown

graphs. In the following, we show that FO model checking on 2-NPT is decidable. Via the

interpretation of nested pushdown trees in collapsible pushdown graphs, this can be seen

as the first step towards an characterisation of the largest subclass of the class of collapsible

pushdown graphs of level 3 on which the FO model checking problem is decidable.

3.3.3 Towards FO Model Checking on Nested Pushdown Trees of Level 2

In the following, we develop an FO model checking algorithm on nested pushdown trees

of level 2.

Before we continue, we want to stress that the rest of this chapter deals exclusively

with level 2 pushdown systems and not with level 2 collapsible pushdown systems. Thus,

stacks do not carry any link structure and the systems never use collapse operations. In

this setting, loops and returns play an even more important role than in the setting of

collapsible pushdown systems. In runs of pushdown systems of level 2, loops and returns

occur almost everywhere in the following sense:

1. every run ρ from some stack s to a substack of pop2(s) has an initial part that is a

return and

2. every run ρ that starts and ends in stack s and that never visits pop2(s) is a loop.

We leave it as an easy exercise to check the correctness of these claims. In the following,

we will use these facts without any further explanation.

We want to provide an FO model checking algorithm for the class of nested pushdown

trees of level 2. We do this by adapting our approach for first-order model checking on

nested pushdown trees of level 1. Fix some pushdown system N of level 2. We show

that every formula of the form ∃xϕ such that NPT(N), ρ̄ |= ∃xϕ has a short witness

ρ ∈ NPT(N) for the first existential quantification. Here, the size of an element is given

by the length of the run of N representing this element. We consider a run to be short, if

its size is bounded in terms of the length of the runs in the tuple ρ̄ of parameters.

As in the level 1 case, we prove this dynamic small-witness property via Ehrenfeucht-

Fraïssé games. The rough picture of the proof is as follows.

3.3. Higher-Order Nested Pushdown Trees 173

We analyse the α-round Ehrenfeucht-Fraïssé game on two copies of N := NPT(N). We

show that Duplicator has a strategy that answers every move of Spoiler by choosing a small

element. An element is small if there is a bound on the size of the element in terms of the

size of the elements chosen so far in the same copy of N. Using such a strategy, we obtain

a model checking algorithm on nested pushdown trees of level 2 as explained in Section

2.1.1.

On this level of detail, the decidability proof on level 2 is exactly the same as on level 1.

But the proof that Duplicator can always choose small runs is completely different.

The main technical tool for this proof is the concept of relevant ancestors. For each

element of N, the relevant l-ancestors are a finite set of initial subruns of this ele-

ment. Intuitively, the relevant l-ancestors of a run ρ are finitely many ancestors of ρ

that give a description of the l-local neighbourhood of ρ. Surprisingly, this finite descrip-

tion is sufficiently complete for the purpose of preserving partial isomorphisms during the

Ehrenfeucht-Fraïssé game. We prove that there is a winning strategy for Duplicator with

the following property. Duplicator always chooses small runs whose relevant l-ancestors

are isomorphic to the relevant l-ancestors of the element chosen by Spoiler.

In order to find such a strategy for Duplicator, we analyse the structure of relevant

ancestors. We show that a relevant ancestor ρ1 is connected to the next one, say ρ2, by

either a single transition or by a run ρ of a certain kind. This run ρ satisfies the following

conditions: ρ2 decomposes as ρ2 = ρ1 ◦ ρ, the initial stack of ρ is s : w where s is some

stack and w is some word. The final stack of ρ is s : w : v for some word v and ρ does

never pass a proper substack of s : w.

Due to this result, a typical set of relevant ancestors is of the form

ρ1 ≺ ρ2 ≺ ρ3 ≺ · · · ≺ ρm = ρ,

where ρn+1 extends ρn by either one transition or by a run that extends the last stack of

ρn by a new word v . If we want to construct a run ρ′ with isomorphic relevant ancestor

set, we have to provide runs

ρ′
1
≺ ρ′

2
≺ ρ′

3
≺ · · · ≺ ρ′

m
= ρ′

where ρ′
n+1

extends ρ′
n

in exactly the same manner as ρn+1 extends ρn.

We first concentrate on one step of this construction. Assume that ρ1 ends in some

configuration (q, s : w) and ρ2 extends ρ1 by a run creating the stack s : w : v . How can

we find another stack s′ and words w′, v
′ such that there is a run ρ′

1
to (q, s′ : w′) and a

run ρ′
2

that extends ρ′
1

by a run from (q, s′ : w′) to the stack s′ : w′ : v
′?

We introduce a family of equivalence relations on words that preserves the existence of

such runs. If we find some w′ that is equivalent to w with respect to the i-th equivalence

relation, then for any run from s : w to s : w : v we can find a run from s′ : w′ to s′ : w′ : v
′

for v and v
′ equivalent with respect to the (i − 1)-st equivalence relation.

Let us explain the ingredients of these equivalence relations. Let ρ1 be a run to some

stack s : w and let ρ2 be a run that extends ρ1 and ends in a stack s : w : v . Recall that the

theory of generalised milestones shows that the final segment of ρ2 is of the form

λn ◦ opn ◦λn−1 ◦ opn−1 ◦ · · · ◦ op1 ◦λ0

174 3. Main Results

where the λi are loops and opn, opn−1, . . . , op1 is the minimal sequence generating s : w : v

from s : w. Thus, we are especially interested in the loops of each prefix popk
1
(w) of

w and each prefix popk
1
(w′) of w′. For this purpose we consider the word models of w

and w′ enriched by information on runs between certain prefixes of w or w′. Especially,

each prefix is annotated with the number of possible loops of each prefix. w and w′ are

equivalent with respect to the first equivalence relation if the FOk-types of their enriched

word structures coincide. The second, third, etc. equivalence relation is then defined as

follows. We enrich every element of the word model of some word w by the equivalence

class of the corresponding prefix with respect to the (i − 1)-st equivalence relation. The i-

th equivalence relation then compares the FOk-types of these enriched word models. This

means that two words w and w′ are equivalent with respect to the i-th equivalence relation

if the FOk-types of their word models enriched with the (i−1)-st equivalence class of each

prefix coincide.

This iteration of equivalence of prefixes leads to the following result. Let w and w′ be

equivalent with respect to the i-th relation. Then we can transfer runs creating i words in

the following sense: if ρ is a run creating w : v1 : v2 : · · · : v i from w, then there is a run ρ′

creating w′ : v
′
1

: v
′
2

: · · · : v
′
i

from w′ such that vk and v
′
k

are equivalent with respect to the

(i−k)-th relation. This property then allows to construct isomorphic relevant ancestors for

a given set of relevant ancestors of some run ρ. We only have to start with a stack s′ : w′

such that w′ is i-equivalent to the topmost word of the minimal element of the relevant

ancestors of ρ for some large i ∈ N.

This observation reduces the problem of constructing runs with isomorphic relevant

ancestors to the problem of finding runs whose last configurations have equivalent topmost

words (with respect to the i-th equivalence relation for some sufficiently large i) such that

one of these runs is always short.

We solve this problem by application of several pumping constructions that respect the

equivalence class of the topmost word of the final configuration of a run but which de-

crease the length of the run.

Putting all these results together, we obtain that Duplicator has an S-preserving strategy

on every nested pushdown tree of level 2 where S is a finitary constraint bounding the

length of the runs that Duplicator may choose. Then we use the general model checking

algorithm from Section 2.1.1 in order to solve the FO model checking problem on nested

pushdown trees of level 2.

The outline of the next sections is as follows. In Section 3.3.4 we define the important

notion of relevant ancestors and develop some theory concerning these sets. We then

define a family of equivalence relations on words and stacks in Section 3.3.5. In Section

3.3.6 we put these things together: the equivalence on stacks gives us a transfer property

of relevant ancestors to isomorphic copies. Our analysis of loops (cf. Section 2.4) yields

the possibility to bound the length of the runs involved in the isomorphic copy. Thus,

preserving isomorphisms between relevant ancestors while choosing small runs is a valid

strategy for Duplicator in the Ehrenfeucht-Fraïssé game. This gives us a small-witness

property which we use to show the decidability of FO model checking on 2-NPT in Section

3.3.7.

3.3. Higher-Order Nested Pushdown Trees 175

3.3.4 Relevant Ancestors

This section aims at identifying those ancestors of a run ρ in a 2-NPT N that are relevant

with respect to its FOk-type. We show that only finitely many ancestors of a certain kind

fix the FOk-type of the l-local neighbourhood of ρ. We call these finitely many ancestors

the relevant l-ancestors of ρ.

Before we formally introduce relevant ancestors, we recall some important abbreviations

concerning configurations and runs. Abusing notations we apply functions defined on

stacks to configurations. For example if c = (q, s) we write |c| for |s| or pop2(c) for pop2(s).

We further abuse this notation by application of functions defined on stacks to some run

ρ, meaning that we apply the function to the last stack occurring in ρ. For example, we

write top2(ρ) for top2(s) and |ρ| for |s| if ρ(ln(ρ)) = (q, s).

In the same sense one has to understand equations like ρ(i) = pop1(s). This equation

says that ρ(i) = (q, pop1(s)) for some q ∈ Q. Keep in mind that |ρ| denotes the width of

the last stack of ρ and not the length ln(ρ) of the run ρ. Recall also that we write ρ � ρ′

if the run ρ is an initial segment of the run ρ′.

Definition 3.3.6. Let N be some 2-NPT. Define the relation
+1
,→⊆N×N by

ρ
+1
,→ ρ′ if ρ ≺ ρ′, |ρ|= |ρ′| − 1, and |π|> |ρ| for all ρ ≺ π≺ ρ′.

We define the relevant l-ancestors of ρ by induction on l. The relevant 0-ancestors of ρ are

the elements of the set RA0(ρ) := {ρ}. Inductively, we set

RAl+1(ρ) := RAl(ρ)∪

§

π ∈N : ∃π′ ∈ RAl(ρ) π ⊢ π
′ or π ,→ π′ or π

+1
,→ π′
ª

.

If ρ̄ = (ρ1,ρ2, . . . ,ρn) then we write RAl(ρ̄) :=
n
⋃

i=1

RAl(ρi).

Remark 3.3.7. Note that for each ρ′ there is at most one ρ such that ρ
+1
,→ ρ′ while ρ may

have arbitrary many
+1
,→ successors along each branch.

The relation
+1
,→ can be characterised as follows: For runs ρ,ρ′, it holds that ρ

+1
,→ ρ′ if

and only if ρ′ = ρ ◦π for some run π starting at some stack sρ and ending in some stack

sρ : w, the first operation of π is a clone and π visits sρ only in its initial configuration.

The motivation for these definitions is the following. If there are elements ρ,ρ′ ∈ N

such that ρ′ � ρ and there is a path in N of length at most l that witnesses that ρ′ is an

ancestor of ρ, then we want that ρ′ ∈ RAl(ρ). The relation
+1
,→ is tailored towards this

idea. Assume that there are runs ρ1 ≺ ρ2 ⊢
pop2 ρ3 such that ρ2 ⊢

pop2 ρ3 ←- ρ1. This path

of length 2 witnesses that ρ1 is a predecessor of ρ2. By definition, one sees immediately

that ρ1

+1
,→ ρ2 whence ρ1 ∈ RA1(ρ2). In this sense,

+1
,→ relates the ancestor ρ1 of ρ2 with

ρ2 if ρ1 may be reachable from ρ2 via a short path passing a descendant of ρ2.

In the following, it may be helpful to think of a relevant l-ancestor ρ′ of a run ρ as an

ancestor of ρ that may have a path of length up to l witnessing that ρ′ is an ancestor of ρ.

We do not state this idea more precisely, but it may be helpful to keep this picture in mind.

176 3. Main Results

From the definitions, we obtain immediately the following lemmas.

Lemma 3.3.8. Let ρ and ρ′ be runs such that ρ ,→ ρ′. Let ρ̂ be the predecessor of ρ′, i.e., ρ̂

is the unique element such that ρ̂ ⊢ ρ′. Then ρ
+1
,→ ρ̂.

Lemma 3.3.9. If ρ,ρ′ ∈ N are connected by a single edge ⊢ or ,→ then either ρ ∈ RA1(ρ
′)

or ρ′ ∈ RA1(ρ).

Lemma 3.3.10. For all l ∈ N and ρ ∈N, |RAl(ρ)| ≤ 4l .

Lemma 3.3.11. RAl(ρ) is linearly ordered by �.

Proof. By induction, one obtains easily that RAl(ρ) only contains initial segments of the

run ρ. These are obviously ordered linearly by �.

In the following we investigate the relationship between relevant ancestors of different

runs. First, we characterise the minimal element of RAl(ρ).

Lemma 3.3.12. Let ρl ∈ RAl(ρ) be minimal with respect to �.

Either |ρl |= 1 and |ρ| ≤ l,

or ρl = popl
2
(ρ) and |ρl |< |ρ

′| for all ρ′ ∈ RAl(ρ) \ {ρl}.

Remark 3.3.13. Recall that |ρ| ≤ l implies that popl
2
(ρ) is undefined.

Proof. The proof is by induction on l. For l = 0, there is nothing to show because

ρ0 = ρ = pop0
2
(ρ). Now assume that the statement is true for some l.

Assume that |ρ| ≤ l + 1. Then ρl satisfies |ρl |= 1. If ρl has no predecessor it is also the

minimal element of RAl+1(ρ) and we are done. Otherwise, there is a maximal ancestor

ρ̂ ≺ ρl such that |ρ̂| = 1. Either ρ̂ ⊢ ρl or ρ̂ ,→ ρl whence ρ̂ ∈ RAl+1(ρ). Furthermore,

no ancestor of ρ̂ can be contained in RAl+1(ρ). We prove this claim by contradiction.

Assume that there is some element ρ̃ ≺ ρ̂ such that ρ̃ ∈ RAl+1(ρ). Then there is some

ρ̃′ ∈ RAl(ρ) such that ρ̃ and ρ̃′ are connected by some edge. Due to the definition of

ρ̂, we have ρ̃ ≺ ρ̂ ≺ ρ̃′. Thus, the edge between ρ̃ and ρ̃′ has to be ,→ or
+1
,→. Thus, ρ̃

must have width less than ρ̂, i.e., width 0. Since there are no stacks of width 0, this is a

contradiction.

Thus, the minimal element of RAl+1(ρ) is ρl+1 = ρ̂. This completes the case |ρ| ≤ l+1.

Now assume that |ρ|> l+1. Let ρ̂ be the maximal ancestor of ρl such that |ρ̂|+1= |ρl |.

Then ρ̂
+1
,→ ρl or ρ̂ ⊢γ ρ1, whence ρ̂ ∈ RAl+1(ρ). We have to show that ρ̂ is the minimal

element of RAl+1(ρ) and that there is no other element of width |ρ̂| in RAl+1(ρ). For the

second part, assume that there is some ρ′ ∈ RAl+1(ρ) with |ρ′| = |ρ̂|. Then ρ′ has to be

connected via ⊢,
+1
,→, or ,→ to some element ρ′′ ∈ RAl(ρ). By definition of these relations

|ρ′′| ≤ |ρ′|+ 1. By induction hypothesis, this implies ρ′′ = ρl . But then it is immediately

clear that ρ′ = ρ̂ by definition.

Similar to the previous case, the minimality of ρ̂ in RAl+1(ρ) is proved by contradic-

tion. Assume that there is some ρ′ ≺ ρ̂ such that ρ′ ∈ RAl+1(ρ). Then there is some

ρ̂ ≺ ρl � ρ
′′ ∈ RAl(ρ) such that ρ′

+1
,→ ρ′′ or ρ′ ,→ ρ′′. By the definition of ,→ and

+1
,→, we

obtain |ρ′′| ≤ |ρ̂|. But this contradicts |ρ′′| ≥ |ρl | > |ρ̂|. Thus, we conclude that ρ̂ is the

minimal element of RAl+1(ρ), i.e., ρ̂ = ρl+1.

3.3. Higher-Order Nested Pushdown Trees 177

The previous lemma shows that the width of stacks among the relevant ancestors cannot

decrease too much. Furthermore, the width cannot grow too much. This is shown in the

following corollary.

Corollary 3.3.14. Let π,ρ ∈N such that π ∈ RAl(ρ). Then
�

�|ρ| − |π|
�

�≤ l.

Proof. From the previous lemma, we know that the minimal width of the last stack of an

element in RAl(ρ) is |ρ| − l. We prove by induction that the maximal width is |ρ| + l.

The case l = 0 is trivially true. Assume that |π| ≤ |ρ|+ l − 1 for all π ∈ RAl−1(ρ). Let

π̂ ∈ RAl(ρ) \RAl−1(ρ). Then there is a π ∈ RAl−1(ρ) such that π̂ ⊢ π, π̂ ,→ π, or π̂
+1
,→ π.

In the last two cases the width of π̂ is smaller than the width of π whence |π̂| ≤ |ρ|+ l−1.

In the first case, recall that all stack operations of an level 2 higher order pushdown system

alter the width of the stack by at most 1. Thus, |π̂| ≤ |π|+ 1≤ |ρ|+ l.

The next lemma shows a kind of triangle inequality of the relevant ancestor relation. If

ρ2 is a relevant ancestor of ρ1 then all relevant ancestors of ρ1 that are prefixes of ρ2 are

relevant ancestors of ρ2.

Lemma 3.3.15. Let ρ1,ρ2 ∈N and let l1, l2 ∈ N. If ρ1 ∈ RAl1
(ρ2), then

RAl2
(ρ1)⊆ RAl1+l2

(ρ2) and

RAl2
(ρ2)∩ {π : π� ρ1} ⊆ RAl1+l2

(ρ1).

Proof. The first relation holds directly because of the inductive definition of relevant an-

cestors.

For the second claim, we proceed by induction on l2. For l2 = 0 the claim holds because

RA0(ρ2) = {ρ2} and ρ1 � ρ2 imply that RA0(ρ2)∩ {π : π � ρ1} 6= ; if and only if ρ1 = ρ2

and {ρ2} ∈ RA0(ρ1).

For the induction step assume that

RAl2−1(ρ2)∩ {π : π� ρ1} ⊆ RAl1+l2−1(ρ1).

Furthermore, assume that π ∈ RAl2
(ρ2)∩ {π : π� ρ1}. We show that π ∈ RAl1+l2

(ρ1). By

definition there is some π ≺ π̂ such that π̂ ∈ RAl2−1(ρ2) and π ∈ RA1(π̂). We distinguish

the following cases.

• Consider the case π̂� ρ1. Due to the induction hypothesis, π̂ ∈ RAl1+l2−1(ρ1). Thus,

π ∈ RAl1+l2
(ρ1).

• Consider the case π̂= ρ1. Then π ∈ RA1(ρ1)⊆ RAl1+l2
(ρ1).

• Finally, consider the case π ≺ ρ1 ≺ π̂ ≺ ρ2. This implies that π ,→ π̂ or π
+1
,→ π̂

whence |π|= |π̂|− j < |ρ1| for some j ∈ {0, 1}. From Corollary 3.3.14, we know that

�

�|π̂| − |ρ2|
�

�≤ l2− 1 and
�

�|ρ1| − |ρ2|
�

�≤ l1.

This implies that |ρ1| − |π| ≤ l1 + l2. By definition of ,→ and
+1
,→, there cannot be

any element π≺ π′ ≺ π̂ with |π′| = |π|. Thus, π is the maximal predecessor of ρ1

178 3. Main Results

with π = pop
|ρ1|−|π|

2 (ρ1). Application of Lemma 3.3.12 shows that π is the minimal

element of RA|ρ1|−|π|
(ρ1). Hence,

π ∈ RA|ρ1|−|π|
(ρ1)⊆ RAl1+l2

(ρ1).

Corollary 3.3.16. For ρ ∈ RAl(ρ1)∩RAl(ρ2), we have RAl(ρ1)∩ {π : π� ρ} ⊆ RA3l(ρ2).

Proof. By the previous lemma, ρ ∈ RAl(ρ1) implies RAl(ρ1) ∩ {π : π � ρ} ⊆ RA2l(ρ).

Using the lemma again, ρ ∈ RAl(ρ2) implies RA2l(ρ)⊆ RA3l(ρ2).

The previous corollary shows that if the relevant l-ancestors of two elements ρ1 and ρ2

intersect at some point ρ, then all relevant l-ancestors of ρ1 that are ancestors of ρ are

contained in the relevant 3l-ancestors of ρ2. Later, we will use the contraposition of this

result in order to prove that relevant ancestors of certain runs are disjoint sets.

The following proposition describes how RAl(ρ) embeds into the full 2-NPT N. Suc-

cessive relevant ancestors of some run ρ are either connected by a single edge or by a
+1
,→-edge. Later, we will see that this proposition allows to explicitly construct for any run

ρ an isomorphic relevant ancestor set that consists of small runs.

Proposition 3.3.17. Let ρ1 ≺ ρ2 ≺ ρ such that ρ1,ρ2 ∈ RAl(ρ). If π /∈ RAl(ρ) for all

ρ1 ≺ π≺ ρ2, then either ρ1 ⊢ ρ2 or ρ1

+1
,→ ρ2.

Proof. Assume that ρ1 6⊢ ρ2. Consider the set

M := {π ∈ RAl(ρ) : ρ1

+1
,→ π}.

M is nonempty because there is some π ∈ RAl−1(ρ) such that either ρ1

+1
,→ π (whence

π ∈ M) or ρ1 ,→ π (whence the predecessor π̂ of π satisfies π̂ ∈ M). Let ρ̂ ∈ M be

minimal. It suffices to show that ρ̂ = ρ2. For this purpose, we show that π /∈ RAl(ρ) for

all ρ1 ≺ π≺ ρ̂. Since ρ̂ ∈ RAl(ρ), this implies that ρ̂ = ρ2.

We start with two general observations.

1. For all ρ1 ≺ π ≺ ρ̂, |π| ≥ |ρ̂| due to the definition of ρ1

+1
,→ ρ̂. Furthermore, due to

the minimality of ρ̂ in M , for all ρ1 ≺ π ≺ ρ̂ with π ∈ RAl(ρ), |π| > |ρ̂| (otherwise

we have π ∈ M contradicting the minimality of ρ̂).

2. Note that there cannot exist ρ1 ≺ π ≺ ρ̂ ≺ π̂ with π ,→ π̂ or π
+1
,→ π̂ because

|π| ≥ |ρ̂|.

Heading for a contradiction, assume that there is some ρ1 ≺ π≺ ρ̂ such that π ∈ RAl(ρ).

Due to observation 2, there is a chain π0 := π,π1, . . . ,πn−1,πn := ρ̂ such that for each

0 ≤ i < n there is ∗ ∈ {⊢, ,→,
+1
,→} such that πi ∗ πi+1 and πi ∈ RAl−i(ρ). By assumption,

n 6= 0, whence ρ̂ ∈ RAl−1(ρ). Due to observation 1, we have |ρ1| < |ρ̂| < |π|. Since each

stack operation alters the width of the stack by at most 1, we conclude that the set

M ′ :=
�

π′ : ρ1 ≺ π
′ ≺ ρ̂, |ρ̂|= |π′|

	

3.3. Higher-Order Nested Pushdown Trees 179

is nonempty because on the path from ρ1 to π there occurs at least one run with final stack

of width |ρ̂|. But the maximal element π′ ∈ M ′ satisfies ρ1

+1
,→ π′ ⊢ ρ̂ or ρ1

+1
,→ π′ ,→ ρ̂.

Since ρ̂ ∈ RAl−1(ρ), this would imply π′ ∈ M which contradicts the minimality of ρ̂ in M .

Thus, no ρ1 ≺ π≺ ρ̂ with π ∈ RAl(ρ) can exist.

Thus, π /∈ RAl(ρ) for all ρ1 ≺ π≺ ρ̂ and ρ1

+1
,→ ρ̂ = ρ2.

In the final part of this section, we consider relevant ancestors of two different runs ρ

and ρ′. Since we aim at a construction of small runs ρ̂ and ρ̂′ such that the relevant

ancestors of ρ and ρ′ are isomorphic to the relevant ancestors of ρ̂ and ρ̂′, we need

to know how sets of relevant ancestors touch each other. Every isomorphism from the

relevant ancestors of ρ and ρ′ to those of ρ̂ and ρ̂′ has to preserve edges between a

relevant ancestor of ρ and another one of ρ′.

The positions where the relevant l-ancestors of ρ and ρ̂ touch can be identified by look-

ing at the intersection of their relevant (l + 1)-ancestors. This is shown in the following

Lemma. For A and B subsets of some 2-NPT N and ρ some run of N, we say A and B touch

after ρ if there are runs ρ ≺ ρA,ρ ≺ ρB such that ρA ∈ A, ρB ∈ B and either ρA = ρB or

ρA ∗ ρB for some ∗ ∈ {⊢,⊣, ,→,←-}. In this case we say A and B touch at (ρA,ρB). In the

following, we reduce the question whether l-ancestors of two elements touch after some

ρ to the question whether the (l + 1)-ancestors of these elements intersect after ρ.

Lemma 3.3.18. If ρ1,ρ2 are runs such that RAl1
(ρ1) and RAl2

(ρ2) touch after some ρ0,

then RAl1+1(ρ1)∩RAl2+1(ρ2)∩ {π : ρ0 � π} 6= ;.

Proof. Let ρ0 be some run, ρ0 ≺ ρ̂1 ∈ RAl1
(ρ1), and ρ0 ≺ ρ̂2 ∈ RAl2

(ρ2) such that the

pair (ρ̂1, ρ̂2) is minimal and RAl1
(ρ1) and RAl2

(ρ2) touch at (ρ̂1, ρ̂2). Then one of the

following holds.

1. ρ̂1 = ρ̂2: there is nothing to prove because ρ̂1 ∈ RAl1
(ρ1)∩RAl2

(ρ2)∩ {π : ρ0 � π}.

2. ρ̂1→ ρ̂2 or ρ̂1 ,→ ρ̂2 or ρ̂1

+1
,→ ρ̂2 : this implies that ρ̂1 ∈ RAl2+1(ρ2)∩RAl1

(ρ1).

3. ρ̂2→ ρ̂1 or ρ̂2 ,→ ρ̂1 or ρ̂2

+1
,→ ρ̂1 : this implies that that ρ̂2 ∈ RAl1+1(ρ1)∩RAl2

(ρ2).

Corollary 3.3.19. If ρ and ρ′ are runs such that RAl1
(ρ) and RAl2

(ρ′) touch after some run

ρ0 then there exists some ρ0 ≺ ρ1 ∈ RAl1+1(ρ)∩RAl2+1(ρ
′) such that

RAl1+1(ρ)∩ {x : x � ρ1} ⊆ RAl2+2l1+3(ρ
′).

Proof. Use the previous lemma and Lemma 3.3.15.

3.3.5 A Family of Equivalence Relations on Words and Stacks

In this section we introduce a family of equivalence relations on words. The basic idea

is to classify words according to the FOk-type of the word model associated to the word

w enriched by information about certain runs between prefixes of w. This additional

information describes

180 3. Main Results

1. the number of possible loops and returns with certain initial and final state of each

prefix v ≤ w, and

2. the number of runs from (q, w) to (q′, v) for each prefix v ≤ w and all pairs q, q′ of

states.

It turns out that this equivalence has the following property: if w and w′ are equivalent

and ρ is a run starting in (q, w) and ending in (q′, w : v), then there is a run from (q, w′)

to (q, w′ : v
′) such that the loops and returns of v and v

′ agree. This is important because

runs of this kind connect consecutive elements of relevant ancestor sets (cf. Proposition

3.3.17).

In order to copy relevant ancestors, we want to apply this kind of transfer property

iteratively, e.g., we want to take a run from (q1, w1) via (q2, w1 : w2) to (q3, w1 : w2 : w3)

and translate it into some run from (q1, w′
1
) via (q2, w′

1
: w′

2
) to (q3, w′

1
: w′

2
: w′

3
) such that

the loops and returns of w3 and w′
3

agree. Analogously, we want to take a run creating

n new words and transfer it to a new run starting in another word and creating n words

such that the last words agree on their loops and returns. If we can do this, then we

can transfer the whole set of relevant ancestors from some run to another one. Using the

results of Section 2.4, this allows us to construct isomorphic relevant ancestors that consist

only of short runs.

The family of equivalence relations that we define have the following transfer property.

Words that are equivalent with respect to the n-th relation allow a transfer of runs creating

n new words. The idea of the definition is as follows. Assume that we have already defined

the (i−1)-st equivalence relation. We take the word model of some word w and annotate

each prefix of the word by its equivalence class with respect to the (i−1)-st relation. Then

we define two words to be equivalent with respect to the i-th relation if the FOk-types of

their enriched word models agree.

These equivalence relations and the transfer properties that they induce are an important

tool in the next section. There we apply them to an arbitrary set of relevant ancestors S in

order to obtain isomorphic copies of the substructure induced by S. For the next definition,

recall that w−n is an abbreviation for popn
1
(w).

Definition 3.3.20. Fix a level 2 pushdown system N . Let w ∈ Σ∗ be some word. We are

going to define expanded word models Link;z
n
(w) by induction on n. Note that for n = 0

the structure will be independent of the parameter k but for greater n this parameter

influences with which kind of information the structure is enriched. Let Lin
k;z
0 (w) be the

expanded word model

Lin
k;z
0 (w) := ({0, 1, . . . , |w| − 1}, succ, (Pσ)σ∈Σ, (S

j

q,q′
)(q,q′)∈Q2, j≤z, (R j) j∈J , (L j) j∈J , (H j) j∈J)

such that for 0≤ i < |w| the following holds.

• succ and Pσ form the standard word model of w in reversed order, i.e., succ is the

successor relation on the domain and i ∈ Pσ if and only if top1(w−i) = σ,

• i ∈ S
j

q,q′
, if there are j pairwise distinct runs ρ1, . . . ,ρ j starting in (q, w) and ending

in (q′, w−i) such that for all 1 ≤ k ≤ j and 0 ≤ l < ln(ρk) the stack at ρk(l) is not

w−i.

3.3. Higher-Order Nested Pushdown Trees 181

• The predicates R j encode at every position i the function #Retz(w−i) (cf. Definition

2.4.15).

• The predicates L j encode at every position i the function #Loopz(w−i) (cf. Definition

2.4.46).

• The predicates H j encode at every position i the function #HLoopz(w−i).

Now, set Type
k;z
0 (w) := FOk[Lin

k;z
0 (w)], the quantifier rank k theory of Lin

k;z
0 (w). We call

it the (0, k, z)-type of w. Note that there are only finitely many (0, k, z)-types (cf. example

2.1.8).

Inductively, we define Lin
k;z
n+1(w) to be the expansion of Link;z

n
(w) by predicates de-

scribing Typek;z
n
(v) for each prefix v ≤ w. More formally, fix a maximal list θ1,θ2, . . . ,θm

of pairwise distinct FOk-types that are realised by some Link;z
n
(w). We define predicates

T1, T2, . . . , Tm such that i ∈ T j if Typek;z
n

�

w−i

�

= θ j for all 0 ≤ i ≤ n. Now, let Lin
k;z
n+1(w)

be the expansion of Link;z
n
(w) by the predicates T1, T2, . . . , Tm. We conclude the inductive

definition by setting Type
k;z
n+1(w) := FOk[Lin

k;z
n+1(w)].

Remark 3.3.21. Each element of Link;z
n
(w) corresponds to a prefix of w. In this sense, we

write v ∈ S
j

q,q′
for some prefix v ≤ w if v = w−l and Link;z

n
(w) |= l ∈ S

j

q,q′
.

It is an important observation that Link;z
n
(w) is a finite successor structure with finitely

many colours. Thus, there are only finitely many (n, k, z)-types for each n, k, z ∈ N (cf.

Example 2.1.8).

For our application, k and z can be chosen to be some fixed large numbers, depending on

the number of rounds we are going to play in the Ehrenfeucht-Fraïssé game. Furthermore,

it will turn out that the conditions on k and z coincide whence we will assume that k = z.

This is due to the fact that both parameters are counting thresholds in some sense: z

is the threshold for counting the existence of loops and returns, while k can be seen as

the threshold for distinguishing different prefixes of w which have the same atomic type.

Thus, we identify k and z in the following definition of the equivalence relation induced

by Typek;z
n

.

Definition 3.3.22. For words w, w′ ∈ Σ∗, we write w ≡z
n

w′ if Typez;z
n
(w) = Typez;z

n
(w′).

As a first step, we want to show that ≡z
n

is a right congruence. We prepare the proof of

this fact in the following lemma.

Lemma 3.3.23. Let n ∈ N, z ≥ 2 and N be some pushdown system of level 2. Let w be some

word and σ ∈ Σ some letter. For each 0 ≤ i < |w|, the atomic type of i and of 0 in Linz;z
n
(w)

determines the atomic type of i + 1 in Linz;z
n
(wσ).

Proof. Recall that i ∈ Linz;z
n
(w) represents w−i and i+1 ∈ Linz;z

n
(wσ) represents wσ−(i+1).

Since w−i = wσ−(i+1), it follows directly that the two elements agree on (Pσ)σ∈Σ, (R j) j∈J ,

(L j) j∈J , and (H j) j∈J and that w−i ≡
z
n−1

wσ−(i+1) (recall that the elements in Linz;z
n
(w) are

coloured by ≡z
n−1

-types).

We claim that the function #Retz(w) and the set

{(j, q, q′) ∈ N×Q×Q : j ≤ z,Linz;z
n
(w) |= i ∈ S

j

q,q′
}

182 3. Main Results

determine whether Linz;z
n
(wσ) |= (i+1) ∈ S

j

q,q′
. Recall that the predicates S

j

q,q′
in Linz;z

n
(w)

encode at each position l the number of runs ρ from (q, w) to (q′, w−l) that do not pass

w−l before ln(ρ). We now want to determine the number of runs ρ from (q, wσ) to

(q′, wσ−(i+1)) = (q
′, w−i) that do not pass w−i before ln(ρ).

It is clear that such a run starts with a high loop from (q, wσ) to some (q̂, wσ). Then

it performs some transition of the form (q̂,σ,γ, q̂′, pop1) and then it continues with a run

from (q̂′, w) to (q′, w−i) that do not pass w−i before its last configuration.

In order to determine whether Linz;z
n
(wσ) |= (i + 1) ∈ S

j

q,q′
, we have to count whether j

runs of this form exist. To this end, we define the numbers

k(q̂,q̂′) := #HLoopz(wσ)(q, q̂),

j(q̂,q̂′) := |{(q̂,σ,γ, q̂′, pop1) ∈∆}|, and

i(q̂,q̂′) :=max{k : Linz;z
n
(w) |= w−i ∈ Sk

(q̂′,q′)
}

for each pair q̄ = (q̂, q̂′) ∈ Q2. It follows directly that there are
∑

q̄∈Q2

iq̄ jq̄kq̄ many such runs

up to threshold z. Note that jq̄ only depends on the pushdown system. Due to Corollary

2.4.62, #HLoopz(wσ) is determined by σ and #Retz(w). Thus, kq̄ is determined by the

atomic type of 0 in Linz;z
n
(w). iq̄ only depends on the atomic type of i in Linz;z

n
(w). These

observations complete the proof.

Corollary 3.3.24. Let n, z ∈ N such that z ≥ 2. Let w1 and w2 be words such that

w1 ≡
z
n

w2. Any strategy of Duplicator in the z round Ehrenfeucht-Fraïssé game on Linz;z
n
(w1)

and Linz;z
n
(w2) translates directly into a strategy of Duplicator in the z round Ehrenfeucht-

Fraïssé game on Linz;z
n
(w1σ)↾[1,|w1σ|]

and Linz;z
n
(w2σ)↾[1,|w2σ|]

.

Proof. It suffices to note that the existence of Duplicators strategy implies that the atomic

types of 0 in Linz;z
n
(w1) and Linz;z

n
(w2) agree. Hence, the previous lemma applies. Thus,

if the atomic type of i ∈ Linz;z
n
(w1) and j ∈ Linz;z

n
(w2) agree, then the atomic types of

i + 1 ∈ Linz;z
n
(w1σ) and j + 1 ∈ Linz;z

n
(w2σ) agree. Hence, we can obviously translate

Duplicator’s strategy on Linz;z
n
(w1) and Linz;z

n
(w2) into a strategy on Linz;z

n
(w1σ)↾[1,|w1σ|]

and Linz;z
n
(w2σ)↾[1,|w2σ|]

.

The previous corollary is the main ingredient for the following lemma. It states that ≡z
n

is a right congruence.

Lemma 3.3.25. For z ≥ 2, ≡z
n

is a right congruence, i.e., if Typez;z
n
(w1) = Typez;z

n
(w2) for

some z ≥ 2, then Typez;z
n
(w1w) = Typez;z

n
(w2w) for all w ∈ Σ∗.

Proof. It is sufficient to prove the claim for w = σ ∈ Σ. The lemma then follows by

induction on |w|. First observe that

#Loopz(w1σ) = #Loopz(w2σ),

#HLoopz(w1σ) = #HLoopz(w2σ), and

#Retz(w1σ) = #Retz(w2σ),

because these values are determined by the values of the corresponding functions at w1

and w2 (cf. Propositions 2.4.19 and 2.4.47). These functions agree on w1 and w2 because

the first elements of Linz;z
n
(w1) and Linz;z

n
(w2) are FO2 ⊆ FOz definable.

3.3. Higher-Order Nested Pushdown Trees 183

For i ∈ {1, 2}, Linz;z
n
(wiσ) |= 0 ∈ S

j

(q,q′)
if and only if j = 1 and q = q′ because S

j

(q,q′)

counts at position 0 the runs ρ from (q, wiσ) to (q′, wiσ) that do not pass wiσ before

ln(ρ) and, apparently, this implies ln(ρ) = 0. Since #HLoopz(w1σ) = #HLoopz(w2σ),

we conclude that the atomic types of the first elements of Lin
z;z
0 (w1σ) and of Lin

z;z
0 (w2σ)

coincide.

Due to the previous corollary, we know that Duplicator has a strategy in the z round

Ehrenfeucht-Fraïssé game on Linz;z
n
(w1σ)↾[1,|w1|]

and Linz;z
n
(w2σ)↾[1,|w2|]

.

Standard composition arguments for Ehrenfeucht-Fraïssé games on word structures di-

rectly imply that Lin
z;z
0 (w1σ) ≃z Lin

z;z
0 (w2σ). But this directly implies that the atomic

types of the first elements of Lin
z;z
1 (w1σ) and of Lin

z;z
1 (w2σ) coincide. If n ≥ 1, we

can apply the same standard argument and obtain that Lin
z;z
1 (w1σ) ≃z Lin

z;z
1 (w2σ). By

induction one concludes that Linz;z
n
(w1σ) ≃z Linz;z

n
(w2σ). But this is the definition of

w1σ ≡
z
n

w2σ.

The next lemma can be seen as the inverse direction of the previous lemma. Instead

of appending a word, we want to remove the topmost symbols from the word. For this

operation, we cannot preserve the equivalence at the same level but at one level below.

Lemma 3.3.26. Let m< 2z−1− 1 and w, w′ ∈ Σ∗. If w ≡z
n

w′ then w−m ≡
z
n−1

w′
−m

.

Proof. Quantifier rank z suffices to define the m-th element of a word structure. Hence,

w ≡z
n

w′ implies that Type
z;z
n−1(w−m) = Type

z;z
n−1(w

′
−m
). But this is equivalent to

w−m ≡
z
n−1

w′
−m

.

The previous lemmas can be seen as statements concerning the compatibility of the

stack operations pushσ and pop1 with the equivalences ≡z
n
. Later, we need a compatibility

result of the equivalences with all level 2 stack operations. For this purpose, we first lift

these equivalences to equivalences on level 2 stacks. We compare the stacks word-wise

beginning with the topmost word, then the word below the topmost one, etc. up to some

threshold m. The following definition introduces the precise notion of these equivalence

relations on stacks.

Definition 3.3.27. Let s, s′ be stacks. We write s m≡
z
n

s′ if for all 0≤ i ≤ m

top2

�

popi
2
(s)
�

≡z
n

top2

�

popi
2
(s′)
�

.

Remark 3.3.28. If wdt(s) ≤ m or wdt(s′) ≤ m then popm
2
(s) or popm

2
(s′) is undefined. In

this case we write s m≡
z
n

s′ iff wdt(s) = wdt(s′) and s m′≡
z
n

s′ for m′ := wdt(s)− 1.

Next, we prove that these equivalence relations on stacks are compatible with all stack

operations.

Proposition 3.3.29. Let z ≥ 2 and let s1, s2, s′
1
, s′

2
be stacks such that s′

1
= op(s1) and

s′
2
= op(s2) for some stack operation op. If s1 m≡

z
n

s2 then the following hold:

• for op= pushσ, s′
1 m≡

z
n

s′
2
,

• for op= pop1, s′
1 m≡

z
n−1

s′
2
,

• for op= clone2, s′
1 m+1≡

z
n

s′
2
, and

184 3. Main Results

• for op= pop2, s′
1 m−1≡

z
n

s′
2
.

Proof. For op = pop1, we use Lemma 3.3.26. For op = pushσ we use Lemma 3.3.25. For

clone2 and pop2, the claim follows directly from the definitions.

The previous proposition shows that the equivalence relations on stacks are compatible

with the stack operations. Recall that successive relevant ancestors of a given run ρ are

runs ρ1 ≺ ρ2 � ρ such that ρ2 extends ρ1 by either a single transition or by some run

that creates some new word on top of the last stack of ρ1 (cf. Proposition 3.3.17). In

the next section, we are concerned with the construction of a short run ρ̂ such that its

relevant ancestors are isomorphic to those of ρ. A necessary condition for a run ρ̂ to be

short is that it only passes small stacks. We construct ρ̂ using the following construction.

Let ρ0 ≺ ρ1 ≺ ρ2 . . .≺ ρ be the set of relevant ancestors of ρ. We then first define a run ρ̂0

that ends in some small stack that is equivalent to the last stack of ρ0. Then, we iterate the

following construction. If ρi+1 extends ρi by a single transition, then we define ρ̂i+1 to be

the extension of ρ̂i by the same transition. Due to the previous proposition this preserves

equivalence of the topmost stacks of ρi and ρ̂i. Otherwise, ρi+1 extends ρi by some run

that creates a new word wi+1 on top of the last stack of ρi. Then we want to construct a

short run that creates a new word w′
i+1

on top of the last stack of ρ̂i such that wi+1 and

w′
i+1

are equivalent and w′
i+1

is small. Then we define ρ̂i+1 to be ρ̂i extended by this run.

Finally, this procedure defines a run ρ̂ that corresponds to ρ in the sense that the relevant

ancestors of the two runs are isomorphic but ρ̂ is a short run.

In the following, we prepare this construction. We show that for any run ρ0 there is a

run ρ̂0 that ends in some small stack that is equivalent to the last stack of ρ0. This is done

in Corollary 3.3.37. Furthermore, we show that for runs ρi and ρ̂i that end in equiva-

lent stacks, any run that extends the last stack of ρi by some word w can be transferred

into a run that extends ρ̂i by some small word that is equivalent to w. This is shown in

Proposition 3.3.39.

The proofs of Corollary 3.3.37 and Proposition 3.3.39 are based on the property that

prefixes of equivalent stacks share the same number of loops and returns for each pair

of initial and final states. Recall that our analysis of generalised milestones showed that

the existence of loops with certain initial and final states has a crucial influence on the

question whether runs between certain stacks exist.

In the following, we first state three main lemmas concerning the reachability of small

stacks that are equivalent to some given stack. Together, these lemmas directly imply the

Corollary 3.3.37. Afterwards, we present the Proposition 3.3.39. In the end of this section,

we provide the technical details for the proofs of the main lemmas and the proposition.

The first lemma allows to translate an arbitrary run ρ into another run ρ′ that ends in a

stack with a small topmost word such that the topmost words of ρ and ρ′ are equivalent.

We first define a function that is used to define what small means in this context.

Definition 3.3.30. Let N = (Q,Σ,Γ,∆, q0) be a pushdown system of level 2. Set

BTW : N2→ N

BTW(n, z) = |Q| · |Σ
∗/≡z

n|+ 1,

where |Σ∗/≡z
n| is the number of equivalence classes of ≡z

n
.

3.3. Higher-Order Nested Pushdown Trees 185

Lemma 3.3.31. For all z, n ∈ N with z ≥ 2 and for each run ρ with |top2(ρ)| > BTW(n, z)

there is some run ρ̂ with

|top2(ρ)| − BTW(n, z)≤ |top2(ρ̂)|< |top2(ρ)| and

top2(ρ)≡
z
n

top2(ρ̂).

The previous lemma gives the possibility to replace a given run by some run that ends

in an equivalent but small topmost word. After bounding the topmost word, we want to

bound the height of all the words occurring in the last configuration of some run ρ. This

is done with the next lemma.

Definition 3.3.32. Let N = (Q,Σ,Γ,∆, q0) be a pushdown system of level 2. Set

Bhgt := |Σ∗/≡2
0
| · |Q|2.

Lemma 3.3.33. If ρ is some run with hgt(ρ)> |top2(ρ)|+ Bhgt, then there is a run ρ̂ with

hgt(ρ)− Bhgt ≤ hgt(ρ̂)< hgt(ρ) and

top2(ρ) = top2(ρ̂).

Finally, we want to bound the width of the last stack of some run in terms of its height

while preserving the topmost word. This is done in the following lemma.

Definition 3.3.34. Set

BWW : N→ N

n 7→ |Q| · (|Σ|+ 1)n.

Remark 3.3.35. BWW(n) is an upper bound for the number of pairs of states and words of

length up to n.

Lemma 3.3.36. For every run ρ with wdt(ρ)> BWW(hgt(ρ)) there is a run ρ̂ with

wdt(ρ)− BWW
�

hgt(ρ)
�

≤ wdt(ρ̂)< wdt(ρ) and

top2(ρ̂) = top2(ρ).

The previous three lemmas are summarised in the following corollary. It asserts that for

every run there is a run ending in a small stack with equivalent topmost word.

Corollary 3.3.37. For each run ρ starting in the initial configuration, there is a run ρ′

starting in the initial configuration such that

|top2(ρ
′)| ≤ BTW(n, z),

hgt(ρ′)≤ |top2(ρ
′)|+ Bhgt,

wdt(ρ′)≤ BWW(hgt(ρ′)) and

top2(ρ)≡
z
n

top2(ρ
′).

186 3. Main Results

The previous corollary deals with the reachability of some stack from the initial configu-

ration. The following proposition is concerned with the extension of a given stack by just

one word. We first define the function that is used to bound the size of the new word.

Definition 3.3.38. Let N be a level 2 pushdown system with state set Q. Set

BH1 : N4→ N

(a, b, c, d) 7→ b+ a(|Q||Σ
∗/≡d

c |).

Before we state the proposition, we explain its meaning. The proposition says that given

two equivalent words w and ŵ and a run ρ from (q, s : w) to (q′, s : w : w′) that does

not pass a substack of s : w, then, for each stack ŝ : ŵ, we find a run ρ̂ from (q, ŝ : ŵ) to

(q′, ŝ : ŵ : ŵ′) for some short word ŵ′ that is equivalent to w′. Furthermore, this transfer of

runs works simultaneously on a tuple of such runs, i.e., given m runs starting at s : w of the

form described above, we find m corresponding runs starting at ŝ : ŵ. This simultaneous

transfer becomes important when we search an isomorphic copy of the relevant ancestors

of several runs. In this case the simultaneous transfer allows to copy the relevant ancestors

of a certain run while avoiding an intersection with relevant ancestors of other given runs.

Proposition 3.3.39. Let N be a level 2 pushdown system and n, z, m ∈ N such that n ≥ 1,

z > m, and z ≥ 2. Let c = (q, s : w), ĉ = (q, ŝ : ŵ) be configurations such that w ≡z
n

ŵ. Let

ρ1, . . . ,ρm be pairwise distinct runs such that for each i, |ρi(j)| > |s : w| for all j ≥ 1 and

such that ρi starts at c and ends in (qi, s : w : wi). Analogously, let ρ̂1, . . . , ρ̂m−1 be pairwise

distinct runs such that each ρ̂i starts at ĉ and ends in (qi, ŝ : ŵ : ŵi) and |ρ̂i(j)| > |ŝ : ŵ| for

all j ≥ 1. If

wi ≡
z
n−1

ŵi for all 1≤ i ≤ m− 1,

then there is some run ρ̂m from ĉ to (q0, ŝ : ŵ : ŵm) such that

wm ≡
z
n−1

ŵm,

ρ̂m is distinct from each ρ̂i for 1≤ i < m, and

|ŵm| ≤ BH1(m, |ŵ|, n, z).

The rest of this section is concerned with the proofs of Lemmas 3.3.36, 3.3.33, and

3.3.31 and with the proof of Proposition 3.3.39. The reader who is not interested in the

technical details of these proofs may skip the rest of this section and continue reading

Section 3.3.6. In that section show how the results of this section can be used to construct

isomorphic relevant ancestors that consist of runs ending in small stacks.

Prefix Replacement Revisited

Recall that we defined the prefix replacement for runs that are prefixed by a certain

stack (cf. Lemma 2.3.38). We want to extend the notion of prefix replacement to runs

that are only prefixed at the beginning and at the end by some stack s and that never

visit the substack pop2(s). We apply this new form of prefix replacement in the proofs of

Lemmas 3.3.36, 3.3.33 and 3.3.31. The following lemma prepares this new kind of prefix

replacement.

3.3. Higher-Order Nested Pushdown Trees 187

Lemma 3.3.40. Let N be some level 2 pushdown system and let ρ be a run of N of length

n. Let s be a stack with topmost word w := top2(s) such that

1. sÅρ(0),

2. sÅρ(n), and

3. |s| ≤ |ρ(i)| for all 0≤ i ≤ n.

There is a unique sequence 0= i0 ≤ j0 < i1 ≤ j1 < · · ·< im−1 ≤ jm−1 < im ≤ jm = n such that

1. sÅρ↾[ik, jk]
for all 0≤ k ≤ m and

2. top2(ρ(jk + 1)) = pop1(w), ρ↾[jk,ik+1]
is either a loop or a return, and ρ↾[jk,ik+1]

does

not visit the stack of ρ(jk) between its initial configuration and its final configuration

for all 0≤ k < m.

Proof. If sÅρ, then we set m := 0 and we are done. Otherwise, we proceed by induction

on the length of ρ.

There is a minimal position j0 + 1 such that s 6Åρ(j0 + 1). By assumption on s,

ρ(j0+ 1) 6= pop2(s). Thus, top2(ρ(j0)) = w and top2(ρ(j0 + 1)) = pop1(w). Now, let

i1 > j0 be minimal such that sÅρ(i1). Concerning the stack at i1 there are the following

possibilities.

1. If ρ(i1) = pop2(ρ(j0)) then sÅρ(i1) (cf. Lemma 2.3.37). Furthermore, ρ↾[j0,i1]
is a

return.

2. Otherwise, the stacks of ρ(j0) and ρ(i1) coincide whence ρ↾[j0,i1]
is a loop (note that

between j0 and i1 the stack pop2(ρ(j0)) is never visited due to the minimality of i1
and due to assumption 3).

ρ↾[i1,n] is shorter than ρ. Thus, it decomposes by induction hypothesis and the lemma

follows immediately.

This lemma gives rise to the following extension of the prefix replacement.

Definition 3.3.41. Let s be some stack and ρ be a run of some pushdown system N of

level 2 such that sÅρ(0), sÅρ(ln(ρ)) and |s| ≤ |ρ(i)| for all i ∈ dom(ρ). Let u be some

stack such that top1(u) = top1(s), #Loop1(u) = #Loop1(s) and #Ret1(u) = #Ret1(s).

Let 0 = i0 ≤ j0 < i1 ≤ j1 < · · · < im−1 ≤ jm−1 < im ≤ jm = ln(ρ) be the sequence

corresponding to ρ in the sense of the previous lemma. We set (qk, sk) := ρ(jk) and

(q′
k
, s′

k
) := ρ(ik+1). By definition, ρ↾[jk,ik+1]

is a loop or a return from (qk, sk) to (q′
k
, s′

k
) and

top2(sk) = top2(s) and sÅ sk. Thus, top2(sk[s/u]) = top2(u). Since #Ret1(u) = #Ret1(s)

and #Loop1(u) = #Loop1(s), there is a run from (qk, sk[s/u]) to (q′
k+1

, s′
k+1
[s/u]). We set

ρk to be the lexicographically shortest run from (qk, sk[s/u]) to (q′
k+1

, s′
k+1
[s/u]).

Then we define the run

ρ[s/u] := ρ↾[i0, j0]
[s/u] ◦ρ0 ◦ρ↾[i1, j1]

[s/u] ◦ρ1 ◦ · · · ◦ρm−1 ◦ρ↾[im, jm]
[s/u].

Note that ρ[s/u] is a well-defined run from ρ(0)[s/u] to ρ(ln(ρ))[s/u].

188 3. Main Results

f e

b d e e
a a a a

s = ⊥ ⊥ ⊥ ⊥

f

d
a

m1 = ⊥

f

b d
a a a

m2 = ⊥ ⊥ ⊥

f

b d e
a a a

m3 = ⊥ ⊥ ⊥

Figure 3.18.: Illustration for the construction in the proof of Lemma 3.3.31.

d f

b d d d
a a a a a

s = m′
2
= ⊥ ⊥ ⊥ ⊥ ⊥

d f

b d d
a a a

m= m4 = ⊥ ⊥ ⊥

d

b d d
a a a

m3 = ⊥ ⊥ ⊥

f

b
a a

m2 = ⊥ ⊥

d f f

b d d d
a a a a

m′
4
= ⊥ ⊥ ⊥ ⊥

d f

b d d d
a a a a

m′
3
= ⊥ ⊥ ⊥ ⊥

Figure 3.19.: Illustration for the construction in the proof of Lemma 3.3.33.

Proof of Lemma 3.3.31

Recall that Lemma 3.3.31 asserts for every run ρ the existence of a run ρ′ that ends in a

stack with small topmost word that is equivalent to the topmost word of the last stack of

ρ. The proof of this lemma is as follows.

Proof of Lemma 3.3.31. Let ρ be some run with |top2(ρ)|> BTW(n, z). (q, s) := ρ(ln(ρ))

denotes the final configuration of ρ. For each k ≤ BTW(n, z), there is a maximal milestone

mk ∈MS(s) with |top2(mk)|= k. Figure 3.18 illustrates this definition. Let wk := top2(mk)

and let ρk � ρ be the largest initial segment of ρ that ends in mk. Note that mkÅmk′Å s

for all k ≤ k′ ≤ BTW(n, z) by the maximality of mk and mk′ .

Then there are i < j ≤ BTW(n, z) such that top2(ρi) ≡
z
n

top2(ρ j) and the final states of

ρi and ρ j agree.

Due to the maximality of ρ j, no substack of pop2(m j) is visited by ρ after k := ln(ρ j).

Thus, the run π := (ρ↾[k,ln(ρ)])[m j/mi] is well-defined (cf. Definition 3.3.41). Note that π

starts by definition in (q′, mi) for q′ ∈ Q the final state of ρi. Thus, we can set ρ̂ := ρi ◦π.

Due to wi ≡
z
n

wk and the right congruence of ≡z
n

(cf. Lemma 3.3.25.), it is clear that

top2(ρ̂)≡
z
n

top2(ρ). Since 0< |w j| − |wi|< BTW(n, z), it also follows directly that

|top2(ρ)| − BTW(n, z)≤ |top2(ρ̂)|< |top2(ρ)|.

Proof of Lemma 3.3.33

Recall that Lemma 3.3.33 asserts that for each run ρ there is a run ρ′ such that

top2(ρ) = top2(ρ
′) and such that the height of the last stack of ρ′ is bounded in terms

of |top2(ρ)|.

3.3. Higher-Order Nested Pushdown Trees 189

Proof of Lemma 3.3.33. The proof is by induction on the number of words in the last stack

of ρ that have length h := hgt(ρ). Assume that ρ is some run such that

hgt(ρ)> |top2(ρ)|+ Bhgt.

In the following, we define several generalised milestones of the final stack s of ρ. An

illustration of these definitions can be found in Figure 3.19.

Let m ∈ MS(s) be a milestone of the last stack of ρ such that |top2(m)| = h. For each

|top2(ρ)| ≤ i ≤ h let mi ∈MS(m) be the maximal milestone of m with |top2(mi)|= i. Let ni

be maximal such that ρ(ni) = (q
′, mi) for some q′ ∈ Q. Let m′

i
∈ GMS(s) \GMS(m) be the

minimal generalised milestone after m such that top2(m
′
i
) = top2(mi). Let n′

i
be maximal

with ρ(n′
i
) = (q′, m′

i
) for some q′ ∈Q.

There are |top2(ρ)| ≤ k < l ≤ hgt(ρ) satisfying the following conditions.

1. There is a q ∈Q such that ρ(nk) = (q, mk) and ρ(nl) = (q, ml).

2. There is a q′ ∈Q such that ρ(n′
k
) = (q′, m′

k
) and ρ(n′

l
) = (q′, m′

l
).

3. top2(mk) ≡
2
0

top2(ml) (this assumption implies that #Loop1(mk) = #Loop1(ml) and

#Ret1(mk) = #Ret1(ml)).

By definition, we have mlÅm′
l
. Thus, the run π1 := (ρ↾[nl ,n

′
l
])[ml/mk] is well defined (cf.

Definition 3.3.41). Note that π1 starts in (q, mk) and ends in (q′, ŝ) for ŝ := m′
l
[ml/mk]).

Moreover, top2(π1) = top2(m
′
k
) = top2(ρ(n

′
k
)). Furthermore, ρ↾[n′

k
,ln(ρ)] never looks below

the topmost word of m′
k

because n′
k

is the maximal node where the generalised milestone

m′
k

is visited. Thus, pop2(m
′
k
) :⊥Åρ↾[n′

k
,ln(ρ)]. Due to Lemma 2.3.38,

π2 := ρ↾[n′
k
,ln(ρ)][pop2(m

′
k
) :⊥/pop2(ŝ) :⊥]

is well defined. It starts in the last stack of π1.

Now, we define the run

ρ̂ := ρ↾[0,nk]
◦π1 ◦π2.

Either hgt(ρ̂) < hgt(ρ) and we are done or there are less words of height hgt(ρ) in the

last stack of ρ̂ than in the last stack of ρ and we conclude by induction.

Proof of Lemma 3.3.36

Recall that Lemma 3.3.36 asserts that for any run ρ there is another run ρ′ such that

ρ and ρ′ end in stacks with equal topmost word but the width of the final stack of ρ′ is

bounded in terms of its height.

Proof of Lemma 3.3.36. Assume that ρ is a run with ln(ρ) > BWW(hgt(ρ)). We de-

note by ni the maximal position in ρ such that the stack at ρ(ni) is popi
2
(ρ) for each

0≤ i ≤ wdt(ρ). There are less than
BWW(hgt(ρ))

|Q|
many words of length up to hgt(ρ). Thus,

there are i < j such that

1. top2

�

popi
2
(ρ)
�

= top2

�

pop
j

2(ρ)
�

, and

190 3. Main Results

2. ρ(ni) =
�

q, popi
2
(ρ)
�

and ρ(n j) =
�

q, pop
j

2(ρ)
�

for some q ∈Q.

Now, let si := popi+1
2 (ρ) and s j := pop

j+1

2 (ρ). There is a unique stack s such that

ρ(ln(ρ)) = (q̂, si : s). ρ↾[ni ,ln(ρ)]
is a run from popi

2
(ρ) to si : s that never visits si. Thus,

ρ̂1 := ρ↾[ni ,ln(ρ)]
[si :⊥/s j :⊥]

is a well defined run. The composition ρ̂ := ρ↾[0,n j]
◦ ρ̂1 satisfies the claim.

Proof of Proposition 3.3.39

We decompose the proof of Proposition 3.3.39 in several lemmas. Recall that this Propo-

sition is about a run ρ from some stack s : w to some stack s : w : w′ that does not visit

substacks of s : w. Such a run decomposes into three parts. First, it performs a clone2

operation. Then there is a run from w : w to w : (w ⊓ w′), i.e., a run that removes letters

from w until it reaches the greatest common prefix of w and w′. Finally, the run constructs

w′ from the prefix w⊓w′. In the following we first treat the second and the third part sep-

arately. We prove lemmas that allow to transfer each of these parts from one starting stack

to another one. Afterwards, we compose these arguments in order to obtain the proof of

Proposition 3.3.39.

The first lemma is concerned with a transfer of several runs starting with the same stack

s : w and ending in the same stack s : w′ for some prefix w′ of w.

Lemma 3.3.42. Let z, m, n ∈ N such that z ≥ 2 and z > m. Let v , w, w′ be words with v ≤ w,

and q, q̂ ∈ Q states. Let there be pairwise distinct runs ρ1, . . . ,ρm from (q, w) to (q̂, v) such

that each ρi does not visit v before ln(ρi). If w ≡z
n+1

w′, then there exist a word v
′ ≤ w′ and

pairwise distinct runs ρ′
1
, . . . ,ρ′

m
from (q, w′) to (q̂, v

′) such that

v ≡z
n

v
′, top1(v) = top1(v

′),

v = w iff v
′ = w′and

ρ′
i

does not visit v
′ before ln(ρ′

i
).

Proof. Let i ∈ N be such that v = w−i. Then i is labelled by Sm
q,q̂

, Ptop1(v)
, and Typez;z

n
(v) in

Lin
z;z
n+1(w). Since Lin

z;z
n+1(w) ≃z Lin

z;z
n+1(w

′), there is some i′ ∈ N such that i′ in Lin
z;z
n+1(w

′)

is labelled by the same relations as i in Lin
z;z
n+1(w). Due to z ≥ 2, we can choose this i′ such

that i′ 6= 0 if and only if i 6= 0. Note that for v
′ := w′

−i′
, top1(v

′) = top1(v) because i′ and

i agree on the label Ptop1(v)
. Since i′ ∈ Sm

q,q̂
, there are m pairwise distinct runs from (q, w′)

to (q̂, v
′) that visit v

′ only in the final configuration. Finally, v ≡z
n

v
′ due to the fact that i′

and i agree on the labels characterising Typez;z
n
(v ′) and Typez;z

n
(v), respectively.

The next lemma is in some sense the “otherwise” to the previous one. This lemma allows

to transfer runs starting in the same word w but ending in different prefixes of w.

Lemma 3.3.43. Let z, m, n ∈ N such that z ≥ 2 and z > m. Let w, w′ be words,

v1, . . . , vm ≤ w pairwise distinct prefixes. Let there be pairwise distinct runs ρ1, . . . ,ρm such

that ρi is from (q, w) to (qi, v i) and ρi does not visit v i before ln(ρi). If w ≡z
n+1

w′, then

there are pairwise distinct prefixes v
′
1
, . . . , v

′
m
≤ w′ and pairwise distinct runs ρ′

1
, . . . ,ρ′

m
such

that each ρ′
i

starts in (q, w′) and ends in (qi, v
′
i
), v

′
i
≤ w′, and v

′
i
≡z

n
v i such that ρ′

i
does not

visit v
′
i

before ln(ρ′
i
).

3.3. Higher-Order Nested Pushdown Trees 191

Proof. Any winning strategy in the z-round Ehrenfeucht-Fraïssé game on Lin
z;z
n+1(w) and

Lin
z;z
n+1(w

′) chooses responses v
′
1
, . . . , v

′
m

for v1, . . . , vm such that the labels of the nodes

associated to v
′
i

in Lin
z;z
n+1(w

′) and the nodes associated to v i in Lin
z;z
n+1(w) agree and the

v
′
i

are pairwise distinct. Hence, v i ≡
z
n

v
′
i
. Now, there are runs ρ′

i
as desired due to the fact

that the node associated with v
′
i

in Lin
z;z
n+1(w

′) is labelled by S1
q,qi

.

Remark 3.3.44. Since z > m, the strategy preserves also the labels of the left and right

neighbour. Thus, if v i = w−k and v
′
i
= w′

−k′
, then k = 0 if and only if k′ = 0, and if k 6= 0,

then top1(w−k+1) = top1(w
′
−k′+1

).

The combination of the previous two lemmas yields the following corollary.

Corollary 3.3.45. Let z, m, n ∈ N such that z ≥ 2 and z > m and let w, w′ be words. Let there

be pairwise distinct runs ρ1, . . . ,ρm such that ρi is a run from (qi, w) to (q̂i, v i) for v i ≤ w and

ρi does not visit v i before ln(ρi). If w ≡z
n+1

w′, then there are prefixes v
′
1
, . . . , v

′
m
≤ w′ and

pairwise distinct runs ρ′
1
, . . . ,ρ′

m
such that ρi starts in (qi, w′) and ends in (q̂i, v

′
i
), v

′
i
≡z

n
v i,

and ρ′
i

does not visit v
′
i

before ln(ρ′
i
).

This corollary provides the transfer of runs from some stack s : w to stacks s : wi with

wi ≤ w to another starting stack s′ : w′ if w and w′ are equivalent words.

Now, we start the investigation of the other direction. We analyse runs from some word

w to some extension wv . If w′ is equivalent to w, then we first transfer the run from w to

wv to a run from w′ to w′v . Afterwards, we even provide a lemma that allows to shrink v

during this transfer process.

Lemma 3.3.46. Let n, m, z ∈ N with z ≥ 2 and z > m. Let ρ0, . . . ,ρm be pairwise distinct

runs such that ρi starts in (q, w) and ends in (q̂, wwi). If w′ is a word such that w ≡z
n

w′,

then there are pairwise distinct runs ρ′
0
, . . . ,ρ′

m
such that ρ′

i
starts in (q, w′) and ends in

(q̂, w′wi).

Proof. This follows directly from the fact that

#Retz(w) = #Retz(w′) and #Loopz(w) = #Loopz(w′).

Each run from w to wwi is a sequence of loops and push operations. But the existence of

the corresponding loops when starting in w′ are guaranteed by the inductive computability

of the number of loops and returns (cf. Proposition 2.4.47).

As already indicated, we will now improve this lemma in the sense that we shrink the

word wi to a short word w′
i
.

We fix some pushdown system N of level 2 with state set Q and stack alphabet Σ. Let

f : N2→ N

(n, z) 7→ 1+ |Q| ·
�

�Σ∗/≡z
n

�

�

for
�

�Σ∗/≡z
n

�

� the index of ≡z
n
.

Lemma 3.3.47. For q, q̄ ∈ Q, w and v words, let ρ be a run from (q, w) to (q̄, wv). If

|v |> f(n, z) then there is a run ρ′ from (q, w) to (q̄, wv
′) such that

|v | − f(n, z)≤ |v ′|< |v |,

wv ≡z
n

wv
′ and

the first letters of v and v
′ coincide.

192 3. Main Results

Proof. Assume that |v |> f(n, z). Then there are two distinct prefixes ǫ < u1 < u2 ≤ v such

that

1. ρ passes wu1 and wu2 in the same state q̂ ∈Q,

2. wu1 ≡
z
n

wu2, and

3. 1≤ |u1|< |u2| ≤ f (n, z) + 1.

Set v i to be the unique word such that v = uiv i for i ∈ {1, 2}. Since ≡z
n

is a right con-

gruence, wu1v2 ≡
z
n

wu2v2 = wv . wu1 ≡
z
n

wu2 implies that #Retz(wu1) = #Retz(wu2) and

#Loopz(wu1) = #Loopz(wu2). Since there is a run from (q̂, wu2) to (q̄, wu2v2) = (q̄, wv),

we can use the prefix replacement [wu2/wu1] we obtain a run ρ̂ from (q̂, wu1) to

(q̄, wu1v2). Composition of the initial part of ρ up to (q̂, wu1) with ρ̂ yields a run ρ′.

By construction ρ′ satisfies the claim.

The following corollary uses the previous lemma in such a way that we can transfer

some run to a new run that does not coincide with certain given runs

Corollary 3.3.48. Let ρ,v , and w be as in the previous lemma and let ρ1, . . . ,ρm be runs

distinct from ρ, then we can find a run ρ′ distinct from all ρi for 1 ≤ i ≤ m from (q, w) to

(q̄, wv
′) such that |v ′| ≤ m · f(n, z), wv ≡z

n
wv
′, and v and v

′ start with the same letter.

Proof. If v is long enough, we find m+2 words that are visited in the same state and which

are of the same type. There is one pair among these words which can be used as u1 and

u2 in the previous lemma such that the final configuration does not agree with that of any

of the other runs ρ1, . . . ,ρm.

For the proof of Proposition 3.3.39, we now compose the previous lemmas. Recall that

the proposition says the following: given m runs ρ1, . . . ,ρm that only add one word to

a given stack and given m words that are equivalent to the words on top of the initial

stacks of the ρi, we can transfer the runs ρ1, . . . ,ρm to runs ρ′
1
, . . . ,ρ′

m
that start at the

given m words and extend these by one word each such that the resulting new words are

equivalent to the words originally created by ρ1, . . . ,ρm.

Proof of Proposition 3.3.39. Let ρ1,ρ2, . . . ,ρm and ρ̂1, ρ̂2, . . . , ρ̂m−1 be runs as required in

the proposition.

First, assume that wi ≡
z
n−1

w j and that all runs ρi end in the same state, i.e., qi = q j, for

all 1 ≤ i ≤ j ≤ m. At the end of the proof we discuss the case that this assumption is not

true.

Each run ρi decomposes as ρi = ρ
0
i
◦ρ1

i
◦ρ2

i
where ρ0

i
performs only one clone operation,

and ρ1
i

is the run from s : w : w to the first occurrence of s : w : (w ⊓ wi).

Due to top1(w) = top1(ŵ), there are runs ρ̂0
i

from ĉ to ŝ : ŵ : ŵ performing only one

clone operation and ending in the same state as ρ0
i
.

By Corollary 3.3.45, we can transfer the ρ1
i

to runs ρ̂1
i

starting at (q, ŝ : ŵ : ŵ) and

ending at ŝ : ŵ : ûi with ûi ≤ ŵ and with w ⊓ wi ≡
z
n−1

ûi. The lemma guarantees that

ρ̂1
i
= ρ̂1

j
iff ρ1

i = ρ
1

j.

For v i the word such that wi = (w⊓wi)◦v i, we use Lemma 3.3.46 to construct runs from

ŝ : ŵ : ûi to (qi, ŝ : ŵ : ûiv i) such that ûiv i ≡
z
n−1

wi. Applying Corollary 3.3.48, we find

3.3. Higher-Order Nested Pushdown Trees 193

words v̂1, . . . , v̂m, and runs ρ̂2
1
, . . . , ρ̂2

m
such that ρ̂2

i
is a run from ŝ : ŵ : ûi to (qi, ŝ : ŵ : ûi v̂ i)

such that ûi v̂ i ≡
z
n−1

wi and such that ûi v̂ i has length bounded by

BH1(m, |ŵ|, n, z) = |ŵ|+m · f(n, z).

Furthermore, Corollary 3.3.48 assures that ρ̂2
i

and ρ̂2
j

coincide if and only if ρ2
i

and ρ2
j

coincide.

We conclude that the runs

ρ̂0
1
◦ ρ̂1

1
◦ ρ̂2

1
, ρ̂0

2
◦ ρ̂1

2
◦ ρ̂2

2
, . . . , ρ̂0

m
◦ ρ̂1

m
◦ ρ̂2

m

are pairwise distinct as follows. Heading for a contradiction assume that there are i 6= j

such that ρ̂0
i
◦ ρ̂1

i
◦ ρ̂2

i
= ρ̂0

j
◦ ρ̂1

j
◦ ρ̂2

j
. Since ln(ρ̂0

i
) = 1 = ln(ρ̂0

j
), it follows that

ρ̂0
i
= ρ̂0

j
and ρ̂1

i
◦ ρ̂2

i
= ρ̂1

j
◦ ρ̂2

j
. Since the runs coincide, we have ûi v̂ i = û j v̂ j. Using

Remark 3.3.44 and the fact that the first letters of v i and v̂ i agree, one concludes that

ûi = ŵ ⊓ ûi v̂ i = ŵ ⊓ û j v̂ j = û j. But by definition, ln(ρ̂1
i
) and ln(ρ̂1

j
), respectively, is the first

occurrence of ûi = û j in ρ̂1
i
◦ ρ̂2

i
and ρ̂1

j
◦ ρ̂2

j
, respectively. It follows that ρ̂1

i
= ρ̂1

j
and

ρ̂2
i
= ρ̂2

j
. By definition, this implies that ρ0

i
= ρ0

j
, ρ1

i
= ρ1

j
, and ρ2

i
= ρ2

j
. Thus, we have

ρi = ρ j contradicting the assumptions of the proposition.

Thus, the runs are pairwise distinct and one of them does not coincide with any of the

ρ̂i for 1≤ i ≤ m− 1. Without loss of generality, assume that

ρ̂m := ρ̂0
m
◦ ρ̂1

m
◦ ρ̂2

m
6= ρ̂i for all 1≤ i < m.

Note that ρ̂m satisfies the claim of the proposition by construction.

In the case that the runs ρ1, . . . ,ρm end in configurations with different states or different

≡z
n−1

-types of their topmost words. In this case, we just concentrate on those ρi which end

in the same state as ρ0 and with a topmost word of the same type as w0. This is sufficient

because some run ρ can only coincide with ρ̂i if both runs end up in stacks whose topmost

words have the same type.

3.3.6 Small-Witness Property via Isomorphisms of Relevant Ancestors

In this section, we want to define a family of equivalence relations on tuples of runs of a

level 2 nested pushdown tree. The equivalence class of a tuple ρ1, . . . ,ρm with respect to

one of these relations is the isomorphism type of the substructure induced by the relevant

l-ancestors of ρ1, . . . ,ρm extended by some information for preserving this isomorphism

during an Ehrenfeucht-Fraïssé game (while decreasing l in every round of the game).

Recall that such a game ends in a winning position for Duplicator if the relevant 1-ancestors

of the elements that were chosen in the two structures are isomorphic (cf. Lemma 3.3.9).

An important property of these equivalence relations is that they have finite index be-

cause the sets of l-ancestors are finite and the information we add to the structure can be

encoded by a bounded number of unary predicates.

Finally, we show how to construct small representatives for each equivalence class. As

explained in Section 2.1.1, this property can be turned into an FO model checking algo-

rithm on the class of 2-NPT.

194 3. Main Results

Definition 3.3.49. Let ρ̄ = (ρ1,ρ2, . . . ,ρm) be runs of a level 2 pushdown system N

and let N := NPT(N) be the 2-NPT generated by N . Let l, n1, n2, z ∈ N. We define the

following relations on RAl(ρ̄).

1. For k ≤ l and ρ ∈ ρ̄, let Pk
ρ := {π ∈ RAl(ρ̄) : π ∈ RAk(ρ)}.

2. Let n1
≡z

n2
-Type denote the function that maps a run π to the equivalence class of the

last stack of π with respect to n1
≡z

n2
.

We write rAl,n1,n2,z(ρ̄) for the following expansion of the relevant ancestors of ρ̄:

rAl,n1,n2,z(ρ̄) := (N↾RAl (ρ̄)
,⊢, ,→,

+1
,→, n1

≡z
n2

-Type, (Pk
ρ j
)k≤l,1≤ j≤m).

For tuples of runs ρ̄ = (ρ1, . . . ,ρm) and ρ̄′ = (ρ′
1
, . . . ,ρ′

m
) we set ρ̄ l

n1
≡z

n2
ρ̄′ if

rAl,n1,n2,z(ρ̄)≃ rAl,n1,n2,z(ρ̄
′).

Remark 3.3.50.

• If ρ̄ l
n1
≡z

n2
ρ̄′ then there is a unique isomorphism ϕ : rAl,n1,n2,z(ρ̄) ≃ rAl,n1,n2,z(ρ̄

′)

witnessing this equivalence. Note that due to the predicate P0
j
, ρ j is mapped to ρ′

j
for

all 1≤ j ≤ m. Due to the predicate P l
j
, the relevant ancestors of ρ j are mapped to the

relevant ancestors of ρ′
j
. Finally, ϕ must preserve the order of the relevant ancestors

of ρ j because they form a chain with respect to ⊢ ∪
+1
,→ (cf. Proposition 3.3.17).

• Due to Lemma 3.3.9, it is clear that ρ̄ l
n1
≡z

n2
ρ̄′ implies that there is a partial isomor-

phism mapping ρi 7→ ρ
′
i

for all 1≤ i ≤ m.

Since equivalent relevant ancestors induce partial isomorphisms, a strategy that pre-

serves the equivalence between relevant ancestors is winning for Duplicator in the

Ehrenfeucht-Fraïssé-game.

Given a level 2 pushdown system N we are going to show that there is a strategy in

the Ehrenfeucht-Fraïssé game on NPT(N) =: N, ρ̄ and N, ρ̄′ in which Duplicator can

always choose small elements compared to the size of the elements chosen so far in the

structure where he has to choose. Furthermore, this strategy will preserve equivalence of

the relevant ancestors in the following sense. Let ρ̄, ρ̄′ ⊆ N be the n-tuples chosen in the

previous rounds of the game. Assume that Duplicator managed to maintain the relevant

ancestors of these tuples equivalent, i.e., it holds that ρ̄ l
k
≡z

n
ρ̄′. Now, Duplicators strategy

enforces that these tuples are extended by runs π and π′ satisfying the following. There

are numbers ki, li, ni such that ρ̄,π
li
ki
≡z

ni
ρ̄′,π′ and furthermore, the size of the run chosen

by Duplicator is small compared to the elements chosen so far.

The exact claim is given in the following proposition.

Proposition 3.3.51. Let N be a level 2 pushdown system defining the higher order nested

pushdown tree N := NPT(N). Given N , we can compute functions

BH : N5→ N,

BW : N5→ N, and

BL : N5→ N

3.3. Higher-Order Nested Pushdown Trees 195

with the following property.

Let n, z, n′
1
, n′

2
, l ′ ∈ N, l := 4l ′ + 5, n1 := n′

1
+ 2(l ′+ 2) + 1, and n2 := n′

2
+ 4l′+1+ 1 such

that z ≥ 2 and z > n · 4l . Furthermore, let ρ̄ and ρ̄′ be n-tuples of runs of N such that

1. ρ̄ l
n1
≡z

n2
ρ̄′, and

2. ln(π)≤ BL(n, l, n1, n2, z) for all π ∈ RAl(ρ̄
′),

3. hgt(π)≤ BH(n, z, l, n1, n2) for all π ∈ RAl(ρ̄
′), and

4. wdt(π)≤ BW(n, z, l, n1, n2) for all π ∈ RAl(ρ̄
′).

For each ρ ∈N there is some ρ′ ∈N such that

1. ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′,

2. ln(π)≤ BL(n+ 1, l ′, n′
1
, n′

2
, z) for all π ∈ RAl′(ρ̄

′,ρ′),

3. hgt(π)≤ BH(n+ 1, z, l ′, n′
1
, n′

2
) for all π ∈ RAl(ρ̄

′,ρ′), and

4. wdt(π)≤ BW(n+ 1, z, l ′, n′
1
, n′

2
) for all π ∈ RAl(ρ̄

′,ρ′).

In the next section we show how this proposition can be used to define an FO model

checking algorithm on nested pushdown trees of level 2. The rest of this section proves the

main proposition. For this purpose we split the claim into several pieces. The proposition

asserts bounds on the length of the runs and on the sizes of the final stacks of the relevant

ancestors. As the first step we prove that Duplicator has a strategy that chooses runs

with small final stacks. This result relies mainly on the Proposition 3.3.29 and Proposition

3.3.39. These results allow to construct equivalent relevant ancestor sets that contain

runs ending in small stacks.8 Afterwards, we apply the general bounds on short loops (cf.

Proposition 2.4.48) in order to shrink the length of the runs involved.

The reader who is not interested in the details of the proof of Proposition 3.3.51, may

skip this part and continue reading Section 3.3.6.

Construction of Isomorphic Relevant Ancestors

Before we prove that Duplicator can choose short runs, we state some auxiliary lemmas

concerning the construction of isomorphic relevant ancestors. The following lemma gives

a sufficient criterion that allows to check that the relevant ancestors of two runs are equiv-

alent. Afterwards, we show that for each run ρ we can construct a second run ρ′ satisfying

this criterion.

Lemma 3.3.52. Let ρ0 ≺ ρ1 ≺ · · · ≺ ρm = ρ be runs such that RAl(ρ) = {ρi : 0 ≤ i ≤ m}.

If ρ̂0 ≺ ρ̂1 ≺ · · · ≺ ρ̂m are runs such that

• the final states of ρi and ρ̂i coincide,

• ρ0 = popl
2
(ρm) or |ρ0|= |ρ̂0|= 1,

• ρ0 n1
≡z

n2
ρ̂0, and

8 In the following we sometimes say “Duplicator can choose small stacks”. This expression always means

that “Duplicator can choose a run such that all its relevant ancestors end in small stacks”.

196 3. Main Results

• ρi ∗ ρi+1 iff ρ̂i ∗ ρ̂i+1 for all 1≤ i < m and ∗ ∈ {
+1
,→}∪ {⊢γ: γ ∈ Γ},

then

RAl(ρ̂m) = {ρ̂i : 0≤ i ≤ m}.

If additionally top2(ρi)≡
z

n′
2

top2(ρ̂i), then

ρ̂m
l
n1
≡z

n′
2

ρm

for n′
2

:= n2− 4l .

Proof. First, we show that for all 0≤ i < j ≤ m, the following statements are true:

ρi ⊢
γ ρ j iff ρ̂i ⊢

γ ρ̂ j, (3.2)

ρi ,→ ρ j iff ρ̂i ,→ ρ̂ j, and (3.3)

ρi

+1
,→ ρ j iff ρ̂i

+1
,→ ρ̂ j. (3.4)

Note that ρi ⊢
γ ρ j implies j = i + 1. Analogously, ρ̂i ⊢

γ ρ̂ j implies j = i + 1. Thus, 3.2 is

true by definition of the sequences.

For the other parts, it is straightforward to see that |ρk| − |ρ j| = |ρ̂k| − |ρ̂ j| for all

0 ≤ j ≤ k ≤ m: for k = j the claim holds trivially. For the induction step from j to

j + 1, the claim follows from the assumption that ρ j ∗ ρ j+1 if and only if ρ̂ j ∗ ρ̂ j+1 for all

∗ ∈ {
+1
,→}∪ {⊢γ: γ ∈ Γ}.

Furthermore, assume that there is some π̂ such that ρ̂k ≺ π̂ ≺ ρ̂k+1. Then it cannot be

the case that ρ̂k ⊢
γ ρ̂k+1. This implies that ρk

+1
,→ ρk+1. Due to our assumptions, it follows

that ρ̂k

+1
,→ ρ̂k+1. We conclude directly that |π̂| ≥ |ρ̂k+1|> |ρ̂k|. Thus,

ρ j ,→ ρk iff

|ρ j|= |ρk| and |π|> |ρ j| for all ρ j ≺ π≺ ρk iff

|ρ̂ j|= |ρ̂k| and |π̂|> |ρ̂ j| for all ρ̂ j ≺ π̂≺ ρ̂k iff

ρ̂ j ,→ ρ̂k.

Analogously, one concludes that 3.4 holds.

We now show that RAl(ρ̂m) = {ρ̂i : 0≤ i ≤ m}. Note that

RAl(ρ̂m)∩ {π : ρ̂m � π}= {ρ̂m}.

Now assume that there is some 0≤ m0 ≤ m such that

RAl(ρ̂m)∩ {π : ρ̂m0
� π}= {ρ̂i : m0 ≤ i ≤ m} and

ρi ∈ RAk(ρ) iff ρ̂i ∈ RAk(ρ̂m) for all k ≤ l and i ≥ m0.

Now, we distinguish the following cases.

3.3. Higher-Order Nested Pushdown Trees 197

• If ρm0−1 ⊢
op ρm0

for some stack-operation op then ρ̂m0−1 ⊢
op ρ̂m0

due to 3.2.

Thus, there are no runs ρm0−1 ≺ π ≺ ρm0
. Hence, we only have to show that

ρm0−1 ∈ RAk(ρm) if and only if ρ̂m0−1 ∈ RAk(ρ̂m) for all k ≤ l.

If ρm0−1 ∈ RAk(ρm), then there is some j ≥ m0 such that ρ j ∈ RAk−1(ρm) and ρm0−1

is connected to ρ j via some edge. But then ρ̂ j ∈ RAk−1(ρ̂m) and ρ̂m0−1 is connected

with ρ̂ j via the same sort of edge. Thus, ρ̂m0−1 ∈ RAk(ρ̂m).

The other direction is completely analogous.

• Now, consider the case that there is some ρm0−1 ≺ π ≺ ρm0
. Since its direct prede-

cessor is not in RAl(ρm), ρm0
/∈ RAl−1(ρ). Thus, ρ̂m0

/∈ RAl−1(ρ̂). By construction of

the ρ̂i, ρ̂m0−1

+1
,→ ρ̂m0

. Thus, |π̂| ≥ |ρ̂m0
| for all ρ̂m0−1 ≺ π̂ ≺ ρ̂m0

. This implies that

π 6,→ ρ̂i and π 6
+1
,→ ρ̂i for all m0 < i ≤ m. This shows that π /∈ RAl(ρ̂m).

Now, for all k ≤ l we conclude completely analogous to the previous case that

ρ̂m0−1 ∈ RAk(ρ̂m) iff ρm0−1 ∈ RAk(ρm).

Up to now, we have shown that RAl(ρ̂m) ∩ {π : ρ̂0 � π} = {ρ̂i : 0 ≤ i ≤ m}. In order to

prove RAl(ρ̂m) = {ρ̂i : 0 ≤ i ≤ m}, we have to show that ρ̂0 is the minimal element of

RAl(ρ̂m).

There are the following cases

1. ρ0 = popl
2
(ρm). In this case, we conclude that ρ̂0 = popl

2
(ρ̂m) by construction. But

Lemma 3.3.12 then implies that ρ̂0 is the minimal element of RAl(ρ̂m).

2. |ρ0| = |ρ̂0| = 1. Note that ρ0 /∈ RAl−1(ρm) because ρ0 is minimal in RAl(ρm). Thus,

we know that ρ̂0 /∈ RAl−1(ρ̂m).

Heading for a contradiction, assume that there is some π̂ ∈ RAl(ρ̂m) with π̂ ≺ ρ̂0.

We conclude that π̂ ,→ ρ̂k or π̂
+1
,→ ρ̂k for some ρ̂k ∈ RAl−1(ρ̂m). But this implies that

|π̂|< |ρ̂0|= 1. Since there are no stacks of width 0, this is a contradiction.

Thus, there is no π̂ ∈ RAl(ρ̂m) that is a proper prefix of ρ̂0.

We conclude that RAl(ρ̂m) = {ρ̂i : 0≤ i ≤ m}.

Now, we prove the second part of the lemma. Assume that top2(ρi) ≡
z

n′
2

top2(ρ̂i) for

all 0≤ i ≤ m. Since ρ̂i and ρ̂i+1 differ in at most one word, a straightforward induction

shows that ρi n1−|ρ0|+|ρi |
≡z

n′
2

ρ̂i (cf. Proposition 3.3.29). But this implies ρ̂m
l
n1
≡z

n′
2

ρm

because |ρ0| ≤ |ρi| as we have seen in Lemma 3.3.12.

The previous lemma gives us a sufficient condition for the equivalence of relevant ances-

tors of two elements. Now, we show how to construct such a chain of relevant ancestors.

Lemma 3.3.53. Let l, n1, n2, m, z ∈ N such that n2 ≥ 4l and z ≥ 2. Let

ρ0 ≺ ρ1 ≺ · · · ≺ ρm = ρ be runs such that

RAl(ρ)∩ {π : ρ0 � π� ρ}= {ρi : 0≤ i ≤ m}.

Let ρ̂0 be a run such that ρ0 n1
≡z

n2
ρ̂0. Then we can effectively construct runs

ρ̂0 ≺ ρ̂1 ≺ · · · ≺ ρ̂m =: ρ̂

such that

198 3. Main Results

• the final states of ρi and ρ̂i coincide for all 0≤ i ≤ m,

• ρi ⊢
γ ρi+1 iff ρ̂i ⊢

γ ρ̂i+1 and ρi

+1
,→ ρi+1 iff ρ̂i

+1
,→ ρ̂i+1 for all 0≤ i < m, and

• top2(ρi)≡
z

n2−4l top2(ρ̂i) for all 0≤ i ≤ m.

Proof. Assume we have constructed

ρ̂0 ≺ ρ̂1 ≺ · · · ≺ ρ̂m0
,

for some m0 < m such that for all 0≤ i ≤ m0

1. the final states of ρi and ρ̂i coincide,

2. ρi ⊢
γ ρi+1 iff ρ̂i ⊢

γ ρ̂i+1 and ρi

+1
,→ ρi+1 iff ρ̂i

+1
,→ ρ̂i+1 (note that either ρi ⊢ ρi+1 or

ρi

+1
,→ ρi+1 hold due to Proposition 3.3.17), and

3. top2(ρi)≡
z
n2−i

ρ̂i.

We extend this chain by a new element ρ′
m0+1

such that all these conditions are again

satisfied. We distinguish two cases.

First, assume that ρm0
⊢γ ρm0+1. Since ρm0

≡z
n2−m0

ρ̂m0
, top1(ρm0

) = top1(ρ̂m0
). Due

to Condition 1, their final states also coincide. Hence, we can define ρ̂m0+1 such that

ρ̂m0
⊢γ ρ̂m0+1. Due to Proposition 3.3.29, ρ̂m0+1 satisfies Condition 3.

Now, consider the case ρm0

+1
,→ ρm0+1. The run from ρm0

to ρm0+1 starts from some

stack s and ends in some stack s : w for w some word, the first operation is a clone and

then s is never reached again. Hence, we can use Proposition 3.3.39 in order to find some

appropriate ρ̂m0+1 that satisfies Condition 3.

The previous lemmas give us the possibility to construct an isomorphic copy of the rel-

evant ancestors of a single run ρ. In our proofs, we want to construct such a copy while

avoiding relevant ancestors of certain other runs. Using the full power of Proposition

3.3.39 we obtain the following stronger version of the lemma.

Corollary 3.3.54. Let l, n1, n2, m, z ∈ N be numbers such that z > m · 4l and n2 ≥ 4l . As

before, let RAl(ρm) = {ρi : 0≤ i ≤ m} and ρ̂0 some run such that ρ0 n1
≡z

n2
ρ̂0. Let ρ̄ and ρ̄′

be m-tuples such that ρ̄ l
n1
≡z

n2
ρ̄′ and ϕl is an isomorphism witnessing this equivalence.

If ρ0 ∈ RAl(ρ̄), ϕl(ρ0) = ρ̂0, and if ρ1 /∈ RAl(ρ̄) then we can construct ρ̂1, ρ̂2, . . . , ρ̂m

satisfying the conditions from the previous lemma but additionally with the property that

ρ̂1 /∈ RAl(ρ̄
′).

Proof. We distinguish two cases.

1. Assume that ρ0 ⊢ ρ1. Due to the equivalence of ρ0 and ρ̂0, we can apply the tran-

sition connecting ρ0 with ρ1 to ρ̂0 and obtain a run ρ̂1. We have to prove that

ρ̂1 /∈ RAl(ρ̄
′).

Heading for a contradiction assume that ρ̂1 ∈ RAl(ρ̄
′). Then ϕ−1

l
preserves the edge

between ρ̂0 and ρ̂1, i.e., ρ0 = ϕ
−1
l
(ρ̂0) ⊢ ϕ

−1
l
(ρ̂1). But this implies that ϕ−1

l
(ρ̂1) = ρ1

which contradicts the assumption that ρ1 /∈ RAl(ρ̄).

3.3. Higher-Order Nested Pushdown Trees 199

2. Assume that ρ0

+1
,→ ρ1. Up to threshold z, for each π̂ such that ρ̂0

+1
,→ π̂ and

π̂ ∈ RAl(ρ̄
′) there is a run ρ0

+1
,→ ϕ−1

l
(π̂). Since ρ1 /∈ RAl(ρ̄), we find another

run ρ̂1 that satisfies the conditions of the previous lemma and ρ̂1 /∈ RAl(ρ̄
′). This

is due to the fact that Proposition 3.3.39 allows to transfer up to z > |RAl(ρ̄
′)| many

runs simultaneously.

Strategy for Choosing Small Stacks

By now we are prepared to prove that Duplicator has a strategy that preserves the iso-

morphism type of the relevant ancestors but chooses short runs. First, we prove the ex-

istence of a strategy choosing runs with small final stacks. Afterwards, we show how to

bound the length of such runs. The analysis of this strategy decomposes into the local and

the global case. We say Spoiler makes a local move if he chooses a new element such that

the relevant ancestors of this element intersect with the relevant ancestors of elements

chosen so far. In this case Duplicator has to extend the other tuple by an element whose

relevant ancestors intersect with the relevant ancestors of this tuple.

We say Spoiler makes a global move if he chooses an element such that the relevant

ancestors of this new element do not intersect with the relevant ancestors of the elements

chosen so far. In this case Duplicator has to extend the other tuple by an element whose

relevant ancestors do not intersect with the relevant ancestors of this tuple.

We first head for the result that Duplicator can manage the local case in such a way

that he chooses an element such that all its relevant ancestors end in small stacks. Then

we show that Duplicator can manage the global case analogously. Finally, we show that

Duplicator can choose a short run ending in small stacks.

Lemma 3.3.55. Let n, z, l, l ′, n1, n′
1
, n2, n′

2
∈ N be numbers such that l = 4l ′ + 4, z > n · 4l ,

z ≥ 2, n1 = n′
1
+ 2(l ′+ 1) + 1, n′

1
> 0, n2 = n′

2
+ 4l′+1+ 1, and n′

2
> 0.

Let ρ̄, ρ̄′ be n-tuples of runs such that ϕl : rAl,n1,n2,z(ρ̄) ≃ rAl,n1,n2,z(ρ̄
′) witnesses

ρ̄ l
n1
≡z

n2
ρ̄′. Furthermore, let ρ be some run such that RAl′+1(ρ) ∩ RAl′+1(ρ̄) 6= ;. Then

there is some run ρ′ such that (ρ̄,ρ) l′

n′
1

≡z

n′
2

(ρ̄′,ρ′).

Proof. Let ρ0 ∈ RAl′+1(ρ) be maximal such that

RAl′+1(ρ)∩ {π : π� ρ0} ⊆ RA4l′+3(ρ̄)⊆ RAl(ρ̄).

We choose numbers m0 ≤ 0≤ m1 and runs

ρm0
≺ ρm0+1 ≺ · · · ≺ ρ0 ≺ ρ1 ≺ · · · ≺ ρm1

such that RAl′+1(ρ) = {ρi : m0 ≤ i ≤ m1}. We set ρ′
i
:= ϕl(ρi) for all m0 ≤ i ≤ 0. Next, we

construct ρ′
1
, . . . ,ρ′

m1
such that ρ′ := ρ′

m1
has relevant ancestors isomorphic to those of ρ.

Analogously to the previous corollary, we can construct runs ρ′
1
,ρ′

2
, . . . ,ρ′

m1
such that

1. ρ′
1
/∈ RA4l′+3(ρ̄

′),

2. the final states of ρi and ρ′
i

coincide for all 0≤ i ≤ m1, and

3. ρi ⊢
γ ρi+1 iff ρ′

i
⊢γ ρ′

i+1
and ρi

+1
,→ ρi+1 iff ρ′

i

+1
,→ ρ′

i+1
for all 0≤ i < m1.

200 3. Main Results

By definition, it is clear that condition 2 and 3 hold also for all m0 ≤ i < 0. Using Lemma

3.3.52, we obtain that ρ l′+1

n′
1

≡z

n′
2

ρ′.

As a next step, we have to show that the isomorphism between RAl(ρ̄) and RAl(ρ̄
′) and

the isomorphism between RAl′(ρ) and RAl′(ρ
′) are compatible in the sense that they may

be composed to an isomorphism between RAl′(ρ̄,ρ) and RAl′(ρ̄
′,ρ′).

The only possible candidate for such a combined isomorphism is of the form

ϕl′ : RAl′(ρ̄,ρ)→ RAl′(ρ̄
′,ρ′)

π 7→

(

ρ′
i

for π= ρi, m0 ≤ i ≤ m1

ϕl(π) for π ∈ RAl′+1(ρ̄).

In order to see that this is a well-defined function, we have to show that if ρi ∈ RAl′+1(ρ̄)

then ρ′
i
= ϕl(ρi) for each m0 ≤ i ≤ m1. Note that ρi ∈ RAl′+1(ρ̄) ∩ RAl′+1(ρ) implies

(using Corollary 3.3.16) that π ∈ RA3l′+3(ρ̄) for all π ∈ RAl′+1(ρ) with π � ρi. But then

by definition i ≤ 0 and by construction ρ′
i
= ϕl(ρi).

We claim that ϕl′ is an isomorphism. Since we composed ϕl′ of existing isomorphisms

RAl′(ρ̄) ≃ RAl′(ρ̄
′) and RAl′(ρ) ≃ RAl′(ρ

′), respectively, we only have to consider the

following question: let π ∈ RAl′(ρ̄) and π̂ ∈ RAl′(ρ). Does ϕl′ preserve the existence and

nonexistence of edges between π and π̂?

In other words, we have to show that for each

∗ ∈ {,→,←-,
+1
,→,

+1
←-} ∪ {⊢γ: γ ∈ Γ} ∪ {⊣γ: γ ∈ Γ},

π ∗ π̂ iff ϕl′(π) ∗ϕl′(π̂).

The following case distinction treats all these cases.

• Assume that there is some ∗ ∈ {,→,
+1
,→} ∪ {⊢γ: γ ∈ Γ} such that π ∗ π̂. Then

π ∈ RAl′+1(ρ). Thus, there are m0 ≤ i < j ≤ m1 such that π = ρi and π̂ = ρ j.

We have already seen that then ϕl′(π) = ρ
′
i

and ϕl′(π̂) = ρ
′
j

and these elements are

connected by an edge of the same type due to the construction of ρ′
i

and ρ′
j
.

• Assume that there is some ∗ ∈ {←-,
+1
←-} ∪ {⊣γ: γ ∈ Γ} such that π ∗ π̂. Then

π̂ ∈ RAl′+1(ρ̄) whence ϕl′ coincides with the isomorphism ϕl on π and π̂. But

ϕl preserves edges whence π ∗ π̂ implies ϕl′(π) ∗ϕl′(π̂).

• Assume that there is some ∗ ∈ {,→,
+1
,→} ∪ {⊢γ: γ ∈ Γ} such that ϕl′(π) ∗ ϕl′(π̂). By

definition, ϕl′(π̂) ∈ RAl′(ρ
′) whence ϕl′(π̂) = ρ

′
j

for some m0 ≤ j ≤ m1. Thus,

ϕl′(π) ∈ RAl′+1(ρ
′) whence ϕl′(π) = ρ

′
i

for some m0 ≤ i < j. We claim that π= ρi.

Note that due to Corollary 3.3.16 for all m0 ≤ k ≤ i we have ρ′
k
∈ RA3l′+3(ϕl′(π)).

Since ϕl′(π) = ϕl(π) ∈ RAl′(ρ̄
′), we conclude that ρ′

k
∈ RA4l′+3(ρ̄

′) for all

m0 ≤ k ≤ i. By construction, this implies i ≤ 0 and ϕl′(π) = ρ
′
i
= ϕl(ρi). Fur-

thermore, since π ∈ RAl′(ρ̄), ϕl′(π) = ϕl(π). Since ϕl is an isomorphism, it follows

that π= ρi. But this implies that there is an edge from π= ρi to π̂= ρ j.

3.3. Higher-Order Nested Pushdown Trees 201

• Assume that there is some ∗ ∈ {←-,
+1
←-} ∪ {⊣γ: γ ∈ Γ} such that ϕl′(π) ∗ϕl′(π̂). This

implies

ϕl′(π̂) ∈ RAl′+1(ρ̄
′)∩RAl′+1(ρ). (3.5)

By definition, π̂ = ρ j and ϕl′(π̂) = ρ′
j

for some m0 ≤ j ≤ m1. Due to 3.5,

ρ′
i
∈ RA4l′+3(ρ̄

′) for all m0 ≤ i ≤ j. Since ρ′
1
/∈ RA4l′+3(ρ̄

′), j ≤ 0. Thus,

ρ j ∈ RA4l′+3(ρ̄) and ϕl′(π̂) = ϕl(π̂). Since ϕl preserves the relevant ancestors of

ρ̄ level by level, we obtain that π̂ ∈ RAl′+1(ρ̄). Since π ∈ RAl′+1(ρ̄), we obtain that

ϕl′(π) = ϕl(π) and ϕl′(π̂) = ϕl(π̂). Since ϕl is an isomorphism, we conclude that

π ∗ π̂

Thus, we have shown that ϕl′ is an isomorphism witnessing ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′.

Due to the iterated use of Proposition 3.3.39 in the construction of ρ′ we can require the

following further properties for ρ′:

Corollary 3.3.56. Let n, z, l, n1, n2, l ′, n′
1
, n′

2
, ρ̄, ρ̄′,ρ be as in the previous lemma. Let

H :=max{hgt(π) : π ∈ RAl(ρ̄
′)} and

W :=max{wdt(π) : π ∈ RAl(ρ̄
′)}.

Set

g
n,z

l′,n2
(x) := BH1(n · 4

l′+1, x , n2, z)

for BH1 the monotone function defined in Proposition 3.3.39.

We can construct a run ρ′ such that

hgt(ρ′)≤ (g
n,z

l′,n2
)(4

l′+1)(H),

wdt(ρ′)≤W + 2l ′+ 2 and

(ρ̄,ρ) l′

n′
1

≡z

n′
2

(ρ̄′,ρ′).

Proof. By construction of ρ′
0
, it is a relevant ancestor of ρ̄′. It follows that hgt(ρ′

0
)≤ H.

Then an easy induction shows that hgt(ρ′
i
) ≤ (g

n,z

l′,n2
)i(H) for all i ≤ m1: in each step, we

either apply Proposition 3.3.39 or ρ′
i+1

is generated from ρ′
i

by applying a single stack

operation op. In the latter case we conclude by noting that hgt(ρ′
i+1
)≤ hgt(ρ′

i
) + 1.

Note that g is a monotone function. Since m1 ≤ 4l′+1 ≤ |RAl′+1(ρ)|, we conclude that

hgt(ρ′)≤ (g
n,z

l′,n2
)(4

l′+1)(H).

Now, consider the width of the ρ′
i
. By assumption we know that wdt(ρ′

i
) ≤ W for

m0 ≤ i ≤ 0. Furthermore, as all ρ′
i

are relevant l ′+ 1-ancestors of ρ′, their width differ in

at most 2l ′+ 2. Therefore, wdt(ρ′
i
)≤W + 2l ′+ 2 for all m0 ≤ i ≤ m1.

Remark 3.3.57. Note that the monotonicity of BH1 carries over to the monotonicity of g

(in all parameters, i.e., in n, z, l ′, n2, and x).

202 3. Main Results

The previous lemmas showed that Duplicator can respond to local moves in such a way

that she preserves isomorphisms of relevant ancestors while choosing small stacks.

Now, we deal with global moves of Spoiler. We present a strategy for Duplicator that

allows to answer a global move by choosing a run with the following property. Duplicator

chooses a run such that the isomorphism of relevant ancestors is preserved and such that

all relevant ancestors of Duplicator’s choice end in small stacks. We split this proof into

several lemmas. First, we address the problem that Spoiler may choose an element far

away from ρ̄ but close to ρ̄′. Then Duplicator has to find a run that has isomorphic

relevant ancestors but that is far away from ρ̄′.

Lemma 3.3.58. Let l, l ′, n, z, n1, n′
1
, n2, n′

2
∈ N be numbers such that l > 3l ′ + 3, z > n · 4l ,

z ≥ 2, n1 > n′
1
+ 2(l ′ + 1), and n2 > n′

2
+ 4l′+1. Let ρ̄ and ρ̄′ be n-tuples of runs such that

ρ̄ l
n1
≡z

n2
ρ̄′. Furthermore, let ρ be a run such that RAl′+1(ρ̄)∩ RAl′+1(ρ) = ;. Then there is

some run ρ′ such that ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′.

Proof. We write ϕl for the isomorphism witnessing RAl(ρ̄)
l
n1
≡z

n2
RAl(ρ̄

′). If

RAl′+1(ρ̄
′)∩RAl′+1(ρ) = ;,

we can set ρ′ := ρ and we are done.

Otherwise, let π0
0
≺ π0

1
≺ · · · ≺ π0

n0
be an enumeration of all elements of

RAl′+1(ρ̄
′)∩RAl′+1(ρ). Due to Corollary 3.3.19, RAl′+1(ρ)∩ {π : π � π0

n0
} ⊆ RA3l′+3(ρ̄

′).

Since l > 3l ′+3, we can set π1
i

:= ϕ−1
l
(π0

i
) for all 0≤ i ≤ n0. Due to Lemma 3.3.53, there

is an extension π1
n0
≺ ρ1 such that RAl′+1(ρ)

l′+1

n′
1

≡z

n′
2

RAl′+1(ρ
1) and π1

i
∈ RAl′+1(ρ

1) for

all 0≤ i ≤ n0. If RAl′+1(ρ
1)∩RAl′+1(ρ̄

′) = ; we set ρ′ := ρ1 and we are done.

Otherwise we can repeat this process, defining π2
i

:= ϕ−1
l
(π1

i
) for the maximal n1 ≤ n0

such that π1
i
∈ RA3l′+3(ρ̄

′) for all 0 ≤ i ≤ n0. Then we extend this run to some

run ρ2. If this process terminates with the construction of some run ρi such that

RAl′+1(ρ
i) ∩ RAl′+1(ρ̄

′) = ;, we set ρ′ := ρi and we are done. If this is not the case,

recall that RA3l′+3(ρ̄
′) is finite. Thus, we eventually reach the step were we have defined

π0
0
,π1

0
, . . . ,πm

0
for some m ∈ N such that for the first time πm

0
= πi

0
for some i < m. But if

i > 0, then

πm−1
0
= ϕl(π

m
0
) = ϕl(π

i
0
) = πi−1

0
.

But this contradicts the minimality of m. We conclude that πm
0
= π0

0
which implies that

π0
0
∈ RA3l′+3(ρ̄). Furthermore, by definition we have π0

0
∈ RAl′+1(ρ) and there is a max-

imal i such that π0
i
∈ RA3l′+3(ρ̄). Since z > |RAl(ρ̄)|, we can apply Lemma 3.3.53 and

construct a chain ϕl(π
0
i
)≺ ρ′

i+1
≺ ρ′

i+2
≺ · · · ≺ ρ′ such that ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′.

The previous lemma showed that there is an answer to every global challenge of Spoiler.

In the following, we use the pumping constructions from Lemmas 3.3.31 - 3.3.36 in order

to show that Duplicator may answer global moves with a ρ′ such that

RAl(ρ̄,ρ) l′+1

n′
1

≡z

n′
2

RAl(ρ̄
′,ρ′)

3.3. Higher-Order Nested Pushdown Trees 203

and such that RAl(ρ̄
′,ρ′) only contains runs that end in small stacks.

Before we state this lemma, we have to give a precise notion of small stacks. For this

purpose, we introduce the following functions.

Definition 3.3.59. Let l, l ′, n, n1, n2, z ∈ N such that l ≥ 3l ′+ 3. Set

β : {−n1,−n1+ 1, . . . , 4(l
′+1)} ×N→ N

β(i, H) :=

(

H + Bhgt+ BTW(n1+ n2+ 4l , k, z) for i = −n1

β(i − 1, H) + BH1(0,β(i − 1, H), n2+ 4l′+1− i, k, z) otherwise,

and

α(n1, H, W, l ′) :=max
�

W, BWW(β(−n1, H)) + n1+ 2(l ′+ 1)
	

.

where BH1, BTW, BWW the monotone functions from Proposition 3.3.39 and Lemmas

3.3.31 and 3.3.36, and Bhgt the constant from Lemma 3.3.33.

Lemma 3.3.60. Let l, l ′, n, n1, n2, z ∈ N such that l ≥ 3l ′ + 3. Furthermore, let ρ̄ be an

n-tuple of runs and ρ a run such that RAl′+1(ρ̄) ∩ RAl′+1(ρ) = ;. Let H, W ∈ N be bounds

such that hgt(π)≤ H and wdt(π)≤W for all π ∈ RAl(ρ̄). There is some run ρ′ such that

ρ̄,ρ l′

n1
≡z

n2
ρ̄,ρ′,

hgt(π)≤ β(4l′+1, H), and

wdt(π)≤ α(n1, H, W, l ′)

for all π ∈ RAl′(ρ̄,ρ′).

Proof. Let ρ0 ≺ ρ1 ≺ · · · ≺ ρm := ρ be runs such that RAl′+1(ρ) = {ρi : 0 ≤ i ≤ m}. We

have to find an isomorphic copy of RAl′+1(ρ) consisting of small words but not intersect-

ing with RAl′+1(ρ̄). Using Lemmas 3.3.52, 3.3.53 and 3.3.39, we can construct such an

isomorphic copy as soon as we find some small ρ′
0

with ρ′
0 n1
≡z

n2+4l ρ0. Thus, as a first

step we construct such a run ρ′
0
.

Let m0 ≥ −n1 be minimal such that there are runs ρm0

+1
,→ ρm0+1

+1
,→ . . .

+1
,→ ρ0. Note that

by Lemma 3.3.12 either m0 = −n1 or wdt(ρ0)≤ n1.

If hgt(ρm0
) ≤ H and wdt(ρm0

) ≤ W , then we choose m1 maximal such that

hgt(ρi)≤ β(i, H) and wdt(ρi) ≤ W for all m0 ≤ i ≤ m1. In this case, we set ρ′
m1

:= ρm1
.

Otherwise, we set m1 := m0 and by Lemmas 3.3.31,3.3.33, and 3.3.36, there is a run ρ′
m1

such that

hgt(ρ′
m1
)≤ β(−n1, H)≤ β(m1, H),

wdt(ρ′
m1
)≤ BWW(β(−n1, H)), and

ρm1 1≡
z

n2+n1+4l ρ
′
m1

.

The last condition just says that top2(ρm1
)≡z

n2+n1+4l top2(ρ
′
m1
). Furthermore, we construct

ρ′
m1

in such a way that either hgt(ρ′
m1
)> H or wdt(ρ′

m1
)>W .

204 3. Main Results

Having constructed ρ′
m1

according to one of the two cases, in both cases we continue

with the following construction. Note that ρ′
i
= ρi for all m0 ≤ i ≤ m1 or H < hgt(ρ′

m1
) or

W < wdt(ρ′
m1
).

By Proposition 3.3.39, we can construct ρ′
m1
≺ ρ′

m1+1
≺ · · · ≺ ρ′

m
=: ρ′ such that the

following holds.

1. For ∗ ∈ {
+1
,→, (⊢op)op∈OP} and for all m1 ≤ i < m, ρ′

i
∗ ρ′

i+1
iff ρi ∗ ρi+1.

2. top2(ρi)≡
z
n2

top2(ρ
′
i
).

3. hgt(ρ′
i
)≤ β(i, H) and wdt(ρ′

i
)≤ wdt(ρ′

m1
) + n1+ 2l ′+ 2 for all m1 ≤ i ≤ m.

4. ρ′
i
= ρi iff for all m1 ≤ j ≤ i we have hgt(ρ j) ≤ H and wdt(ρ j) ≤ W (this just

requires to construct ρ′
m0+1

such that hgt(ρ′
m0+1

)> H or wdt(ρ′
m0+1

)>W .

From Lemma 3.3.52, it follows that ρ′ l′+1
n1
≡z

n2
ρ.

Furthermore, RAl′+1(ρ
′)∩RAl′+1(ρ̄) = ;: heading for a contradiction, assume that

ρ′
i
∈ RAl′+1(ρ

′)∩RAl′+1(ρ̄)

for some 0≤ i ≤ m. Then ρ′
j
∈ RA3l′+3(ρ̄)⊆ RAl(ρ̄) for all 0≤ j ≤ i. Thus,

hgt(ρ′
j
)≤ H ≤ β(j, H) and

wdt(ρ′
j
)≤W.

This implies that ρ′
j
= ρ j for all m0 ≤ i ≤ j. But then ρ j = ρ

′
j
∈ RAl′+1(ρ) ∩ RAl′+1(ρ̄)

which contradicts our assumptions on ρ̄ and ρ.

Hence, RAl′(ρ̄) and RAl′(ρ
′) do not touch whence ρ̄,ρ l′

n1
≡z

n2
ρ̄,ρ′.

Combining the previous lemmas, we obtain a proof that for each n-tuple in N(S) there

is an FOk-equivalent one such that the relevant ancestors of the second tuple only contain

runs that end in small stacks. This result is summarised in the following corollary.

Corollary 3.3.61. Let N be a 2-NPT. There are monotone functions

BH : N5→ N and

BW : N5→ N

such that the following holds. Let n, n′
1
, n′

2
, l ′ ∈ N. We set

l := 4l ′+ 5,

n1 := n′
1
+ 2(l ′+ 2) + 1 and

n2 := n′
2
+ 4l′+1+ 1.

Let z ∈ N such that z ≥ 2 and z > n · 4l .

3.3. Higher-Order Nested Pushdown Trees 205

For all pairs of n-tuples ρ̄ = ρ1, . . . ,ρn ∈N, ρ̄′ = ρ′
1
, . . . ,ρ′

n
∈N such that

hgt(ρ′
i
)≤ BH(n, z, l, n1, n2),

wdt(ρ′
i
)≤ BW(n, z, l, n1, n2), and

ρ̄ l
n1
≡z

n2
ρ̄′,

and for all runs ρ ∈N(S), there is a run ρ′ such that

ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′,

hgt(ρ′)≤ BH(n+ 1, z, l ′, n′
1
, n′

2
), and

wdt(ρ′)≤ BW(n+ 1, z, l ′, n′
1
, n′

2
).

Proof. The proof is by induction on n. Assume that we have defined BH(x1, x2, x3, x4, x5)

and BW(x1, x2, x3, x4, x5) for all x2, . . . , x5 ∈ N and x1 ≤ n such that for all tuples where

x1 ≤ n the claim holds. For x̄n := (n, z, l, n1, n2) and x̄n+1 := (n+ 1, z, l ′, n′
1
, n′

2
) , we set

BH(x̄n+1) :=max

§

β(4l′+1, BH(x̄n)), (g
n,z

l′,n2
)4

l′+1
(BH(x̄n))

ª

and

BW(x̄n+1) :=max
n

BWW
�

β(4(l
′+1), BH(x̄)) + n′

1
+ 2l ′+ 2
�

, BW(x̄n) + 2l ′+ 2
o

where g
n,z

l′,n2
is the function from Corollary 3.3.56 and β the function from Lemma 3.3.60.

The following case distinction proves that this definition satisfies the claim.

1. First assume that RAl′+1(ρ) ∩ RAl′+1(ρ̄) 6= ;. Then we can apply Lemma 3.3.55 and

obtain an element ρ′ ∈N(S) such that ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′. Furthermore, by Corollary

3.3.56, ρ′ can be chosen such that

hgt(ρ′)≤ (g
n,z

l′,n2
)4

l′+1
(BH(n, z, l, n1, n2)) = (g

n,z

l′,n2
)4

l′+1
(BH(x̄n)) and

wdt(ρ′)≤ BW(x̄n) + 2l ′+ 2.

2. Otherwise, RAl′+1(ρ)∩RAl′+1(ρ̄) = ;. Since l > 4l ′+4, we can apply Lemmas 3.3.58

and 3.3.60 and obtain ρ′ ∈N(S) such that

ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′,

hgt(ρ′)≤ β
�

4l′+1, BH(n, z, l, n1, n2)
�

= β
�

4l′+1, BH(x̄n)
�

, and

wdt(ρ′)≤ BWW
�

β(4(l
′+1), BH(x̄n)) + n′

1
+ 2(l ′+ 2)
�

.

By induction, our definition satisfies the claim. Note that the monotonicity of BH and BW

follows from the monotonicity of all the components involved in the definition.

206 3. Main Results

Strategy for Bounding the Length of Runs

For each relevant ancestor set, there is an equivalent one which only contains runs that

end in small stacks. But the runs leading to these stacks can still be arbitrary long. In the

next lemmas, we show that we can also bound the length. For this proof, the Corollaries

2.4.49 and 2.4.50 are important tools because they allow to replace long runs by shorter

ones.

Lemma 3.3.62. Let N be a level 2 pushdown system defining the higher order nested push-

down tree N := NPT(N). We can compute a function BL : N5 → N such that the following

hold:

Let n, z, n′
1
, n′

2
, l ′ ∈ N, l := 4l ′ + 5, n1 := n′

1
+ 2(l ′+ 2) + 1, and n2 := n′

2
+ 4l′+1+ 1 such

that z ≥ 2 and z > n · 4l . Furthermore, let ρ̄ and ρ̄′ be n-tuples of runs of N such that

1. ρ̄ l
n1
≡z

n2
ρ̄′, and

2. ln(π)≤ BL(n, l, n1, n2, z) for all π ∈ RAl(ρ̄
′),

3. hgt(π)≤ BH(n, z, l, n1, n2) for all π ∈ RAl(ρ̄
′), and

4. wdt(π)≤ BW(n, z, l, n1, n2) for all π ∈ RAl(ρ̄
′).

For each ρ ∈N there is some ρ′ ∈N such that

1. ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′,ρ′,

2. ln(π)≤ BL(n+ 1, l ′, n′
1
, n′

2
, z) for all π ∈ RAl′(ρ̄

′,ρ′),

3. hgt(π)≤ BH(n+ 1, z, l ′, n′
1
, n′

2
) for all π ∈ RAl(ρ̄

′,ρ′), and

4. wdt(π)≤ BW(n+ 1, z, l ′, n′
1
, n′

2
) for all π ∈ RAl(ρ̄

′,ρ′).

Proof. Using the Lemmas 3.3.55 – 3.3.60, we find some candidate ρ′ such that

ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′, ρ̂′

and the height and width of the last stacks of all π ∈ RAl′+1(ρ̂
′) are bounded by

BH(n+ 1, z, l ′, n′
1
, n′

2
) and BW(n+ 1, z, l ′, n′

1
, n′

2
), respectively.

Recall that there is a chain ρ̂′
0
≺ ρ̂′

1
≺ · · · ≺ ρ̂′

m
= ρ̂′ for some 0 ≤ m ≤ 4(l

′+1) with

ρ̂′
i
⊢γ ρ̂′

i+1
or ρ̂′

i

+1
,→ ρ̂′

i+1
for all 0≤ i < m such that RAl′+1(ρ̂

′) = {ρ̂′
i
: 0≤ i ≤ m}.

If ρ̂′
0
/∈ RA3l′+3(ρ̄

′), then we can use Corollary 2.4.49 and choose some ρ′
0

that ends in

the same configuration as ρ̂′
0

such that ρ′
0
/∈ RA3l′+3(ρ̄

′) and

ln(ρ′
0
)≤ 1+2 · BH(n+ 1, z, l ′, n′

1
, n′

2
) · BW(n+ 1, z, l ′, n′

1
, n′

2
))

· (1+ BLLN
z
(BH(n+ 1, z, l ′, n′

1
, n′

2
))).

If ρ̂′
0
∈ RA3l′+3(ρ̄

′) let 0 ≤ i ≤ m be maximal such that ρ̂′
i
∈ RAl(ρ̄

′). In this case let

ρ′
j
:= ρ̂′

j
for all 0≤ j ≤ i.

By now, we have obtained a chain ρ′
0
≺ ρ′

1
≺ · · · ≺ ρ′

i
for some 0 ≤ i ≤ m. Using the

previous lemma, we can extend this chain to a chain {ρ′
i
: 0≤ i ≤ m} such that

3.3. Higher-Order Nested Pushdown Trees 207

1. ρ′
i
(ln(ρ′

i
)) = ρ̂i(ln(ρ̂i)),

2. ρ′
i
⊢γ ρ′

i+1
iff ρ̂′

i
⊢γ ρ̂′

i+1
for all 0≤ i < m,

3. ρ′
i

+1
,→ ρ′

i+1
iff ρ̂′

i

+1
,→ ρ̂′

i+1
for all 0≤ i < m,

4. ln(ρ′
i+1
)≤ ln(ρ′

i
)+ 2 ·BH(n+ 1, z, l ′, n′

1
, n′

2
) · (1+BLLN

z
(BH(n+ 1, z, l ′, n′

1
, n′

2
))), and

5. ρ̂′
j
∈ RA3l′+3(ρ̄

′) for all 0≤ j ≤ i implies ρ′
i
= ρ̂′

i
.

Assume that we have constructed the chain up to ρ′
0
≺ · · · ≺ ρ′

m0
for some m0 < m.

Note that ρ̂m0+1 /∈ RA3l′+3(ρ̄
′) by definition of the initial segment of the ρ′

i
. We can use

Corollary 2.4.50 in order to construct ρ′
m0+1

as required. In this construction, we can

enforce ρ′
m0+1

/∈ RA3l′+3(ρ̄
′) if ρ′

m0
= ρ̂′

m0
.

Using Lemma 3.3.52, we conclude that ρ′ l′+1

n′
1

≡z

n′
2

ρ̂′ for ρ′ := ρ′
m

. Furthermore, we

claim that RAl′+1(ρ̄
′) ∩ RAl′+1(ρ̂

′) = RAl′+1(ρ̄
′) ∩ RAl′+1(ρ

′). By definition the inclusion

from left to right is clear. For the other direction, assume that there is some element

ρ′
i
∈ RAl′+1(ρ̄

′)∩RAl′+1(ρ
′). By Lemma 3.3.16, this implies that ρ′

j
∈ RA3l′+3(ρ̄

′) for all

0≤ j ≤ i. Thus, ρ′
i
= ρ̂′

i
, which implies that ρ′

i
∈ RAl′+1(ρ̄

′)∩RAl′+1(ρ
′).

We conclude that ρ̄,ρ l′

n′
1

≡z

n′
2

ρ̄′, ρ̂′ l′

n′
1

≡z

n′
2

ρ̄′,ρ′ because RAl′+1(ρ̄
′)∩RAl′+1(ρ̂

′) is iso-

morphic to RAl′+1(ρ̄
′) ∩ RAl′+1(ρ̂

′). By definition, the length of ρ′ is bounded by a poly-

nomial in

BH(n+ 1, z, l ′, n′
1
, n′

2
),

BW(n+ 1, z, l ′, n′
1
, n′

2
),

BLLN
z
(BH(n+ 1, z, l ′, n′

1
, n′

2
)), and

BL(n, l, n1, n2, z).

This polynomial can be used to inductively define BL(n+ 1, l ′, n′
1
, n′

2
, z).

Note that the previous lemma completes the proof of Proposition 3.3.51.

3.3.7 FO Model Checking Algorithm for Level 2 Nested Pushdown Trees

In the previous section, we have shown that each existential quantification on a nested

pushdown tree N := NPT(N) can be witnessed by a run ρ of small length. Even when we

add parameters ρ1, . . . ,ρn this result still holds, in the sense that there is a witness ρ of

small length compared to the length of the parameters. Hence, we can decide first-order

logic on level 2 nested pushdown trees with the following algorithm.

1. Given the pushdown system N and a first-order formula ϕ, the algorithm first com-

putes the quantifier rank q of ϕ.

2. Then it computes numbers z, l1, l2, l3, . . . , lq, n1
1
, n2

1
, n3

1
. . . , n

q

1, n1
2
, n2

2
, n3

2
, . . . , n

q

2 ∈ N
such that for each i < q the numbers z, l i, l i+1, ni

1
, ni+1

1 , ni
2
, ni+1

2 can be used as pa-

rameters in Proposition 3.3.51.

208 3. Main Results

3. These numbers define a constraint S = (SN(i))i≤q for Duplicator’s strategy in the q-

round game on N and N as follows. We set (ρ1,ρ2, . . . ,ρm) ∈ SN
m

if for each i ≤ m

and π ∈ RAli
(ρi)

ln(π)≤ BL(i, l i, ni
1
, ni

2
, z),

hgt(π)≤ BH(i, z, l i, ni
1
, ni

2
), and

wdt(π)≤ BW(i, z, l i, ni
1
, ni

2
).

4. Due to Lemma 3.3.62, Duplicator has an S-preserving strategy in the q-round game

on N and N. Thus, applying the algorithm SModelCheck (cf. Algorithm 2 in Section

2.1.1) decides whether N |= ϕ.

Complexity of the Algorithm

For the case of nested pushdown trees (of level 1) our approach resulted in an 2-

EXPSPACE FO model checking algorithm. In the case of level 2 nested pushdown trees, we

cannot prove such a nice result. At the moment, we cannot prove an elementary complex-

ity bound for the FO model checking on 2-NPT because we cannot determine the length

of short loops. Our algorithm can only be efficient if we have a good bound on the length

of the k shortest loops of any stack because we use loops as a main ingredient in the con-

struction of equivalent relevant ancestors. But such a good bound is not known to exist.

We do not know any elementary algorithm that, given a level 2 pushdown system N and

a number k, calculates the shortest k loops from (q0,⊥) to (q1,⊥) of N . The underlying

problem is that we cannot derive an elementary bound on the length of such loops. The

best bound we know can be derived as follows.

From Hayashi’s pumping lemma for indexed grammars [30], we can derive that the

shortest loop of N has size exp(exp(exp(p(|N |)))) for some polynomial p. Unfortunately,

Hayashi’s pumping lemma does not yield any bound on the second shortest loop. Thus,

the only known way of calculating the second shortest loop is to design a copy of the

pushdown system which simulates the first one but avoids this first loop. This involves

increasing the number of states by the length of the shortest loop, i.e., we design a system

N ′ with |N ′| ≈ exp(exp(exp(p(|N |)))) many states. Using this system we obtain a 6-fold

exponential bound in |N | for the second shortest loop of N (which is the shortest one

of N ′) the same way as we obtained the bound for the first loop. Thus, the best bound

known for the k shortest loops is an exponential tower of height 3k in the size of the

pushdown system. But it is quite clear that there are level 2 nested pushdown trees where

we can define the existence of k loops from (q0,⊥) to (q1,⊥) by a first-order formula of

quantifier rank linear in k. Thus, our model checking algorithm would have to choose k

short loops. Given the bounds on short loops, we expect that our algorithm then needs

space up to a tower of exponentials of height 3k in order to verify this formula. Since k

is arbitrary, the algorithm has nonelementary space consumption in the quantifier rank of

the formula.

It remains open to determine the exact complexity of our algorithm. We neither know

whether our algorithm has elementary complexity nor do we know a good lower bound on

the complexity of model checking on nested pushdown trees of level 2. These questions

require further study.

3.3. Higher-Order Nested Pushdown Trees 209

3.4 Decidability of Ramsey Quantifiers on Tree-Automatic Structures

Recently, Rubin [57] proved the decidability of Ramsey quantifiers on string-automatic

structures using the concept of word-combs. In this section we will lift his techniques

to the tree-case, i.e., we prove the decidability of Ramsey quantifiers on (tree-)automatic

structures. Actually, our proof can also be seen as an adaption of To’s and Libkin’s proof

[60] of the decidability of the recurrent reachability problem on automatic structures.

Nevertheless, our result was developed independently from To’s and Libkin’s work.

Let us briefly recall Rubin’s ideas. His main tool is the concept of a word-comb. A word-

comb is an infinite sequence of finite Σ-words such that there is a sequence of natural

numbers g1 < g2 < g3 < . . . such that all but the shortest n words of the word-comb agree

on the first gn letters. A word-comb can be represented using infinite words as follows.

Let w1 ∈ Σ
ω, w2 ∈ (Σ∪ {2})

ω be infinite words and G ⊆ N an infinite set. A finite word w

belongs to the word-comb represented by (w1, w2, G) if the following holds: w decomposes

as w = v1 ◦ v2 where v1 is a prefix of w1 and v2 is a subword of w2 such that

1. |v1| ∈ G,

2. there is some k ∈ N such that v22
k is the subword of w2 induced by the (|v1|+ 1)-st

to the (|w|+ k)-th letter of w2 such that |w|+ k is the successor of |v1| in G.

Figure 3.20 illustrates such a representation of a word-comb.

Now, we explain how the notion of a word-comb can be used to decide Ramsey quanti-

fiers on string-automatic structures. The first important observation is that every infinite

set of finite words contains a subset which is a word-comb, i.e., a subset that can be repre-

sented by some triple (w1, w2, G) as explained above. Secondly, ω-string-automata can be

used to extract the words of the word-comb from the representation.

Recall that the Ramsey quantifier asserts the existence of an infinite subset that is homo-

geneous with respect to a certain formula ϕ, i.e., all pairwise distinct n-tuples from this set

satisfy ϕ. Now, for each string-automatic structure A, this can be translated into the asser-

tion that there is a representation of a word-comb such that each pairwise distinct n-tuple

from the comb satisfies ϕ. This assertion can be formulated in a first-order formula ϕ′ on

a certain ω-string-automatic extension A′ of A. This extension A′ enriches A by those infi-

nite strings that occur in the representation of word-combs. The classical correspondence

between first-order logic on ω-string-automatic structures and ω-string-automata yields

an ω-string-automaton that represents ϕ′ on A′. Finally, this ω-string-automaton can be

turned into a string-automaton that represents ϕ on A.

This idea carries even further. Kuske [45] introduced a logic which he calls FSO. The

Formulas of FSO are formed according to the formation rules of first-order logic and the

following two rules. First, one may use variables for n-ary relations, i.e., for X an n-ary

relation variable and x1, x2, . . . , xn element variables, X x1x2 . . . xn is an atomic formula

of FSO. Second, for X a relation variable that only occurs negatively in some ϕ ∈ FSO,

∃X inf. ϕ is in FSO. This formula is satisfied if there is an infinite interpretation for

X that satisfies ϕ. FSO is a generalisation of FO((Ramn)n ∈ N) as follows. Ramn x̄ϕ is

equivalent to ∃X (∀x1, . . . xn(
∧

1≤i≤n x i ∈ X)→ ϕ). On string-automatic structures, Rubin’s

technique generalises to FSO: analogously to the decidability of the Ramsey quantifier,

one obtains the decidability of FSO on string-automatic structures. The reason why this

210 3. Main Results

result extends to FSO is a closure under subsets of witnesses for FSO formulas: if an FSO

formula ϕ asserts the existence of some infinite set X then X appears only negatively in

the subformulas of ϕ. Without loss of generality this means that the only occurrences of X

in subformulas of ϕ are of the form x /∈ X . If A is an infinite set witnessing the assertion of

ϕ, then any infinite subset A′ ⊆ A also witnesses the statement x /∈ A′ if A witnesses x /∈ A.

Thus, taking an infinite subset of some witness of a formula in FSO is again a witness of

this formula. Since every infinite subset of a set of words contains a word-comb, it suffices

to look for witnesses of FSO formulas among the word-combs. Hence, Rubin’s reduction

works also for FSO.

Our goal is to lift the concept of a comb from strings to finite trees. We use three infinite

trees for representing an infinite set of finite trees. Unfortunately, the correspondence we

obtain is not as tight as in the string case: each infinite set of finite words contains a word-

comb that is represented by some triple (w1, w2, G). Furthermore, there is an ω-string-

automaton that decides, on input some finite word w and the representation (w1, w2, G)

whether w is contained in the word-comb. The notion of word-combs smoothly generalises

to the notion of tree-combs. Unfortunately, tree-combs do not form ω-tree-regular sets.

This makes the tree case more involved.

The outline of our proof is as follows. Given an infinite set of finite trees, there is

an infinite subset called a tree-comb. A tree-comb is an infinite set that allows a unique

representation as a triple (T1, T2, G) where T1 and T2 are infinite trees and G ⊆ {0, 1}∗.

We then define an ω-automaton that extracts finite trees from the representation of a tree-

comb. The set of all these trees is called the closure of the tree-comb. The connection

between a tree-comb and its closure is as follows. Firstly, every tree-comb is contained in

its closure. Secondly, each tree T contained in the closure is locally equal to the trees in

the tree-comb: given an arbitrary infinite branch, there is a tree t ′ in the tree-comb such

that t and t ′ coincide along this infinite branch.

In order to decide Ramsey quantifiers on automatic structures, we first prove that each

Ramsey quantifier is witnessed by the closure of some tree-comb. In order to explain the

single steps of this proof, we fix a formula ϕ ∈ FO and consider the formula

Ramn x̄(ϕ).

We fix an automatic structure A. On A, ϕ corresponds to some automaton Aϕ. We prove

the following.

1. A straightforward generalisation of the string case shows that A |= Ramn x̄(ϕ) if and

only if there is a tree-comb C witnessing this Ramsey quantifier on A.

2. We show that C can be chosen to be homogeneous with respect to Aϕ. Roughly

speaking, homogeneity means that the runs of Aϕ on all pairwise distinct n-tuples

from C look similar.

3. For a homogeneous C , we show that Aϕ accepts all n-tuples from the closure of C .

The proof idea of this step is as follows. Since each n-tuple c̄ from the closure is

locally equal to n-tuples from C , we can locally copy the accepting runs ofAϕ on the

latter tuples and obtain a function defined on the domain of c̄. Since all runs that

we locally copy are similar, this function turns out to be a run ofAϕ on c̄. Since it is

composed from accepting runs, it is also accepting.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 211

w1 = a a a a a a a a . . .

w2 = b 2 b 2 b 2 b 2 . . .

G = { 0, 2, 4, 6, . . . }

w1 = a a a a a a a a . . .

w2 = b 2 b 2 b 2 b 2 . . .

b

w1 = a a a a a a a a . . .

w2 = b 2 b 2 b 2 b 2 . . .

a a b

w1 = a a a a a a a a . . .

w2 = b 2 b 2 b 2 b 2 . . .

a a a a b

...

Figure 3.20.:Word-comb (w1, w2, G) encoding the set {a2nb : n ∈ N}.

212 3. Main Results

Putting these steps together, we obtain that A satisfies some Ramsey quantifier if and

only if there is a closure of some tree-comb witnessing this quantifier. The proof of the

decidability of Ramsey quantifiers on A continues analogously to the string case. We

obtain an ω-automatic extension of A. On this extension, the existence of the closure of

a tree-comb that witnesses the Ramsey quantifier is expressible in first-order logic. The

resulting first-order formula is turned into an ω-automaton using standard techniques.

This ω-automaton can then be turned into an automaton corresponding to Ramn x̄(ϕ) on

A. Thus, for any formula in FO(∃mod, (Ramn)n∈N) and any automatic structure A, there

is an automaton Aϕ that corresponds to ϕ on A. Unfortunately, this approach does not

extend directly to Kuske’s logic FSO. Thus, it remains an open problem whether FSO is

decidable on all tree-automatic structures.

Remark 3.4.1. As already indicated, we deal with finite and infinite trees in this section.

Because of this, we deviate from our notational conventions in the following way. Through-

out Section 3.4, where we have to distinguish between infinite and finite trees, we write

“tree” for an object that is either a finite or an infinite tree, i.e., a Σ-tree is an element of

Tree≤ωΣ = TreeΣ ∪ Treeω
Σ

. Thus, whenever we want to consider an element of TreeΣ, we

will explicitly write finite tree.

3.4.1 Tree-Combs

Recall that Ramsey quantifiers allow a restricted form of second-order quantification. In

order to translate these quantifiers over an automatic structure into first-order quantifiers

over an ω-automatic structure, we want to represent infinite sets of finite trees by a tuple

of infinite trees.

In Definition 3.4.11, we formally introduce tree-combs. Before, we develop some ma-

chinery that allows to extract finite trees from a tuple of infinite trees. This machinery is

not necessary for understanding the definition of tree-combs, but it is used to define the

closure of a tree-comb. Since our interest is in the relationship of tree-combs and their

closures, we postpone the definition of tree-combs.

In the following, we write Σ
2

for Σ∪ {2} where 2 /∈ Σ is some new symbol.

Recall that we defined the following notation. If t is a Σ-labelled tree, then we denote

by t2 the full binary tree which consists of t padded by 2-labels. We define a kind of

inverse to this operation which returns the maximal Σ-labelled tree contained in a given

Σ
2

-labelled tree.

Definition 3.4.2. Let T ∈ Tree≤ωΣ2

be an arbitrary tree. Then prune(T) denotes the maximal

initial segment of T that is in Tree≤ωΣ .

Remark 3.4.3. We stress that prune yields a Σ-labelled tree from a Σ
2

-labelled tree. This is

done by extracting the initial segment up to the first occurrence of 2 along each branch. In

this sense, 2-labelled positions in T mark undefined positions in the domain of prune(T).

Recall that we extract an element of a word-comb from its representation (w1, w2, G) by

taking the prefix v1 of w1 of length g1 for some g1 ∈ G and appending a subword v2 of

w2. v2 consists of the (g1 + 1)-st to the g2-th letter of w2 where g2 is the direct successor

of g1 in G. The function prune will be used to extract an analogue of v1 in the tree-case.

Now, we define another function, called extract, that is the analogue to the extraction of

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 213

v2. It extracts the Σ-labelled subtree of an infinite tree from a given position up to the first

occurrence of an element from G along each branch.

In the string case, we obtain an element encoded in (w1, w2, G) by composition of v1 and

v2. Analogously, after defining extract we need a kind of composition of prune and extract

which extracts a tree from a triple (T1, T2, G). This composition is a function called extree.

Definition 3.4.4. Let T : {0, 1}∗→ Σ
2

, G ⊆ {0, 1}∗ and e ∈ {0, 1}∗. Then extract(e, T, G) is

the maximal initial segment of (T)e (the subtree of T rooted at e) such that the following

two conditions are satisfied.

• extract(e, T, G) is a Σ-labelled tree, i.e., it does not contain 2-labelled nodes.

• For all d ∈ dom(extract(e, T, G)), ed ∈ G implies d = ǫ.

Remark 3.4.5. Note that 2-labelled nodes in T mark again positions that are undefined in

the domain of extract(e, T, G).

Note that extract(T, G, e) is the empty tree if and only if T (e) = 2. Furthermore, it is a

finite tree if every branch starting at e contains a node e ≤ e′ with T (e′) = 2 or e′ ∈ G. If

it is a finite tree, then it is a Σ-labelled finite tree by the very definition.

Next, we define extree. In general, extree may extract infinite trees from a triple

(T1, T2, G). But later we use it only on inputs where it extracts finite trees.

Recall that we write H+ for the border of a tree-domain H, i.e., H+ is the set of minimal

elements of {0, 1}∗ \H.

Definition 3.4.6. Let T1, T2 : {0, 1}∗→ Σ
2

be trees and G ⊆ {0, 1}∗ some set. Assume that

H ⊆ {0, 1}∗ is a finite tree-domain. Set

P := dom(prune(T1↾H)) and

D := P ∪
⋃

e∈H+∩P+

dom(extract(e, T2, G)).

Let t := extree(H, T1, T2, G) denote the tree with domain D that is defined by

t(q) :=

(

T1(q) q ∈ dom(prune(T1↾H)),

T2(q) otherwise.

Remark 3.4.7. extree(H, T1, T2, G) extracts a tree from (T1, T2, G) that coincides with T1

on domain H (where positions that are labelled by 2 in T1 count as undefined positions).

For each of those branches that are defined up to the border of H, we append the corre-

sponding subtree of T2. That is, for d ∈ H+ such that T1 is defined on all ancestors of d,

we append extract(d, T2, G).

Let us illustrate these definitions in an example.

214 3. Main Results

Example 3.4.8. Consider the following infinite trees T1 and T2:

T1 :

a

a a

a a a a

a a a a a a a a

...
...

...
...

...
...

...
...

T2 :

b

b b

2 2 b b

b b b b b b b b

...
...

...
...

...
...

...
...

Consider G := {w ∈ {0, 1}∗ : |w| is odd} and H := {ǫ}. Then H+ = {0, 1} ⊆ G and we

obtain the following trees using extract on H+:

extract(0, T2, G) :

b

extract(1, T2, G) :

b

b b
Note that prune(T1↾H) = a. Hence, we conclude that extree(H, T1, T2, G) is the following

tree: a

b b

b b

Now, we use the function extree to define the set of infinite trees that is encoded by a

triple (T1, T2, G).

Definition 3.4.9. Let G ⊆ {0, 1}∗. A finite tree-domain H is called a G-tree if H+ ⊆ G. We

set

Set(T1, T2, G) :=
�

extree(H, T1, T2, G) : H is a G-tree
	

.

Remark 3.4.10. Note that Set(T1, T2, G) may contain infinite trees. Moreover, this set may

be finite, e.g., if G = ;. In our applications, we always ensure that this definition yields an

infinite set of finite trees.

As the next step, we define the notions of a tree-comb and of the closure of a tree-comb.

These definitions aim at the following: we look for an infinite sequence C = (Ti)i≥1 of finite

trees that can be encoded by a tuple (T C
1

, T C
2

, GC) of infinite trees such that Set(T C
1

, T C
2

, GC)

contains C . More precisely, Ti = extree(H, T C
1

, T C
2

, GC) for the GC -tree H induced by the

i-th layer of G in the following sense. Let B1 be the set of all infinite branches b such that

|G ∩ b| ≥ i, i.e., those branches along which an element of G occurs at least i times. Along

every infinite branch b ∈ B1, H ∩ b is the finite branch up to the predecessor of the i-th

element of b ∩ G (if b ∩ G contains at least i elements). Along every infinite branch b in

the complement of B1, H ∩ b is maximal in the sense that H contains all predecessors of

the maximal element of b ∩ G.

Before we state the precise definition of a tree-comb, let us explain how this notion

generalises the notion of a word-comb. A word-comb is an infinite set of strings such that

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 215

there is a sequence g1 < g2 < g3 < . . . of natural numbers such that all but the shortest n

words of the word-comb agree on the first gn letters. Furthermore, the length of the words

forming the word-comb grows unbounded. We transfer this principle to the tree case as

follows: we replace the notion of “length of a string” by the notion of “depth of a tree”.

Thus, we want a tree-comb to be an infinite sequence of trees of growing depth such that

all but the first n trees coincide on a certain initial part Dn of their domain.

Before we state the definition, recall that dom(T)⊕ denotes the union of dom(T) with

its border dom(T)+.

Definition 3.4.11. An infinite sequence of finite trees C = (Ti)i≥1 is called a tree-comb if

T j↾dom(Ti)
⊕ = Tk↾dom(Ti)

⊕ for all natural numbers 1≤ i < j < k.

Remark 3.4.12. A tree-comb C = (Ti)i≥1 is an infinite sequence of finite trees. Abusing

notation, we will identify C with the set {Ti : i ≥ 1} if no confusion arises. In this sense,

we write D ⊆ C for the fact that D is an infinite subsequence of C . In this case, D is also a

tree-comb.

We will soon see that any infinite set of trees contains a subset which forms a tree-comb.

Before we come to this, let us define the notion of a representation of a tree-comb by a

triple of infinite trees.

Definition 3.4.13. Let C = (Ti)i≥1 be a tree-comb. We define the trees T C
1

, T C
2

, GC as

follows:

T C
1

: {0, 1}∗→ Σ
2

with

T C
1
(d) :=

(

Ti(d) for d ∈ dom(Ti)∩
⋃

j<i dom(T j),

2 otherwise,

T C
2

: {0, 1}∗→ Σ
2

with

T C
2
(d) :=

(

Ti(d) for d ∈ dom(Ti) \
⋃

j<i dom(T j),

2 otherwise,

GC := {ǫ} ∪
⋃

i≥1

�

dom(Ti)
+ \ (dom(Ti−1)

⊕)
�

.

We call the triple (T C
1

, T C
2

, GC) the representation of C .

Remark 3.4.14. Note that T C
1

is well-defined: if there are i′ > i > j such that

d ∈ dom(Ti′)∩ dom(Ti)∩ dom(T j),

then Ti′(d) = Ti(d) by the tree-comb property.

Furthermore, if there is some node d such that T C
1
(d) = 2 then T C

1
(de) = 2 for all

e ∈ {0, 1}∗. This is due to the fact that T C
1
(d) = 2 if d is in the domain of at most one of

the Ti. But then all descendents of e satisfy this condition, too.

Note that GC = {ǫ} ∪
⋃

i≥1

�

dom(Ti)
+ \
⋃

j<i dom(T j)
⊕
�

: (⊇) is trivially true. For (⊆)

assume that ǫ 6= d ∈ dom(Ti)
+ \ (dom(Ti−1)

⊕). Heading for a contradiction, assume that

d ∈ dom(T j)
⊕ for some j < i−1. By definition of a tree-comb, this implies that Ti and Ti−1

agree on d which contradicts the assumption d /∈ dom(Ti−1)
⊕ and d ∈ dom(Ti)

⊕. Thus,

d /∈ dom(T j)
⊕ for all j < i − 1 whence d ∈

⋃

i≥1

�

dom(Ti)
+ \
⋃

j<i dom(T j)
⊕
�

.

216 3. Main Results

Definition 3.4.15. Let C be a tree-comb. We call CL(C) := Set(T C
1

, T C
2

, GC) the closure of

C .

Remark 3.4.16. Calling Set(T C
1

, T C
2

.GC) a closure of C requires some justification: we post-

pone this justification for a while. But in Lemma 3.4.20, we will see that CL(C) contains

each element of C .

In the following, we study tree-combs, their representations and their closures. First,

we show that any infinite set of trees contains a tree-comb. Then we show that every

tree-comb is contained in its closure. Furthermore, we show that the closure of every tree-

comb is an infinite set of finite trees. Finally, we introduce a partial order on the closure of

every tree-comb. This order plays a crucial technical role in our reduction of the Ramsey

quantifier. Each Ramsey quantifier that asserts a certain property of all pairwise distinct

n-tuples of some infinite set will be reduced to the assertion that all pairwise comparable

n-tuples of the closure of some tree-comb have this property.

We apply Ramsey’s Theorem in many of the following proofs. Thus, we recall this theo-

rem briefly.

Theorem 3.4.17 ([56]). Let S be an infinite set, C a finite set of colours. We write Pn(S) for

the set of n-element subsets of S. For each colouring f : Pn(S)→ C of the n-element subsets

of S there is an infinite subset S′ ⊆ S such that f is constant on Pn(S
′).

We are now prepared to prove that every infinite set of finite trees contains a subset that

induces a tree-comb.

Lemma 3.4.18. Let S be an infinite set of finite trees. Then there is a tree-comb C such that

each element of C is contained in S.

Proof. We define C = (Ti)i≥1 by induction.

Choose T1 ∈ S arbitrarily. Since dom(T1)
⊕ is finite and due to Ramsey’s Theorem, there

is an infinite set S1 ⊆ S such that for all T, T ′ ∈ S1, we have T↾dom(T1)
⊕ = T ′↾dom(T1)

⊕ .

Choose T2 ∈ S1 arbitrarily. Again, dom(T2) is finite whence there is some infinite S2 ⊆ S1

such that T↾dom(T2)
⊕ = T ′↾dom(T2)

⊕ for all T, T ′ ∈ S2.

Continuing this construction, we obtain infinitely many finite trees T1, T2, T3, . . . Because

of the definition of these trees, C := (Ti)i≥1 is a tree-comb.

Note that by definition of the Ramsey quantifier, the witnesses for Ramsey quantifiers are

closed under taking infinite subsets: if S is an infinite set of finite trees witnessing some

Ramsey quantifier, then every infinite subset of S also witnesses this Ramsey quantifier.

From this point of view, the previous lemma says that the search space for witnesses for

Ramsey quantifiers on automatic structures can be restricted to tree-combs.

The next lemma collects some technical facts about the representation (T C
1

, T C
2

, GC) of a

tree-comb C .

Lemma 3.4.19. Let C = (T j) j≥1 be a tree-comb and let i ≥ 1 be some natural number.

1. For all d ∈
⋃

j<i dom(T j) we have T C
1
(d) 6= 2 iff d ∈ dom(Ti).

2. For all D ⊆
⋃

j<i dom(T j) and for E := dom(prune(T C
1
↾D)), we have

prune(T C
1
↾D) = Ti↾E.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 217

3. For all d ∈ dom(Ti−1)
+ \
⋃

j<i−1 dom(T j)
⊕, we have extract(d, T C

2
, GC) = (Ti)d .

Proof. 1. Let d ∈
⋃

j<i dom(T j). By definition, T C
1
(d) 6= 2 if and only if there is some

k ∈ N such that d ∈ dom(Tk) ∩
⋃

j<k dom(T j). By assumption on d, this is the case

if and only if there is some k such that d ∈ dom(Tk)∩
⋃

j<k dom(T j)∩
⋃

j<i dom(T j).

We have to show that this is the case if and only if d ∈ dom(Ti)∩
⋃

j<i dom(T j).

Assume that d ∈ dom(Ti) ∩
⋃

j< j dom(T j). Setting k := i, we obtain directly that

d ∈ dom(Tk)∩
⋃

j<k dom(T j)∩
⋃

j<i dom(T j).

For the other direction, assume that there is some k ∈ N such that

d ∈ dom(Tk)∩
⋃

j<k

dom(T j)∩
⋃

j<i

dom(T j).

Due to the definition of a tree-comb, for all i, k ∈ N the trees Ti and Tk agree on
⋃

j<min(k,i) dom(T j)
⊕. It follows immediately that

dom(Tk)∩
⋃

j<min(k,i)

dom(T j) = dom(Ti)∩
⋃

j<min(k,i)

dom(T j).

From this we derive directly that

dom(Tk)∩
⋃

j<k

dom(T j)∩
⋃

j<i

dom(T j)

=






dom(Tk)∩
⋃

j<min(i,k)

dom(T j)






∩
⋃

j<i

dom(T j)

=






dom(Ti)∩
⋃

j<min(i,k)

dom(T j)






∩
⋃

j<i

dom(T j)

⊆dom(Ti).

Thus, we conclude that d ∈ dom(Ti)∩
⋃

j<i dom(Ti).

2. Let D ⊆
⋃

j<i dom(T j). The previous part of this Lemma showed that

D ∩ dom(Ti) = D ∩ {d : T c
1
(d) 6= 2}.

By definition of the function prune, it follows that

E := dom(prune(T C
1
↾D)) = dom(Ti)∩ D.

Together with the definition of T 1
C

, this implies that T 1
C
(d) = Ti(d) for all d ∈ E. Thus,

prune(T C
1
↾D) = Ti↾E.

218 3. Main Results

3. Let d ∈ dom(Ti−1)
+ \
⋃

j<i−1(dom(T j)
⊕). We have to show that

extract(d, T C
2

, GC) = (Ti)d .

There are the following cases.

a) d /∈ dom(Tk) for all k ∈ N: by definition of T C
2

this implies T C
2
(d) = 2 whence

extract(d, T C
2

, GC) = (Ti)d = ;.

b) Otherwise, there is some k ∈ N such that d ∈ dom(Tk): in this case, k ≥ i because

d /∈
⋃

j<i−1 dom(T j). But then Tk and Ti agree on d because d ∈ dom(Ti−1)
⊕

and due to the definition of a tree-comb. Hence, d ∈ dom(Ti). Furthermore,

T C
2
(e) = Ti(e) for all d ≤ e ∈ dom(Ti) due to the definition of T C

2
. Moreover,

e /∈ dom(T j)
+ for all d < e ∈ dom(Ti) and all j ≤ i. Remark 3.4.14 then implies

that e /∈ GC for all d < e ∈ dom(Ti). Finally, due to d ∈ dom(Ti) \ dom(Ti−1),

dom(Ti)
+ ∩ {e : d ≤ e} ⊆ dom(Ti)

+ \ (dom(Ti−1)
⊕)⊆ GC

Thus, we conclude that extract(d, T C
2

, GC) = (Ti)d .

In the next lemma we show that the representation (T C
1

, T C
2

, GC) of a tree-comb C is

a correct representation in the following sense: all elements of the tree-comb can be ex-

tracted from this representation, i.e., for each tree T ∈ C , it holds that T ∈ CL(C).

Lemma 3.4.20. Let C = (Ti)i≥1 be a tree-comb. For each i ≥ 1, Ti ∈ CL(C), i.e.,

Ti ∈ Set(T C
1

, T C
2

, GC).

Proof. For each i ≥ 1, we construct a GC -tree H such that Ti = extree(H, T C
1

, T C
2

, GC).

Set H :=
⋃

j<i dom(T j). First, we show that H is a GC -tree, then we show that

Ti = extree(H, T C
1

, T C
2

, GC).

1. We have to show that H+ ⊆ G. Let x− be the predecessor of some x ∈ H+ and let

j be minimal such that x− ∈ dom(T j). By definition x ∈ dom(T j)
+ \ (dom(T j−1)

⊕),

whence x ∈ GC .

2. Let us first consider the restriction of this tree to H. Set

P := dom(prune(T C
1
↾H)) = dom(prune(T C

1
↾⋃

j<i dom(T j)
)).

By Lemma 3.4.19 T C
1

agrees with Ti on P.

Due to the definition of a GC -tree, for each d ∈ H+ there is some k < i with

d ∈ dom(Tk)
+ \
⋃

j<k dom(T j)
⊕.

If k = i − 1, then the third item of Lemma 3.4.19 implies extract(d, T C
2

, GC) = (Ti)d .

Otherwise, k < i − 1. By the definition of a tree-comb, we know that d /∈ dom(Tk+1)

iff d /∈ dom(T j) for all j > k.

By d ∈ H+ we know that d /∈ dom(T j) for j < i. Since k + 1 < i, d /∈ dom(Tk+1)

whence d /∈ dom(T j) for all j > k.

Due to k < i, we conclude that d /∈ dom(T j) for all j ≥ 1. Thus, T C
2
(d) = 2 whence

extract(d, T C
2

, GC) = ;= (Ti)d .

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 219

The proof of the previous lemma implies the following corollary.

Corollary 3.4.21. Let C be a tree-comb and (T C
1

, T C
2

, GC) be its representation. For each

g ∈ GC , there is some GC -tree H such that g ∈ H+.

Proof. By definition of GC , there is some i ∈ N such that g ∈ dom(Ti)
+ \ (dom(Ti−1)

⊕).

By Remark 3.4.14, we know that g ∈ dom(Ti)
+ \
⋃

j<i dom(T j)
⊕. In the proof of Lemma

3.4.20 we have already seen that H :=
⋃

j≤i dom(T j) forms a G-tree. The claim follows

from g ∈ H+.

The next lemma shows that for the representation (T C
1

, T C
2

, GC) of an arbitrary tree-comb

C , the set Set(T C
1

, T C
2

, GC) is an infinite set of finite trees. Since we aim at representing

infinite sets of finite trees, we will call any triple (T1, T2, G) coherent if it induces an infinite

set of finite trees via the operator Set.

Lemma 3.4.22. Let C = (Ti)i≥1 be an arbitrary tree-comb. Its closure CL(C) is coherent, i.e.,

Set(T C
1

, T C
2

, GC) is an infinite set of finite trees.

Proof. By Lemma 3.4.20, we have already seen that all trees from C are contained in

CL(C). Hence, CL(C) contains an infinite set of finite trees. Thus, it is only left to show

that each GC -tree H induces a finite tree.

Since a GC -tree is a finite tree-domain by definition, it suffices to show the finiteness of

extract(d, T C
2

, GC) for all d ∈ GC .

For this purpose, let d ∈ GC . Then there is some i ∈ N such that d ∈ T+
i
\
⋃

j<i dom(T j)
⊕.

Due to the last item of Lemma 3.4.19, extract(d, T C
2

, GC) = (Ti+1)d . Since Ti+1 is a finite

tree, its subtree rooted at d is also finite.

In order to reduce Ramsey quantifiers on automatic structures to first-order logic on ω-

automatic structures, we need to introduce one further concept concerning tree-combs:

for (T C
1

, T C
2

, GC) a representation of some tree-comb C , we define a partial order <GC on

CL(C). The purpose of this order is the following: the Ramsey quantifier asserts that there

is an infinite set such that its pairwise distinct n-tuples satisfy a certain formula. This

assertion will be reduced to the assertion that there is a closure of some tree-comb such

that all pairwise <GC comparable n-tuples satisfy the formula. We are going to define <GC

in such a way that the tree-comb C is ordered linearly. Thus, if there is a tree-comb C

such that its closure CL(C) witnesses the reduced assertion, then C witnesses the original

assertion: with respect to C , the notions of “pairwise distinct” and “pairwise comparable”

coincide whence C witnesses the Ramsey quantifier.

The order <GC is defined on trees from CL(C) by comparing the underlying GC -trees

with respect to (. We call a GC -tree H the underlying tree for T ∈ CL(C), if

T = extree(H, T C
1

, T C
2

, GC) and H is maximal with this property. Unfortunately, for an

arbitrary representation (T1, T2, G) this notion is not well-defined. For an extremely de-

generated example, take T1 to be the constant 2-labelled tree and G = {0, 1}∗. Any

finite tree domain H forms a G-tree and extree(H, T1, T2, G) is the empty tree for all H.

Thus, there is no maximal G-tree underlying the empty tree in this representation. In or-

der to obtain a well-defined notion of underlying G-tree, we first define the notion of a

small representation. Afterwards, we show that there is an underlying G-tree for every

220 3. Main Results

tree T contained in a small representation. Furthermore, we prove that the representa-

tion of every tree-comb is small. Finally, we formally define the order <G for each small

representation (T1, T2, G).

Definition 3.4.23. We call a representation (T1, T2, G) small if the following two condi-

tions hold.

1. For all g ∈ G there is some G-tree H such that g ∈ H+.

2. If there are d < e ∈ {0, 1}∗ with d, e ∈ G, then for all c < d we have T1(c) 6= 2.

Remark 3.4.24. It does not depend on T2 whether (T1, T2, G) is small. Thus, we will also

say (T1, G) is small meaning that (T1, T2, G) is small.

Note that the representation of every tree-comb satisfies the first condition due to Corol-

lary 3.4.21.

Lemma 3.4.25. Let T1 and T2 be Σ
2

-labelled infinite binary trees and G ⊆ {0, 1}∗. Assume

that (T1, T2, G) is small. For each T ∈ Set(T1, T2, G) there is a unique maximal G-tree HT

such that T = extree(HT , T1, T2, G).

Proof. Fix a T ∈ Set(T1, T2, G). Let

ST := {H ⊆ {0, 1}∗ : H a G-tree and T = extree(H, T1, T2, G)}.

Furthermore, let HT :=
⋃

ST be the union of all these G-trees.

First, we show that HT is a finite tree-domain. By definition of HT this implies that HT

is a G-tree. Afterwards, we show that it generates T .

HT is infinite if and only if there is an infinite chain d0 < d1 < d2 < · · · ∈ {0, 1}∗ such

that for each i ∈ N there is some Hi ∈ ST with di ∈ H+
i

, i.e., the trees-domains in ST grow

unbounded along some infinite branch d0 < d1 < d2 < · · ·< b ∈ {0, 1}ω.

Heading for a contradiction, assume that such a chain d0 < d1 < d2 < . . . exists.

Since Hi is a G-tree, each di ∈ G. Because of d1 ∈ G and d1 /∈ dom(H0)
⊕, the

definition of extree(H0, T1, T2, G) implies that d1 /∈ dom(extree(H0, T1, T2, G)). Due to

dom(T) = extree(H0, T1, T2, G)), we conclude that d1 /∈ dom(T).

On the other hand, (T1, T2, G) is small whence d1 < d2 < d3 ∈ G implies that T1(c) 6= 2

for all c ≤ d1. Since d1 ∈ H2, extree(H2, T1, T2, G) and T1 coincide up to d1. We conclude

that d1 ∈ dom(T) = dom(extree(H2, T1, T2, G).

This contradicts d1 /∈ dom(T). Thus, the tree-domains in ST cannot grow unbounded

along any infinite branch and we conclude that HT is a well-defined finite tree-domain.

We come to our second claim: HT ∈ ST , or equivalently T = extree(HT , T1, T2, G). In

order to prove this claim, let b ∈ {0, 1, }ω be an arbitrary infinite branch. There is a unique

element d that is on the border of HT in the branch b, i.e., there is a unique element

d ∈ b ∩ H+T . Let d− be the direct predecessor of d.

By definition of HT , d− ∈ H for some H ∈ ST and there is no H ′ ∈ ST with

d ∈ H ′. Thus, HT and H agree along the branch b whence T = extree(H, T1, T2, G) and

extree(HT , T1, T2, G) coincide along b.

For each infinite branch there is such a H ∈ ST whence we conclude that T and

extree(HT , T1, T2, G) coincide along each infinite branch. Hence, T = extree(HT , T1, T2, G).

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 221

Lemma 3.4.26. Let C = (Ti)i≥1 be some tree-comb and (T C
1

, T C
2

, GC) its representation. Then

(T C
1

, T C
2

, GC) is small.

Proof. We have to show the following two claims:

1. For all g ∈ GC there is some GC -tree H such that g ∈ H+.

2. If there are d < e ∈ {0, 1}∗ with d, e ∈ GC , then for all c < d we have T C
1
(c) 6= 2.

The first claim holds due to Corollary 3.4.21. The second part is an easy consequence of the

definition of T C
1

: by definition of GC , d, e ∈ GC with d ≤ e implies that there are numbers

i and j such that i 6= j, d ∈ dom(Ti)
+ and e ∈ dom(T j)

+. But this implies that for all c < d,

c ∈ dom(Ti)∩ dom(T j) whence by definition of T C
1

, T C
1
(c) = Tk(c) for k =max(i, j).

We conclude the section on tree-combs by defining the order <G for all small representa-

tions (T1, T2, G) and by showing that each tree-comb C is linearly ordered by the induced

order <GC .

Definition 3.4.27. Let G ⊆ {0, 1}∗. Furthermore, let H and H ′ be G-trees. We define

H <G H ′ if the following two conditions hold:

1. H (H ′ and

2. for each infinite branch b ∈ {0, 1}ω, H ∩ b = H ′ ∩ b implies (b \ (H⊕))∩ G = ;.

This means that H <G H ′ holds if H ′ extends H properly along each branch where this

is possible for a G-tree. In other words, if there is a descendent of some d ∈ H+ which is

in G, then H ′ must contain d. Thus, H ′ extends H properly along this branch.

We extend this order to S, T ∈ Set(T1, T2, G) for small representations (T1, T2, G) as

follows.

Definition 3.4.28. Let (T1, T2, G) be a small representation. Let HS (HT) denote the max-

imal G-tree such that S = extree(HS, T1, T2, G) (T = extree(HT , T1, T2, G), respectively),

i.e., HS and HT are the underlying trees for S and T , respectively. We set

S <G T iff HS <G HT .

This order formalises the idea that the underlying G-tree H ′ extends H in each possible

direction. Since a G-tree ends along each path just in front of a node from G, the branches

where a G-tree cannot be extended are those where no further elements from G follow

after H⊕.

We conclude this section by showing that any tree-comb C is linearly ordered by the

induced order <GC .

Lemma 3.4.29. Let C = (Ti)i≥1 be a tree-comb. Then Ti <GC Tk for all 1≤ i ≤ k.

Proof. Let Hi :=
⋃

j<i dom(T j) and let Ĥi be the maximal GC -tree generating Ti. From the

proof of lemma 3.4.20 we know that Hi ⊆ Ĥi because Hi also generates Ti.

By definition of Ti <GC Ti+1, it suffices to show that Ĥi <GC Ĥi+1. We prove this claim

in two steps. First we show that Ĥi ⊆ Hi+1. This implies Ĥi ⊆ Ĥi+1 and furthermore,

these two trees cannot coincide because they generate two different trees, namely, Ti

and Ti+1. Afterwards, we show that for each infinite branch b the following holds. If

Ĥi ∩ b = Ĥi+1 ∩ b then (b \ (Ĥ⊕
i
))∩ GC = ;.

222 3. Main Results

1. Since Ĥi and Hi+1 are tree-domains, Ĥi 6⊆ Hi+1 would imply that Ĥi ∩ (H
+
i+1
) 6= ;.

Heading for a contradiction, assume that there is some d ∈ Ĥi ∩ (H
+
i+1
).

By definition of Hi+1, d ∈
�

⋃

j≤i dom(Ti)
�+

. Let D := dom(prune(T C
1
↾Ĥi
)). By

definition of Ĥi, prune(T C
1
↾Ĥi
) = Ti↾D. Since d /∈ dom(Ti), this implies T C

1
(d) = 2.

Thus, by definition of T C
1

it is not possible that there are two numbers j1 6= j2 ∈ N
such that d ∈ dom(T j1

)∩ dom(T j2
).

We claim that then d /∈ dom(T j) for all j ≥ 1.

For j ≤ i, d /∈ dom(T j) due to d ∈
�

⋃

j≤i dom(Ti)
�+

.

Nevertheless, for the same reason, d ∈ dom(Tk)
⊕ for some k ≤ i. Due to the tree-

comb property, this implies that T j1
and T j2

agree at d for all j1 > j2 > k. Since we

have already seen that there cannot be two different trees T j1
and T j2

defined at d,

we conclude that there is no j > k such that d ∈ dom(T j).

Thus, we conclude that d /∈ dom(T j) for all j ≥ 1. This implies that all d < e satisfy

e /∈ dom(T j)
+ for all j ≥ 1. Due to the definition of GC , it follows that e /∈ GC for all

d < e. Thus, d cannot be contained in any GC -tree.

But this contradicts the assumption that d ∈ Ĥi.

We conclude that Ĥi ∩ (H
+
i+1
) = ; which implies Ĥi ⊆ Hi+1 ⊆ Ĥi+1.

2. Fix some infinite branch b such that Ĥi ∩ b = Ĥi+1 ∩ b. Due to Ĥi ⊆ Hi+1 ⊆ Ĥi+1 this

implies

Ĥi ∩ b = Ĥi+1 ∩ b = Hi+1 ∩ b =
⋃

j≤i

dom(T j)∩ b. (3.6)

As a direct consequence of the coincidence of Ĥi and Ĥi+1 along b, we obtain that

Ti↾b = extree(Ĥi, T C
1

, T C
2

, GC)↾b = extree(Ĥi+1, T C
1

, T C
2

, GC)↾b = Ti+1↾b.

Thus,

b ∩
⋃

j≤i

dom(T j) = b ∩
⋃

j≤i+1

dom(T j). (3.7)

Now, let d be the unique element of b ∩ (Ĥ+
i+1
).

3.6 implies that there is some k ≤ i such that d ∈ dom(Tk)
⊕ while d /∈ dom(T j) for

all j ≤ i. Due to 3.7, this implies d /∈ dom(Ti+1). Since i + 1 > k, it follows from the

tree-comb property that d /∈ dom(T j) for all j ≥ i + 1> k.

We conclude that d /∈ dom(T j) for all j ≥ 1. But this implies that no proper descen-

dant of d is contained in dom(T j)
+ for any j ≥ 1. Hence, no proper descendant of d

is contained in GC . Since d ∈ b ∩ (Ĥ+
i+1
), it follows that (b \ (Ĥ⊕

i+1
)) ∩ G = ;, which

concludes the proof.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 223

3.4.2 Reduction of the Ramsey Quantifier

We now reduce FO((Ramn)n∈N) on an automatic structure A to FO on an ω-automatic

structure Ext(A).

Adding Tree-Comb Representations to an Automatic Structure

From now up to the end of Section 3.4.5, we fix an automatic structure A. We assume

that, without loss of generality, the identity id is a tree presentation of A. This means that

the universe of A is a regular subset A⊆ TreeΣ and all relations of A are automatic.

We next define a structure Ext(A) corresponding to A in the following sense. Ext(A) is

the disjoint union of A with a structure that allows to reason about tree-combs in the fol-

lowing sense: each FO((Ramn)n∈N) formula over A can be reduced to an FO formula over

Ext(A). Furthermore, Ext(A) turns out to beω-automatic whence this reduction proves the

decidability of FO((Ramn)n∈N) over A. Later, we use the reduction of an FO((Ramn)n∈N)

formula ϕ on A to an FO formula on Ext(A) in order to design an ω-automaton that rep-

resents ϕ on Ext(A) and that can be turned into an automaton Aϕ that corresponds to ϕ

on A.

Definition 3.4.30. Let Ext(A) be the following structure.

• The universe is A′ := TreeΣ ∪ B-Treeω
Σ2

∪ B-Treeω
{0,1}

where

B-Treeω
Σ

:= {T ∈ Treeω
Σ

: dom(T) = {0, 1}∗}

is the set of all full infinite binary Σ-trees. We identify a subset G ⊆ {0, 1}∗ with its

characteristic map in B-Treeω
{0,1}

.

• The basic relations are those of A including the unary relation A which denotes the

universe of the structure A.

• We add the following new relations:

1. TreeΣ, B-Treeω
Σ2

, and B-Treeω
{0,1}

,

2. In :=
n

(T, T1, T2, G) ∈ TreeΣ× (B-Treeω
Σ2

)2× B-Treeω
{0,1}

: T ∈ Set(T1, T2, G)
o

,

3. Coherent :=
n

(T1, T2, G) ∈ (B-Treeω
Σ2

)2× B-Treeω
{0,1}

: Set(T1, T2, G) is coherent
o

(recall that coherent means that Set(T1, T2, G) is an infinite set of finite trees),

4. Small :=
n

(T1, G) ∈ B-Treeω
Σ2

× B-Treeω
{0,1}

: (T1, G) is small
o

,

5. Comp :=

�

(S, T, T1, T2, G) ∈ T : S, T ∈ Set(T1, T2, G) and either S <G T or T <G S
	

for T := (TreeΣ)
2× (B-Treeω

Σ2

)2× B-Treeω
{0,1}

.

Now, we construct an ω-presentation of Ext(A) over the alphabet Γ = Σ∪ {⊥,2, 0, 1}.

Recall that we write T⊥ for the lifting of a tree T to the full domain {0, 1}∗ where we use

⊥ as a padding symbol. We define the domain of the presentation to be the set

L := {T⊥ : T ∈ TreeΣ} ∪ B-Treeω
Σ2

∪ B-Treeω
{0,1}

.

224 3. Main Results

This set is obviously ω-regular. Furthermore, it is easy to describe a bijection h : L→ A′ by

stating its inverse h−1 : A′→ L. For T ∈ TreeΣ, we set h−1(T) := T⊥, for all other elements

T of A′, we set h−1(T) := T . It remains to show that the (h-preimages of the) relations of

Ext(A) areω-automatic. This is trivial for h−1(TreeΣ) = {T
⊥ : T ∈ TreeΣ}, h−1(B-Treeω

Σ2

) =

B-Treeω
Σ2

and h−1(B-Treeω
{0,1}
) = B-Treeω

{0,1}
. For the relation A (the universe of A), we have

h−1(A) = {T⊥ : T ∈ A}. Recall that id : A→ A is a tree presentation for A, so A⊆ TreeΣ can

be accepted by an automaton. This automaton can be transformed into an ω-automaton

accepting h−1(A) (cf. Lemma 2.5.14). A similar argument applies to the basic relations of

A. Thus, it remains to consider the relations In, Coherent, Small and Comp.

Lemma 3.4.31. The relations h−1(In), h−1(Coherent), h−1(Small), and h−1(Comp) are ω-

automatic.

Proof. 1. h−1(In): The property “H is a G-tree” is an MSO-definable property of the

infinite tree H ⊗ G (where we consider H and G as characteristic maps). Simi-

larly, “T = extree(H, T1, T2, G)” is an MSO-definable property of the infinite tree
⊗

(T⊥, T1, T2, H, G). Thus, also “T ∈ Set(T1, T2, G)” is an MSO-definable property

of the infinite tree
⊗

(T⊥, T1, T2, G). Hence, ω-automaticity of h−1(In) follows from

Theorem 2.5.13.

2. h−1(Coherent): the condition “for any G-tree H, extree(H, T1, T2, G) is actually a

finite tree” is an MSO-definable property of the tree
⊗

(T1, T2, G) and can therefore

be checked by anω-automaton by Theorem 2.5.13. Now assume that Set(T1, T2, G) is

a set of finite trees. It is infinite if and only if the union of the domains of its elements

is infinite, i.e., if this union contains an infinite branch. But the property “there is

an infinite branch b such that for each element d in b there is a G-tree Hd such that

d ∈ extree(Hd , T1, T2, G)” is an MSO-definable property of the tree
⊗

(T1, T2, G).

3. h−1(Small): the property “for each d ∈ G, there is G-tree H with d ∈ H+” is an MSO-

definable property. Furthermore, “for all c < d < e with e ∈ G and d ∈ G, it holds that

T1(c) 6= 2” is first-order definable on (G⊗T1,<) and the prefix order < on G∩{0, 1}∗

is MSO definable on G.

4. h−1(Comp): the assertion “H <G H ′” is an MSO-definable property of the infinite tree
⊗

(H, H ′, G): there is a formula that checks for each branch b that either

H ∩ b (H ′ ∩ b or H ∩ b = H ′ ∩ b

and there is no d ∈ (b ∩ G) \ (H⊕) with G(d) = 1. Furthermore, the maximal G-trees

generating S and T are MSO definable in
⊗

(S⊥, T⊥, T1, T2, G): we have already seen

that T = extree(H, T1, T2, G) is MSO definable. Thus, the set of G-trees generating

T (or S) are definable. The maximal of these trees is the G-tree underlying T (or

S). But maximality of a tree among an MSO-definable set of trees is clearly MSO

definable.

Thus, summarising these results, we obtain the following corollary.

Corollary 3.4.32. For each automatic structure A, the corresponding structure Ext(A) is

ω-automatic.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 225

Reduction of the Ramsey quantifier

We now inductively translate an FO((Ramn)n∈N) formula in the language of A into an

FO formula in the language of Ext(A). The idea is to replace the occurrence of a Ramsey

quantifier like Ramn x̄(ϕ) by the assertion that there is a small and coherent representation

(T1, T2, G) such that all pairwise<G-comparable n-tuples from Set(T1, T2, G) satisfy ϕ. Our

intention is to consider (T1, T2, G) as the representation of some tree-comb. We will first

define this reduction in detail. Then we prove its soundness. Finally, we show that this

reduction is correct.

Definition 3.4.33. For each FO(∃mod, (Ramn)n∈N) formula ϕ in the language of A, we

define its reduction red(ϕ) to the FO(∃mod) language of Ext(A) by

red(ϕ) :=ϕ for ϕ an atomic formula,

red(ϕ ∨ψ) :=red(ϕ)∨ red(ψ),

red(¬ϕ) :=¬red(ϕ),

red(∃xϕ) :=∃x(x ∈ A∧ red(ϕ)),

red(∃k,l xϕ) :=∃k,l x(x ∈ A∧ red(ϕ)),

red(Ramn x̄(ϕ)) :=∃T1, T2 ∈ B-Treeω
Γ2

, G ∈ B-Treeω
{0,1}
ψCoSm(T1, T2, G)∧ψRam(T1, T2, G),

where

ψCoSm(T1, T2, G) :=Coherent(T1, T2, G)∧ Small(T1, G)∧∀x
�

In(x , T1, T2, G)→ x ∈ A
�

and

ψRam := ∀x1, . . . , xn ∈ TreeΣ












∧

1≤i≤n

In(x i, T1, T2, G)∧
∧

1≤i< j≤n

Comp(x i, x j, T1, T2, G)






→ red(ϕ)






.

Remark 3.4.34. This reduction of a Ramsey quantifier asserts that there is a representation

of an infinite set such that each pairwise comparable n-tuple from this set satisfies ϕ.

At first, this seems to be a weaker condition than the assertion of the Ramsey quantifier

because there are tuples of pairwise distinct elements that are not tuples of pairwise <G

comparable elements. But it turns out that this condition is sufficient: there is an infinite

linearly <G-ordered subset S′ for each Set(T1, T2, G) where (T1, T2, G) is a coherent and

small representation.

In the following we first show that this translation is sound, i.e., for any formula ϕ, if

Ext(A) |= red(ϕ), then A |= ϕ. Afterwards, we prove the correctness, i.e., for any formula

ϕ, if A |= ϕ, then Ext(A) |= red(ϕ).

3.4.3 Soundness of the Reduction

In order to prove the soundness of our reduction, we start with a technical lemma. It

asserts that for (T1, T2, G) some representation of an infinite set of finite trees, there is at

least one branch with infinitely many nodes in G. We use this fact in order to prove the

existence of an infinite linear <G-ordered subset of every small representation.

226 3. Main Results

Lemma 3.4.35. Let T1, T2 : {0, 1}∗ → Σ
2

and G ⊆ {0, 1}∗ such that (T1, T2, G) is coher-

ent, i.e., S = Set(T1, T2, G) is an infinite set of finite Σ-trees. If b is an infinite branch in
⋃

T∈S dom(T), then |b ∩ G|=∞.

Proof. Let b be an infinite branch in
⋃

T∈S dom(T). Assume that |b ∩ G| <∞. Then there

are d1 < d2 < · · · < dn ∈ {0, 1}∗ such that G ∩ b = {d1, d2, . . . , dn}. Under this assumption,

b ⊆
⋃

T∈S dom(T) implies that there is some i ≤ n and some G-tree H with di ∈ H+ such

that dom(extract(di, T2, G))∩ B is infinite. But this implies that S contains an infinite tree

which is a contradiction to the assumption that S ⊆ TreeΣ.

Lemma 3.4.36. Let T1, T2 : {0, 1}∗ → Σ
2

and G ⊆ {0, 1}∗ such that S := Set(T1, T2, G) is

coherent and (T1, G) is small. Then there is an infinite subset S′ ⊆ S which is linearly ordered

by <G.

Proof. We show that for every tree T ∈ S there is a tree T ′ ∈ S with T <G T ′. Let T ∈ S

and H be the maximal G-tree such that T = extree(H, T1, T2, G).

Let

D := {d ∈ H+ : there is an infinite branch b such that d < b and (b \ (H⊕))∩ G 6= ;}.

Since |S| =∞, there is an infinite branch in
⋃

T∈S dom(T). Together with the previous

lemma, this implies that D is nonempty.

Since (T1, G) is small, for each d ∈ D there exists a G-tree Hd with d ∈ Hd . Set H ′ :=

H ∪
⋃

d∈D Hd . We claim that H ′ is a G-tree with H <G H ′.

Since D is finite, H ′ is a finite tree. Furthermore for each e ∈ H ′
+

either e ∈ H+ or e ∈ H+
d

for some d ∈ D. Thus, H ′ is a G-tree. We claim that H <G H ′. It is clear that d ∈ H ′ \H for

all d ∈ D 6= ; and that H ⊆ H ′ whence H (H ′. Now assume that b is an infinite branch

such that H ∩ b = H ′ ∩ b. We have to show that (b \ (H ′⊕))∩ G = ;.

Heading for a contradiction assume that there is some element e contained in this set.

Let d be the unique element in b ∩ H+. By definition of D, d ∈ D. Thus, d ∈ H ′ \ H which

contradicts H ∩ b = H ′ ∩ b.

Hence, for T ′ := extree(H ′, T1, T2, G) we have T <G T ′. Repeating this construction ad

infinitum we obtain an infinite, linearly <G-ordered subset of S.

Lemma 3.4.37. Let ϕ ∈ FO(∃mod, (Ramn)n∈N) be a sentence. If Ext(A) |= red(ϕ), then

A |= ϕ.

Proof. Since we want to prove the proposition by induction on the construction of ϕ, we

also have to consider formulas with free variables. Hence, the statement we actually prove

is the following:

Claim. Let ϕ ∈ FO(∃mod, (Ramn)n∈N) be a formula with free variables among x1, . . . , xn

and let a1, a2, . . . , an ∈ A. If Ext(A), (a1, a2, . . . , an) |= red(ϕ), then A, (a1, a2, . . . , an) |= ϕ.

The inductive proof of this claim is rather clear except for the case ϕ = Ramn x̄(ψ).

So let a1, a2, . . . , am ∈ A, and let Ext(A), (a1, a2, . . . , am) |= red(ϕ)(y1, y2, . . . , ym). Then

there are infinite trees T1, T2 and G with the properties given by red(ϕ). In particular,

S = Set(T1, T2, G) ⊆ A is an infinite set of finite trees and (T1, G) is small. By Lemma

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 227

3.4.36, there is an infinite S′ ⊆ S that is linearly ordered by<G. Hence, from the properties

of T1, T2, G, we obtain that

Ext(A), (t1, . . . , tn, a1, a2, . . . , am,) |= red(ψ)(x1, x2, . . . , xn, y1, y2, . . . , ym)

for every tuple (t1, . . . , tn) ∈ (S
′)n such that the t i are pairwise <G-comparable. Since

the pairwise <G-comparable tuples are exactly the pairwise distinct tuples in S′, S′ ⊆ A

witnesses A, (a1, a2, . . . , am) |= Ramn x̄(ψ)(y1, y2, . . . , ym).

3.4.4 Correctness of the Reduction

The outline of the correctness proof is as follows. We fix some formula ϕ := Ramn x̄(ψ).

We have already seen that every witness for the Ramsey quantifier in ϕ contains a subset

that forms a tree-comb. In the following we show that this tree-comb contains a certain

tree-comb D ⊆ C such that the trees T D
1

, T D
2

, and GD witness the reduction red(ϕ). This

means that the pairwise <G-comparable tuples from the closure CL(D) witness red(ψ).

In order to prove this, we introduce the notion of homogeneity of some tree-comb with

respect to an automatonA . We will show that any tree-comb witnessing a Ramsey quan-

tifier contains a homogeneous tree-comb. Furthermore, an automaton accepts all pairwise

distinct n-tuples from a homogeneous tree-comb if and only if it accepts all pairwise com-

parable n-tuples from the closure of this tree-comb. This completes the proof because the

existence of such a set is exactly what the reduction of ϕ asserts.

Before we give formal definitions, let us informally explain what the concept of ho-

mogeneity is. Consider a formula Ramn x̄(ψ) with ψ ∈ FO. Assume that there is some

tree-comb C = (Ti)i≥1 ⊆ A witnessing this quantifier on A. Let A denote the automaton

corresponding to ψ, i.e., A, ā |= ψ if and only if A accepts
⊗

ā. Thus, any pairwise dis-

tinct n-tuple from C is accepted by A . Recall that for any finite tree-domain D most of

the elements from C agree on D. More precisely, if D = dom(Ti) then Ti+1, Ti+2, Ti+3, . . .

agree on D. We call the tree-comb homogeneous with respect to A , if all n-tuples from

the closure of the tree-comb that agree on some finite domain D are accepted by runs that

coincide on D.

The purpose of this concept is the following: First of all, note that every tree T from

the closure CL(C) locally coincides with a tree from C in the following sense. Let

D ⊆ dom(Ti)
⊕ \ dom(Ti−1) be some tree-domain, i.e., there is a unique minimal element

d ∈ D and for every d ′ ∈ D \ {d} the predecessor of d ′ is contained in D. Then, T↾D co-

incides with either Ti−1↾D or Ti↾D or Ti+1↾D. We denote by H the tree underlying T . The

three cases correspond to the following three conditions on H.

1. If there are e1 < e2 ≤ d such that e1 ∈ H+ and e2 ∈ GC , then

D ∩ dom(T) = ;= D ∩ dom(Ti−1).

2. If there is some e1 ≤ d such that e1 ∈ H+ and G does not contain any element between

e1 and d, then T↾D coincides with Ti↾D (cf. Lemma 3.4.19).

3. If d ∈ H, T↾D coincides with Ti+1↾D. Moreover, the definition of a tree-comb implies

that T↾D then coincides with Tk↾D for all k > i.

228 3. Main Results

Now, given a pairwise <GC -comparable n-tuple T̄ from CL(C), T̄ coincides locally with

pairwise distinct n-tuples from C . We can then define a function ρ on T̄ by locally copying

the accepting runs on the n-tuples from C . If C is homogeneous with respect to A , ρ is

an accepting run on T̄ due to the following fact. Let

D1 ⊆ dom(Ti)
⊕ \ dom(Ti−1) and D2 ⊆ dom(Ti+1)

⊕ \ dom(Ti)

be maximal tree domains such that D1 and D2 are touching. Then there are tuples

C̄1, C̄2 ∈ C such that ρ coincides on D1 with the accepting run on C̄1 and ρ coincides

on D2 with the accepting run on C̄2. Due to homogeneity, the accepting run on C̄2 coin-

cides with the accepting run on C̄1 on the path from the minimal element of D1 to the

minimal element of D2. Thus, ρ respects the transition relation at the border between D1

and D2. Since this argument applies at all borders where ρ consists of copies of different

accepting runs, ρ respects the transition relation whence it is a run on T̄ . Moreover, the

function copies the behaviour of an accepting run on each branch. Hence, the run is an

accepting run on T̄ .

The precise definition of homogeneity is more complicated than indicated above because

we have to deal with different permutations of fixed n-tuples. When we investigate pair-

wise <GC -comparable tuples, we can order these tuples in various ways. But the accepting

run for each permutation of a tuple may differ from all the accepting runs on the other per-

mutations. Thus, our definition of homogeneity asserts that n-tuples from the tree-comb

share similar accepting runs if their elements are ordered by <GC in the same manner.

Let us first define some auxiliary notation. Afterwards, we state the exact definition of

homogeneity.

Definition 3.4.38.

• Let C be some tree-comb and D ⊆ CL(C). Then we write
�

D

n

�

for the set of

<GC -increasing n-tuples from D.

• For σ : {1, 2, . . . , n} → {1, 2, . . . , n} a permutation and x̄ = (x1, x2, . . . , xn) some

n-tuple, we write σ(x̄) := (xσ(1), xσ(2), . . . , xσ(n)).

• Let D and E be subsets of some tree-comb C such that d <GC e for all d ∈ D and e ∈ E.

Furthermore, letA be a deterministic automaton recognising an n-ary relation of Σ-

trees. We write ρσ(T̄) for the run of A on
⊗

σ(T̄) for all n-tuples T̄ of trees and all

permutations σ.

Set F :=
⋃

T∈D dom(T)⊕. We sayA runs homogeneously on E with respect to D, if for

each permutation σ of n elements and each number 0≤ m≤ n the following holds:

For all T̄ ∈
�

D

m

�

, all Ū ∈
h

E

n−m

i

and all V̄ ∈
h

E

n−m

i

,

ρσ(T̄ Ū)↾F = ρσ(T̄ V̄)↾F ,

i.e., the runs on
⊗

σ(T̄ Ū) and
⊗

σ(T̄ V̄) coincide on the domain F .

This means that different tuples from E that are in the same order with respect to

the tree-comb order <G have identical runs with each fixed tuple from D on domain

F , where F may be seen as the “maximal domain” of D. Note that this assertion is

symmetric in the order in which we mix the tuple from D with the tuples from E.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 229

Definition 3.4.39. Let A be some deterministic automaton and C = (Ti)i≥1 be a tree-

comb. Set

Dn := {Ti : 1≤ i < n} and En := {Ti : n≤ i} for all n≥ 1.

We say C is homogeneous with respect toA , if, for all n ∈ N,A runs homogeneously on En

with respect to Dn.

The crucial observation for the correctness proof is the following. Any tree-comb whose

pairwise distinct n-tuples are all accepted by an automaton A contains a subcomb that

is homogeneous with respect to A . Every set M that witnesses the Ramsey quantifier

Ramn x̄(ψ) contains a tree-comb C which also witnesses the Ramsey quantifier. We are

going to show that C contains a subcomb C ′ which is homogeneous with respect to Aψ
(where Aψ corresponds to ψ). Because of this homogeneity, we can then construct an

accepting run of Aψ on each pairwise comparable n-tuple from CL(C ′). Since Aψ corre-

sponds to ψ, this implies that every pairwise comparable n-tuple from CL(C ′) satisfies ψ.

Thus, the representation of such a closure is a witness for red(Ramn x̄(ψ)).

Lemma 3.4.40. Let C be a tree-comb and A some deterministic automaton such that A

accepts
⊗

σ(T̄) for all T̄ ∈
�

C

n

�

and all permutations σ. Then there is a subcomb CA ⊆ C

which is homogeneous with respect toA .

Proof. We generate CA by the use of Ramsey’s Theorem (Theorem 3.4.17).

For each T̄ ∈
�

C

n

�

and each permutation σ, we denote the accepting run of A on T̄ by

ρσ(T̄).

We are going to define two infinite chains

D0 (D1 (D2 (. . . and

C0) C1) C2) . . .

such that A runs homogeneously on Ci with respect to Di. Di+1 will extend Di by ex-

actly one finite tree Ti+1. The sequence of these trees then forms a tree-comb that is

homogeneous with respect toA .

At the beginning we set D0 := ;. Since ;⊕ = {ǫ}, we have to provide an infinite set

C0 ⊆ C such that for each permutation σ all T̄ , T̄ ′ ∈
�

C0

n

�

satisfy ρσ(T̄)(ǫ) = ρσ(T̄ ′)(ǫ).

This set C0 can be obtained by applying Ramsey’s Theorem as follows: For each T̄ ∈
�

C0

n

�

and for each permutation σ the function ρσ(T̄)↾{ǫ} has finite domain and range. Let

σ1,σ2, . . . ,σm be a fixed enumeration of all permutations of n elements. Assigning

T̄ 7→ (ρσ1(T̄)
↾{ǫ},ρσ2(T̄)

↾{ǫ}, . . . ,ρσm(T̄)
↾{ǫ})

for each T̄ ∈
�

C

n

�

induces a finite colouring of all n-element subsets of C: since C is

linearly ordered by <GC (see Lemma 3.4.29), each pairwise distinct n-tuple has a unique

representative among the <GC increasing sequences of length n. Furthermore, the range

of this map is finite.

By Ramsey’s theorem, there is an infinite subset C0 ⊆ C that is homogeneous with respect

to this colouring, i.e., if the <CG -order of two tuples from C coincides, then their accepting

runs coincide on the state at the root.

230 3. Main Results

We now construct Di+1 and Ci+1 from Di and Ci by generalising this process. Assume

that Di, Ci ⊆ C are disjoint sets such that Di is finite, Ci is infinite, and T <GC T ′ for each

T ∈ Di and T ′ ∈ Ci. Furthermore, assume thatA runs homogeneously on Ci with respect

to Di.

Let Ti be the minimal element of Ci with respect to <GC . We set Di+1 := Di ∪ {Ti}.

Applying Ramsey’s Theorem iteratively for each 0 ≤ k < n and each T̄ ∈
�

Di+1

k

�

, we can

choose an infinite Ci+1 ⊆ Ci \ {Ti} such that A runs homogeneously on Ci+1 with respect

to Di+1. We explain one of these applications of Ramsey’s Theorem in detail:

Fix a number k ≤ n and some T̄ ∈
�

Di+1

k

�

. In this step we consider the colouring that

maps each Ū ∈
h

Ci

n−k

i

to

(ρσ1(T̄ Ū)↾F ,ρσ2(T̄ Ū)↾F , . . . ,ρσm(T̄ Ū)↾F) where

F :=
⋃

T∈Di+1

dom(T)⊕.

Since F is finite, this induces a colouring of finite range on the k-tuples of Ci. Applying

Ramsey’s Theorem, there is a homogeneous infinite subset C ′ ⊆ Ci with respect to this

colouring.

Iterating this construction for each k ≤ n and each T̄ ∈
�

Di+1

k

�

, we obtain a subset

Ci+1 ⊆ C ′ ⊆ Ci such thatA runs homogeneously on Ci+1 with respect to Di+1.

Furthermore, it is clear that T <GC T ′ for all T ∈ Di+1 and T ′ ∈ Ci+1 because of the

following facts. The same claim is true for Di and Ci. Furthermore, Di+1 is Di extended by

the minimal element of Ci and Ci+1 does not contain the minimal element of Ci.

Repeating this construction, we obtain a sequence of trees T1, T2, T3, . . . such that

Di =
⋃

j≤i{T j}. The sequence (Ti)i≥1 is a tree-comb because it is a subsequence of C .

We set CA := (Ti)i≥1. Note that CA is homogeneous with respect to A by construc-

tion.

Next, we show the following. Let C be some tree-comb such that all pairwise distinct

n-tuples from C are accepted by some automaton A . If C is homogeneous with respect

to A , then A accepts all pairwise comparable n-tuples of CL(C). The proof of this claim

relies on the fact that every tree in CL(C) is locally similar to one of the trees in C and

accepting runs for different trees coincide on equal prefixes.

In the next lemma we use the following notation. Let T be some tree and D ⊆ dom(T)⊕

an initial segment. We call a map ρ : D → Q a partial run of A on T if ρ respects the

transition relation ofA on T . We call a partial run ρ accepting if ρ(ǫ) is a final state. Let

ρ be some partial run on some tree T . For some d ∈ {0, 1}∗ we call ρ total and correctly

initialised (tci) towards d if there is some e ≤ d such that e ∈ dom(T)+ and ρ(e) = qI ,

i.e., the domain of T ends at some ancestor of d and the border of its domain along this

branch is labelled by the initial state.

Remark 3.4.41. Note that a partial run ρ on some tree T is an accepting run if and only if

it is accepting and tci towards all d ∈ dom(T)+.

Lemma 3.4.42. Let A = (Q,Σ, qI , F,∆) be some deterministic automaton. Let C be a tree-

comb such thatA accepts all pairwise disjoint n-tuples of C . If C is homogeneous with respect

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 231

toA , thenA accepts all pairwise comparable n-tuples from CL(C), i.e.,A accepts σ(T) for

all permutations σ and all T̄ = (T1, T2, . . . , Tn) ∈
h

CL(C)

n

i

.

Proof. We write (T C
1

, T C
2

, GC) for the representation of C = (Ci)i≥1. Assume that

T̄ = (T1, T2, . . . , Tn) ∈

�

CL(C)

n

�

.

Furthermore, assume that H1, H2, . . . , Hn are the GC -trees that underlie the trees

T1, T2, . . . , Tn (i.e., for each i, Ti = extree(Hi, T C
1

, T C
2

, GC) and Hi is maximal with this

property).

We assume that σ = id (due to the symmetric definition of homogeneity, the proof is

completely analogous for any other permutation).

For each C̄ ∈
�

C

n

�

, we write ρC̄ for the accepting run ofA on C̄ .

Set Fk :=
⋃

i<k dom(Ci)
⊕. We will define an accepting run ρT̄ ofA on

⊗

T̄ as the union

of accepting partial runs ρT̄↾Fk
.

We start with the definition of ρT̄ ↾F1
. Note that F1 = {ǫ}. We set ρT̄ (ǫ) := ρC̄(ǫ) for an

arbitrary C̄ ∈
�

C

n

�

. Recall that by homogeneity of C̄ , this definition is independent of the

concrete choice of C̄ . Furthermore, since ρC̄ is accepting ρT̄ ↾F1
is an accepting partial run.

For d = ǫ, k = 1, and m= 1, ρT̄ ↾F1
satisfies the following properties.

1. d ∈ dom(Ck−1)
+ \
⋃

j<k−1(dom(C j)
⊕) (where we define C0 := ;),

2. d ∈ dom(Tm)
⊕ (just by definition of ⊕),

3. d ∈ H⊕
j

for m≤ j ≤ n, and

4. ρT̄ (d) = ρC̄(d) for any C̄ = Ci1
, Ci2

, . . . , Cin
with k ≤ i1 < i2 < · · ·< in.

For each k ≥ 1, we inductively extend the accepting partial run ρT̄ ↾Fk−1
to an accepting

partial run on domain Fk ∩ dom(
⊗

T̄)⊕ . In each step of this construction, we preserve the

property that for each maximal element d ∈ Fk, at least one of the following conditions

hold.

1. ρT̄ is a tci accepting partial run on
⊗

T̄ towards d.

2. There is some 1≤ m≤ n such that the following conditions are satisfied:

a) d ∈ dom(Ck−1)
+ \ Fk−1, i.e., d ∈ dom(Ck−1)

+) \
⋃

j<k−1(dom(C j)
⊕),

b) d /∈ dom(T j) for all 1≤ j < m,

c) d /∈ H⊕
j

for 1≤ j < m,

d) d ∈ dom(Tm)
⊕,

e) d ∈ H⊕
j

for all m≤ j ≤ n,

f) there are natural numbers 1≤ i1 < i2 < · · ·< im−1 < k ≤ im < im+1 < · · ·< in
such that ρT̄ (d) = ρC̄(d) where C̄ := (Ci1

, Ci2
, . . . , Cin

). We stress that

ρC̄(d) does not depend on the concrete choice of im, im+1, . . . , in, i.e., for all

C̄ ′ := (Ci1
, Ci2

, . . . , Cim−1
, Ci′m

, Ci′
m+1

, . . . Ci′n
) with k ≤ i′

m
< i′

m+1
< · · · < i′

n
, we

have ρT̄ (d) = ρC̄(d) due to the homogeneity of A on (C)i≥k with respect to

(C)i<k.

232 3. Main Results

Note that these conditions imply that ρT̄ ↾Fk
is defined on Fk ∩ dom(

⊗

T̄) and that ρT̄ ↾Fk

may be extendable to an accepting run ofA on T̄ . Especially, if the first condition applies

to all maximal d ∈ Fk, then ρT̄ is an accepting run on
⊗

T̄ .

We now extend ρT̄ to the maximal possible segment of Fk+1 =
⋃

i<k+1 dom(Ci)
⊕, i.e., to

Fk+1 ∩ (dom(
⊗

T̄)⊕).

By assumption, we only have to extend ρT̄ at the maximal positions d ∈ Fk where the

second condition holds. We will distinguish the following three cases.

1. d /∈ dom(C j) for all j ≥ 1,

2. d ∈ dom(Ck) and d ∈ Hm, and

3. d ∈ dom(Ck) but d /∈ Hm.

Let us first explain why this case distinction is complete: Assume that there is some j ≥ 1

such that d ∈ dom(C j). Then j ≥ k because d ∈ dom(Ck−1)
+ \ Fk−1. Since d ∈ dom(Ck−1)

⊕

and due to the tree-comb property, d ∈ dom(C j) for some j ≥ k if and only if d ∈ dom(C j)

for all j ≥ k. Thus, we conclude that d ∈ dom(Ck).

For the case distinction, let us fix a tuple C̄ = (Ci1
, Ci2

, . . . , Cin
) witnessing condition 2f.

1. d /∈ dom(C j) for all j ≥ 1: first of all, note that in this case either d ∈ dom(Ci j
)+ for

some 1≤ j ≤ n and ρC̄(d) = qI or d /∈ dom(Ci j
)⊕ for all 1≤ j ≤ n and d /∈ dom(ρC̄).

Secondly, by definition of GC , we have GC ∩ {e : d < e} = ; whence d /∈ H for

all G-trees H. Especially, d /∈ Hi for 1 ≤ i ≤ n. Furthermore, by Lemma 3.4.19

extract(d, T C
2

, GC) = ;. Hence, d /∈ dom(Ti) for all i. Recall that d ∈ dom(Tm)
⊕ by

assumption, whence d ∈ dom(
⊗

T̄)+ and furthermore, d ∈ Fk∩(dom(
⊗

T̄)⊕). Thus,

ρT̄ ↾Fk
is defined at d.

Putting these two facts together, it is only possible that ρC̄ and ρT̄ agree on d if

ρT̄ (d) = ρC̄(d) = qI whence ρT̄ is an accepting partial run on
⊗

T̄ that is tci towards

d. Thus, the first condition is satisfied for all d ′ ∈ {e : d ≤ e}.

2. d ∈ dom(Ck) and d ∈ Hm: first of all, we claim that dom(Ck)∩ {e : d ≤ e} ⊆ Hm.

By definition of Hm and GC , e ∈ H+
m

implies that e ∈ dom(Cl)
+ \
⋃

l′<l(dom(Cl′)
⊕) for

some l ∈ N. Due to d ∈ dom(Ck−1)
+ \ Fk−1, no proper successor e of d is contained

in dom(Cl)
+ for l < k. Thus, the first descendants of d that are contained in G are

contained in dom(Ck)
+. Thus, all elements between d and dom(Ck)

+ are contained

in Hm.

Since Hm (H j, the same holds for all H j with j ≥ m. Thus, Tm, Tm+1, . . . , Tn agree

with Ck+1, Ck+2, . . . , Ck+n−m on D := dom(Ck)∩ {e : d ≤ e} (cf. Lemma 3.4.19).

Furthermore, D ∩ dom(T j) = ; for j < m by the assumption that d /∈ dom(T j) for all

j < m. Similarly, d /∈ dom(Ci j
) for j < m due to i j < k and d /∈

⋃

l<k dom(Cl) (recall

that d is maximal in Fk.

Thus, T j agrees with Ci j
for all j < m on the subtree rooted at d.

It follows that, for C̄ ′ := (Ci1
, Ci2

, . . . , Cim−1
, Ck+1, Ck+2, . . . Ck+n−m), the trees

⊗

C̄ ′

and
⊗

T̄ agree on D. By condition 2f, ρT̄ (d) = ρC̄ ′(d) = ρC̄(d). Thus, setting

ρT̄ (e) := ρC̄ ′(e) for all e ∈ D⊕ ∩ (dom(
⊗

C̄ ′)⊕) extends ρT̄ in such a way that it still

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 233

is a partial run on
⊗

T̄ . Note that the maximal elements of D⊕ are by definition

maximal elements of Fk+1. We claim that for any such element d ′ condition 1 or

condition 2 holds. There are the following cases.

For the first case, assume that d ′ /∈ dom(ρT̄). This implies that d ′ /∈ dom(
⊗

T̄)⊕

whence by coincidence of
⊗

T̄ and
⊗

C̄ ′ on D, it follows that d ′ /∈ dom(
⊗

C̄ ′)⊕.

Thus,
⊗

C̄ ′ and
⊗

T̄ agree on the path from d to d ′. ρC̄ ′ is tci on
⊗

C̄ ′ towards

d ′ because d ′ /∈ dom(
⊗

C̄ ′). Since ρC̄ ′ and ρT̄ agree on this path, ρT̄ is tci on
⊗

T̄

towards d ′.

For the second case, assume that d ′ ∈ dom(ρT̄). In this case, we show that the second

condition holds for k+ 1 and m.

a) we have to show that d ′ ∈ dom(Ck)
+ \ Fk. d ′ ∈ dom(Ck)

+ follows from its

definition while d ′ /∈ Fk follows from the facts that d < d ′, d /∈ Fk−1 and

d ∈ dom(Ck−1)
+: note that Fk = Fk−1 ∪ dom(Ck−1)

⊕ and d is by definition a

maximal element of this set.

b) d ′ /∈ dom(T j)
⊕ for all 1 ≤ j < m because d < d ′ and d /∈ dom(T j) for all

1≤ j < m by assumption.

c) d ′ /∈ H⊕
j

for 1≤ j < m because d < d ′ and d /∈ H⊕
j

for 1≤ j < m by assumption.

d) Since d ′ ∈ dom(ρT̄), d ′ ∈
⋃n

j=1
dom(T j)

⊕. Thus, there is some 1 ≤ j ≤ n such

that d ′ ∈ dom(T j)
⊕. b) implies that j ≥ m. Furthermore, due to

dom(Ck)∩ {e : d ≤ e} ⊆ Hm ⊆ Hm+1 ⊆ · · · ⊆ Hn,

the trees Tm, Tm+1, . . . , Tn agree on dom(Ck)∩{e : d ≤ e}. But the predecessor of

d ′ is contained in dom(Ck). Thus, we conclude that d ′ ∈ dom(T j)
⊕ for all j ≥ m.

e) d ′ ∈ H⊕
j

for all j ≥ m follows directly from d < d ′, d ′ ∈ dom(Ck)
+ and

dom(Ck)∩ {e : d ≤ e} ⊆ H j.

f) According to the definition of ρT̄ on D⊕, ρT̄ (d
′) = ρC̄ ′(d

′) where

C̄ ′ = (Ci1
, Ci2

, . . . , Cim−1
, Ck+1, Ck+2, . . . , Ck+m−n).

Hence, this tuple witnesses condition 2f.

3. d ∈ dom(Ck) and d /∈ Hm: due to 2e, d ∈ H⊕
m

whence we know that d ∈ H+
m

.

Furthermore, d /∈ Fk−1 =
⋃

j<k−1(dom(C j)
⊕). Since Hm is a GC -tree, we conclude

that d ∈ dom(Ck−1)
+. Due to d ∈ dom(Ck), it follows immediately that

; 6= dom(Ck)
+ ∩ {e : d < e} ⊆ GC .

Thus, for all j > m, H j extends Hm along the subtree rooted at d because Hm <GC H j.

For m < j ≤ n, this implies d ∈ H j whence dom(Ck) ∩ {e : d ≤ e} ⊆ H j. Hence,

Tm+1, Tm+2, . . . , Tn agree with Ck+1, Ck+2, . . . , Ck+n−m on dom(Ck)∩ {e : d ≤ e}.

Furthermore, Lemma 3.4.19 implies that Ck and Tm agree on {e : d ≤ e}.

Condition 2b implies d /∈ dom(T j) for j < m. By condition 2a, d /∈ dom(Ci j
) for j < m

(recall that the i j are defined as in condition 2f).

234 3. Main Results

We conclude that T̄ and C̄ ′ := (Ci1
, Ci2

, . . . , Cim−1
, Ck, Ck+1, . . . , Ck+n−m) agree on

dom(Ck)∩ {e : d ≤ e}.

Due to condition 2f, ρT̄ (d) = ρC̄(d) = ρC̄ ′(d). Thus, setting ρT̄ (e) := ρC̄(e) for all

e ∈ D := dom(Ck)
⊕ ∩ {e : d < e} extends ρT̄ in such a way that it is still a partial run.

Note that the maximal elements of dom(Ck)
⊕ ∩ {e : d ≤ e} are the maximal el-

ements of Fk+1 ∩ {e : d ≤ e}. We claim that for each maximal element d ′ in

dom(Ck)
⊕ ∩ {e : d ≤ e} condition 1 or condition 2 with k + 1 and m + 1 are satis-

fied. Again, we prove this claim by case distinction.

For the first case, assume that d ′ /∈ dom(ρT̄). This implies that d ′ /∈ dom(
⊗

T̄)⊕

whence by coincidence of
⊗

T̄ and
⊗

C̄ ′ on all d ≤ e < d ′, it follows that

d ′ /∈ dom(
⊗

C̄ ′)⊕. Thus,
⊗

C̄ ′ and
⊗

T̄ agree on the path from d to d ′ and ρC̄ ′

is tci on
⊗

C̄ ′ towards d ′ because d ′ /∈ dom(
⊗

C̄ ′) and ρC̄ ′ is an accepting run on
⊗

C̄ ′. But for the coincidence of ρC̄ ′ and ρT̄ on this path, ρT̄ is then tci on
⊗

T̄

towards d ′.

For the second case, assume that d ′ ∈ dom(ρT̄). We show that condition 1 or condi-

tion 2 is satisfied; if m = n or m < n and d ′ /∈ dom(Tm+1)
⊕, condition 1 is satisfied,

i.e., the partial run ρT̄ is tci towards d ′. Otherwise, we show that condition 2 is

satisfied.

Independent of the case we are in, we first show conditions 2a – 2c. These are also

helpful when discussing the cases m= n or d ′ /∈ dom(Tm+1)
⊕.

a) We show that d ′ ∈ dom(Ck)
+ \ Fk. d ′ ∈ dom(Ck)

+ follows from its definition

while d ′ /∈ Fk follows from d < d ′, d /∈ Fk−1 and d ∈ dom(Ck−1)
+: note that

Fk = Fk−1 ∪ dom(Ck−1)
⊕ and d is by definition a maximal element of this set.

b) d ′ /∈ dom(T j)
⊕ for all 1 ≤ j < m because d < d ′ and d /∈ dom(T j) for all

1 ≤ j < m by induction hypothesis. Furthermore, d ′ ∈ dom(Ck)
+ and Tm agrees

with Ck on {e : d ≤ e}. Thus, d ′ ∈ dom(Tm)
+ whence d ′ /∈ dom(Tm).

c) d ′ /∈ H⊕
j

for 1 ≤ j < m because d /∈ H⊕
j

for 1 ≤ j < m and d < d ′. Since we are

in the case d /∈ Hm, we also have d ′ /∈ H⊕
m

because d < d ′.

d) In order to satisfy condition 2d, we would have to show that m + 1 ≤ n and

d ′ ∈ dom(Tm+1)
⊕. Instead, we show the following: if this is not the case, then

condition 1 is satisfied.

First assume that m = n. We have seen that d ′ /∈ dom(T j) for j ≤ m = n. Since

T̄ and C̄ ′ coincide on d ≤ e, d ′ /∈ dom(
⊗

C̄ ′) and ρC̄ ′ is tci on
⊗

C̄ ′ towards d ′.

But then ρT̄ is tci on
⊗

T̄ towards d ′ because ρT̄ and ρC̄ ′ agree on d ≤ e ≤ d ′.

Now assume that m < n and d ′ /∈ dom(Tm+1)
⊕. We have already seen that

dom(Ck) ∩ {e : d ≤ e} ⊆ Hm+1. Hence, the predecessor of d ′ is in Hm+1. Thus,

d ′ /∈ dom(Tm+1)
⊕ implies that either d ′ ∈ Hm+1 and T C

1
(d ′) = 2 or d ′ /∈ Hm+1

and T C
2
(d ′) = 2. Recalling the definitions of T C

1
and T C

2
, we conclude that in

the first case there is at most one j ≥ 1 such that C j(d
′) is defined while in the

second case there is no j ≥ 1 such that C j(d
′) is defined.

Heading for a contradiction, assume that there is a j ∈ N such that C j(d
′) is

defined. By a), we know j > k. Due to the tree-comb property and because of

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 235

d ′ ∈ dom(Ck)
⊕, we know that Ci and C j agree on d ′ for all k < i < j. Thus,

we arrive at the contradiction that there are infinitely many j such that C j(d
′) is

defined.

Thus, d ′ /∈ dom(C j) for all j ≥ 1 whence d ′ /∈ dom(T j) for all 1≤ j ≤ n. But then

ρC̄ ′ is tci on
⊗

C̄ ′ towards d ′. For the coincidence of ρC̄ ′ and ρT̄ on the path

between d and d ′, ρT̄ is tci on
⊗

T̄ towards d ′.

We conclude that either ρT̄ is tci towards d ′ whence d ′ satisfies condition 1 or

m < n and d ′ ∈ dom(Tm+1)
⊕ whence it satisfies condition 2d for m+ 1. In case

that m < n and d ′ ∈ dom(Tm+1)
⊕, we continue by showing that conditions 2e

and 2f are also satisfied.

e) d ′ ∈ H⊕
j

for m + 1 ≤ j ≤ n follows directly from d ′ ∈ dom(Ck)
+ and

dom(Ck)∩ {e : d ≤ e} ⊆ H j.

f) By the very definition, C̄ ′ is a witness for the claim ρT̄ (d
′) = ρC̄ ′(d

′) whence

condition 2f is satisfied.

This completes the third case. We have shown that one of the following holds:

• m= n and d ′ satisfies condition 1, i.e., ρT̄ is tci towards d ′.

• m< n, d ′ /∈ dom(Tm+1)
⊕ and d ′ satisfies condition 1.

• m< n, d ′ ∈ dom(Tm+1)
⊕ and condition 2 is satisfied for k replaced by k+ 1 and

m replaced by m+ 1.

Repeating this inductive definition for all k ∈ N, we define a partial run ρT̄ on

dom(
⊗

T̄)∩ Fk for all k ∈ N. Note that this inductive process terminates at some step

because
⊗

T̄ is a finite tree with dom(T̄) ⊆
⋃

k∈N Fk. Due to the finiteness of
⊗

T̄ , there

is some i ∈ N such that dom(T̄)⊆
⋃n

k=0
Fk.

Note that this process stops if and only if all maximal elements of dom(ρT̄) satisfy con-

dition 1, i.e., dom(ρT̄) is tci on
⊗

T̄ towards all d ∈ dom(
⊗

T̄)+. This is equivalent to

the fact that ρT̄ is an run on
⊗

T̄ . Since its root is labelled by an accepting state, we have

constructed an accepting run ofA on T̄ as required by the lemma.

By now, we have obtained the following result. For each tree-comb C whose pairwise

distinct n-tuples are accepted by some automatonA , there is a subcomb C ′ that is homo-

geneous with respect to A . Due to homogeneity, all pairwise comparable n-tuples from

the closure of C ′ are accepted byA .

We apply this result in order to prove the correctness of our reduction of the Ramsey

quantifier and to prove decidability of the FO(∃mod, (Ramn)n∈N)-theory of automatic struc-

tures. We prove these two facts simultaneously. The correctness of the reduction relies on

the fact that every formula induces an automaton that corresponds to this formula. On

the other hand, the correctness of the reduction allows the construction of an automaton

corresponding to a formula. Thus, we prove both facts by parallel induction. Let us start

with an auxiliary lemma that allows to extend the correctness proof for one construction

step.

Lemma 3.4.43. Let ϕ ∈ FO(∃mod, (Ramn)n∈N) be a formula such that for each proper sub-

formula ψ of ϕ, there is an automaton Aψ that corresponds to ψ on A. For each ā ∈ A,

A, ā |= ϕ implies Ext(A), ā |= red(ϕ).

236 3. Main Results

Proof. Except for the case ϕ = Ramn x̄(ψ), the inductive proof of this claim is straightfor-

ward (for these cases we even do not need the fact that there is a corresponding automaton

for each proper subformula).

Assume that ϕ = Ramn x̄(ψ) and assume that there is some ā = a1, a2, . . . , am ∈ A

such that A, (a1, a2, . . . , am) |= ϕ(y1, y2, . . . , ym). By assumption, we know that there is an

automatonAψ corresponding to ψ, i.e., for all b̄ = b1, b2, . . . , bn ∈ A,

A, (b1, b2, . . . , bn, a1, a2, . . . am) |=ψ(x̄ , ȳ) if and only ifAψ accepts
⊗

b̄⊗
⊗

ā.

Due to A, ā |= ϕ, there is an infinite set S ⊆ A such that

A, (b1, b2, . . . , bn, a1, a2, . . . am) |=ψ(x1, x2, . . . , xn, y1, y2, . . . , ym)

for all pairwise distinct n-tuples b̄ = b1, b2, . . . , bn from S. By Lemma 3.4.18, there is a

tree-comb C ′ contained in S. This tree-comb contains a subcomb C that is homogeneous

with respect to the automata AA and Aψ where AA recognises the domain of A. By the

previous lemma, it follows that (T C
1

, T C
2

, GC) witnesses

Ext(A), (a1, a2, . . . , am) |= red(ϕ)

due to the following facts:

1. (T C
1

, T C
2

, GC) is coherent due to Lemma 3.4.22,

2. (T C
1

, GC) is small due to Lemma 3.4.25

3. Since C is homogeneous with respect to AA, the previous lemma shows that x ∈ A

for all x ∈ CL(C).

4. Since C is homogeneous with respect toAψ, the previous lemma shows that for each

pairwise comparable n-tuple b̄ from CL(C),

A, b̄, ā |=ψ(x1, x2, . . . , xn, y1, y2, . . . , ym).

By induction hypothesis, this implies that

Ext(A), b̄, ā |= red(ψ)(x1, x2, . . . , xn, y1, y2, . . . , ym).

Thus, (T C
1

, T C
2

, GC) witnesses red(ϕ) which concludes the proof.

Using the previous lemma, we can now prove that there is an automata construction

corresponding to the Ramsey quantifier.

Lemma 3.4.44. Let ϕ(ȳ) ∈ FO(∃mod, (Ramn)n∈N) be a formula with free variables among

ȳ . Then there is an automatonAϕ such that for all ā ∈ A

A, ā |= ϕ(ȳ) iffAϕ accepts
⊗

ā.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 237

Proof. Except for the case ϕ = Ramn x̄(ψ), the inductive proof of this claim is a straight-

forward adaption of the proof of Lemma 2.5.18.

Now, consider the case ϕ(ȳ) = Ramn x̄(ψ) where ȳ = y1, y2, . . . , ym. By induction hy-

pothesis there is an automatonAψ that corresponds to ψ on A, i.e.,

for all ā = a1, a2, . . . , am ∈ A and b̄ = b1, b2, . . . , bn ∈ A,

A, ā, b̄ |=ψ(x̄ , ȳ) iff

Aψ accepts
⊗

ā⊗
⊗

b̄.

Due to the soundness of the reduction and due to the previous lemma, this implies that

A, ā |= ϕ if and only if Ext(A), ā |= red(ϕ). (3.8)

By Lemma 2.5.14, the ω-automaton A∞
ψ

corresponds to red(ψ) on Ext(A) in the sense

that for all ā, b̄ ∈ A,

Ext(A), ā, b̄ |= red(ψ)

iff A, ā, b̄ |=ψ

iffAψ accepts
⊗

ā⊗
⊗

b̄

iffA∞ψ accepts
⊗

ā⊗
⊗

b̄.

Recall that the construction of red(ϕ) = red(Ramn x̄(ψ)) is first-order except for the con-

struction of red(ψ). Thus, we can use standard techniques in order to construct an ω-

automaton A∞ϕ from A∞
ψ

which corresponds to ϕ on Ext(A) in the sense that for all

ā ∈ A, Ext(A), ā |= red(ϕ) if and only ifA∞ϕ accepts
⊗

ā.

But now, Lemma 2.5.15 provides the automaton Aϕ := (A∞ϕ)
fin. Due to 3.8, we obtain

that for all ā ∈ A,

A, ā |= ϕ

iff Ext(A), ā |= red(ϕ)

iffA∞ϕ accepts
⊗

ā

iffAϕ accepts
⊗

ā.

Thus,Aϕ corresponds to ϕ on A. This concludes our proof.

Remark 3.4.45. Theorem 3.0.4 is a direct corollary of the previous lemma. Every

FO(∃mod, (Ramn)n∈N) formula can be effectively translated into a corresponding finite au-

tomaton on every given automatic structure. This reduces the model checking problem to

the membership problem of regular languages. The latter problem is decidable.

238 3. Main Results

3.4.5 Recurrent Reachability on Automatic Structures

In this section we review To’s and Libkin’s result [60] on the recurrent reachability problem

for automatic structures. Unaware of the concept of word- or tree-combs, they constructed

an automaton for the recurrent reachability problem by hand. In fact, they designed an

automaton that looks for a tree-comb witnessing recurrent reachability.

We first describe the recurrent reachability problem. Then we show how our method

can be adapted to solve this problem. In fact, we only have to replace the role of pairwise

comparable tuples by increasing chains. We conclude this section with an application of

our results to the decision problem whether a definable partial ordering is a quasi-well-

ordering. The recurrent reachability problem is defined as follows.

Definition 3.4.46. Given a starting point p, a relation R and a subset S, decide whether

there is an infinite R-path starting at p and reaching S infinitely often.

To and Libkin proved that the recurrent reachability problem is decidable on automatic

structures with a regular set S and a transitive, regular relation R. They solve the problem

globally, i.e., they construct an automaton that accepts those starting points for which the

set S is recurrently reachable.

Theorem 3.4.47 ([60]). Let A be an automatic structure with an automatic transitive rela-

tion R and let S be a regular subset of its domain A. Then the recurrent reachability problem

for R and S is decidable. Moreover, one can effectively construct an automaton R(R, S) that

accepts those nodes p of A such that there starts an infinite R path at p that passes S infinitely

often. The size of R(R, S) is polynomially bounded in the size of the automata for R and S.

The proof of To and Libkin gives an explicit construction of R(R, s). Roughly speaking,

this construction yields an automaton corresponding to an existential quantification over

a tree-comb whose elements form an R-chain in S.

Our proof can be adapted to reprove the decidability of the recurrent reachability prob-

lem in To’s and Libkin’s setting. If we consider transitive relations, the recurrent reachabil-

ity problem has solutions of two different types. Either there is an element pRq such that

qRq and q ∈ S or there is an infinite chain pRq1Rq2Rq3 . . . of pairwise distinct elements

q1, q2, q3, · · · ∈ S. The first case is first-order definable whence it is decidable on automatic

structures. Hence, we only have to provide a decidability result for the other case. In order

to obtain this result, we modify our reduction of the Ramsey quantifier to a reduction of a

kind of chain quantifier. Recall that the reduction of a Ramsey quantifier is of the form

red(Ramn x̄(ϕ)) :=∃T1, T2 ∈ B-Treeω
Γ2

, G ∈ B-Treeω
{0,1}
ψCoSm(T1, T2, G)∧ψRam(T1, T2, G),

where

ψCoSm(T1, T2, G) :=Coherent(T1, T2, G)∧ Small(T1, G)∧∀x(In(x , T1, T2, G)→ x ∈ A)

and

ψRam := ∀x1, . . . , xn ∈ TreeΣ












∧

1≤i≤n

In(x i, T1, T2, G)∧
∧

1≤i< j≤n

Comp(x i, x j, T1, T2, G)






→ red(ϕ)






.

3.4. Decidability of Ramsey Quantifiers on Tree-Automatic Structures 239

In order to solve the recurrent reachability problem, we propose to replace ψRam by the

formula

∀x1, x2 ∈ TreeΣ













∧

i∈{1,2}

In(x i, T1, T2, G)∧ x1 <G x2






→ (pRx1 ∧ x1Rx2 ∧ Sx2)







Note that pRx1 ∧ x1Rx2 ∧ Sx2 is represented by some automaton due to the regularity of

S and R. Analogously to the automaton recognising Comp, there is an ω-automaton for

“x1 <G x2” on input (x1, x2, T1, T2, G) for all small and coherent triples (T1, T2, G).

The formula asserts that there is a closure of some coherent and small tree-comb such

that each element a of this closure satisfies the following conditions:

1. a is an R successor of p,

2. a is in S and

3. if there is some a′ with a <G a′ then aRa′ holds.

A witness (T1, T2, G) for this assertion induces an infinite increasing <G chain in S. Hence,

the soundness of this reduction is obvious. For the completeness, we use a tree-comb

that is homogeneous with respect to the automaton corresponding to pRx1 ∧ x1Rx2 ∧ Sx2.

Recall that any witness of the recurrent reachability of S is an infinite set that is linearly

ordered by R. Analogously to the fact that any infinite set contains a tree-comb, one proves

that any ascending infinite chain contains a tree-comb whose induced order coincides

with the order of the chain. Once we have obtained this result, the decidability proof for

the recurrent reachability problem is analogous to the decidability proof of the Ramsey

quantifier.

Let us conclude this section with an application of our result to partial orderings.

Example 3.4.48. Consider a formula ϕ(x , y) that defines a partial order ≤ on some au-

tomatic structure A. Assume that ϕ is represented by some automaton, e.g., assume that

ϕ ∈ FO. Now, the Ramsey quantifier can be used to formalise the existence of an infi-

nite antichain. Let ψ(x , y) := Ram2x , y(¬ϕ(x , y) ∧ ¬ϕ(y, x)). ψ asserts that there is an

infinite set of pairwise ≤-incomparable sets, i.e., an infinite antichain. Thus, there is an

automaton corresponding to the assertion that ≤ does not contain an infinite antichain.

We can also construct effectively an automaton that decides whether < contains an

infinite descending chain. This is the same as deciding whether there is some point p for

which > satisfies the recurrent reachability problem with respect to the full domain of the

structure.

If there is neither an infinite antichain nor an infinite descending chain,≤ is a well-quasi-

ordering. Thus, if ϕ defines a partial order, the statement WQO(ϕ) :=“ϕ induces a well-

quasi-ordering” is decidable on automatic structures. Furthermore, one can effectively

construct an automaton that corresponds to WQO(ϕ).

240 3. Main Results

4 Conclusions

In the following we summarise the main results of this thesis and relate these results to

open problems.

We have shown that FO(Reg) model checking on level 2 collapsible pushdown graphs

is decidable and Broadbent showed that first-order model checking on level 3 is unde-

cidable (even with fixed formula or fixed graph). The positive result on level 2 is in fact

even stronger: the extensions by regular reachability, Ramsey quantifiers and Lµ-definable

predicates is still decidable. Hence, the structures in level 3 of the hierarchy are much more

complicated than those structures in level 2. But it is still an open question what the reason

for this difference is. Broadbent’s results point out that even a very weak use of collapse

operations already turns the first-order model checking undecidable on level 3. It would be

nice to clarify which structural difference between the graphs of level 2 and those of level

3 provokes the rather big difference in the model checking results. Another direction of

further research is the question for extensions of our results. What is the largest fragment

of MSO that is decidable on collapsible pushdown graphs of level 2?

We introduced the new hierarchy of higher-order nested pushdown trees and provided

first-order model checking algorithms for the first two levels of this hierarchy. Due to its

similarity to a subclass of collapsible pushdown graphs, we also conjecture that the Lµ

model checking is decidable on this hierarchy. But the proof of this conjecture is still

open. Another open question concerns first-order model checking on levels 3, 4, 5, . . . in

this new hierarchy. Our approach on level 2, i.e., the use of the analysis of strategies in

the Ehrenfeucht-Fraïssé game via the notion of relevant ancestors is extendable to higher

levels. But on higher levels, we miss an analysis of “higher-order loops” in analogy to our

results for loops of collapsible pushdown systems of level 2. Further research is necessary

in order to clarify whether FO model checking on higher-order nested pushdown trees is

decidable.

Focusing on the second level of the nested pushdown tree hierarchy, we are still lacking a

characterisation of the complexity of first-order model checking on nested pushdown trees

of level 2. Is there another approach that yields an elementary complexity? Can we derive

any reasonable lower bound for the first-order model checking on nested pushdown trees?

We already know that first-order with reachability model checking has nonelementary

complexity on nested pushdown trees.

Another more general question concerning first-order model checking and collapsible

pushdown graphs is the classification of those graphs in the hierarchy that have decidable

first-order theories. What kind of restrictions can one impose on the transition relation of

a collapsible pushdown graph in order to obtain decidability of its first-order theory?

Another open question concerns the characterisation of the differences between collapsi-

ble pushdown graphs and higher-order pushdown graphs. We propose the further study

of higher-order nested pushdown trees in order to approach this question. Higher-order

nested pushdown trees can be seen as collapsible pushdown graphs with a rather tame

application of collapse.

We now turn to a more general direction of research. In this thesis, we have focused on

what is called the local model checking. Global model checking on the other hand asks for

241

identifying all elements in a given structure that satisfy some formula. Recently, Broadbent

et al. [13] showed the global Lµ model checking on collapsible pushdown graphs to be

decidable. Furthermore, they showed that collapsible pushdown graphs themselves are

sufficient to describe the result of the global Lµ modal checking in the following sense:

for each formula and each pushdown system there is another one that generates the same

graph but marks each element that satisfies the given formula. The analogous questions for

first-order model checking on (higher-order) nested pushdown trees or collapsible push-

down graphs have not been investigated yet and their investigation may reveal interesting

insights into these classes.

We have also shown that Ramsey quantifiers on tree-automatic structures are decidable.

This extends the corresponding result and proof techniques for the string-automatic case.

But in fact, on string automatic structure a far stronger logic is decidable[45]. Kuske called

this logic FSO. It is the extension of FO by existential quantification over infinite relations

that only occur negatively, i.e., under the scope of an odd number of negations. Ramsey

quantifiers can be rewritten in terms of FSO. Thus, our result shows the decidability of

a fragment of FSO on tree-automatic structures. It is an open problem whether FSO is

decidable on all tree-automatic structures or whether some undecidable problem may be

encoded into FSO on some tree-automatic structure. For most results on string-automatic

structures there has been found an analogous one for tree-automatic structures. If this

were not the case for FSO model checking this may point to new insights into the difference

between tree-automata and string-automata.

242 4. Conclusions

A Undecidability of Lµ on the Bidirectional Half-Grid

In this appendix, we show the undecidability of Lµ on the bidirectional N× N-grid, i.e.,

the grid N×N with modalities “left”, “right”, “up”, and “down” (denoted by←, →, ↑, ↓).

Note that we do not allow atomic propositions apart from True and False. The proof is

by reduction to the halting problem of Turing machines. At the end, we will see how this

proof generalises to the case of the bidirectional half-grid H (cf. Figure 2.1). Before we

start the proof, we will shortly recall our notation concerning Turing machines and recall

the definition of the halting problem.

A.1 Turing Machines

In order to fix notation, we briefly recall the notion of a Turing machine.

Definition A.1.1. The tuple M = (Q,Σ, qI , qF ,∆) with Q the finite sets of states, Σ the

finite tape alphabet, qI , qF ∈Q the initial, respectively, final state, and

∆ : Q×Σ→ Σ× {l, r} ×Q

a transition function is called a Turing machine. The set of configurations ofM is

CONF := Σω×N×Q.

Remark A.1.2. The elements in {l, r} are called head instructions where l denotes “move

to the left” and r denotes “move to the right”.

In the literature this definition is normally called a deterministic Turing machine, while

in the general nondeterministic case ∆ is assumed to be a relation instead of a func-

tion. We restrict ourselves to deterministic Turing machines because they have the same

computational power as nondeterministic ones (cf. [33]).

The notion of the computation of a Turing machine is captured by the notion of a run

of the machine. A run is a list of configurations where the (n+ 1)-st configuration evolves

from the n-th by applying ∆.

Definition A.1.3. Let M = (Q,Σ, qI , qF ,∆) be a Turing machine. For w ∈ σω we write w(i)

for the i-th letter in w. M induces a function ⊢: CONF→ CONF as follows. Let (w, i, q) and

(w′, i′, q′) in CONF. Assume that ∆(q, w(i)) = (σ′, o, q′). It holds that (w, i, q) ⊢ (w′, i′, q′)

if

1. w′(j) = w(j) for all i 6= j ∈ N,

2. w′(i) = σ′, and

3. i′ = i − 1 if o = l and i′ = i + 1 if o = r.

A run of M on input w ∈ Σ∗{0}ω is a function ρ : N → CONF such that ρ(0) = (w, 1, qi)

and ρ(i) ⊢ ρ(i + 1) for all i ∈ N.

We say that the computation of M on w terminates if there is some i ∈ N such that

ρ(i) = (w′, i′, qF) for ρ the run of M on input w.

243

For a detailed introduction into the theory of Turing machines we recommend [33]. For

the purpose of this proof, we only need one of the cornerstones of computability theory:

the undecidability of the halting problem. The halting problem is the problem whether the

computation of a given Turing machine terminates on input 0ω. This is one of the classical

examples of undecidable problems.

Theorem A.1.4 ([61]). The halting problem is undecidable.

A.2 Reduction to the Halting Problem

For simplicity, we only consider Turing machines with tape alphabet Σ = {0, 1}. We assume

that the state set is Q = {q1, q2, . . . , q|Q|}. We will represent the run of an arbitrary fixed

Turing machine on input 0ω as an Lµ-definable colouring of the bidirectional grid. Then

using an Lµ definable reachability query for a final state of the Turing machine, the halting

problem is reduced to Lµ model-checking on the bidirectional grid. The idea is as follows.

Each configuration c = (w, p, q) of a Turing machine M can be encoded as an infinite

bitstring v ∈ {0, 1}ω. We use the letters v ((|Q|+3)· i), . . . , v ((|Q|+3)·(i+1)−1) to encode

the information concerning the i-th cell of c. We use the last two bits of the representation

of a cell to indicate whether the corresponding cell contains the letter 0 or 1. Thus, we

define v ((|Q|+3) · (i+1)−1) := 1 if and only if w(i) = 1 and v ((|Q|+3) · (i+1)−2) := 1

if and only if w(i) = 0. The other |Q|+1 bits are used to encode the information about the

position of the head p and the state of the machine q. We set the first bit of a cell to 1 if the

head is not above this cell and we set the j-th bit of a cell, if the head is above this cell and

q = q j−1. Formally, we set v (k) := 1 if k = (|Q|+3) · i for some i 6= p or k = (|Q|+3) · p+ j

for q = q j. All other positions in v are set to 0. We denote as W : CONF → {0, 1}ω the

function that translates each configuration into the corresponding encoding.

Now, it is easy to encode the run ρ of M on 0ω in the infinite N × N-grid using a set

XM ⊆ N × N. We write cn := ρ(n) and vn := W (cn). We set (i, j) ∈ XM if and only if

v i(j) = 1.

As a next step, we show that XM is definable in Lµ. Using this fact, we later define an

Lµ formula that is true on the infinite grid if and only if ρ terminates.

Lemma A.2.1. There is an effective translation from a given Turing machine M into an Lµ

formula ϕM such that ϕM defines XM on the infinite grid.

Proof. As a preliminary step, we want to define those (i, j) ∈ N×N where the encoding of

one of the cells start, i.e., the set {i, j : ∃k ∈ N j = k · (|Q|+ 3)}.

This is done by the formula

Cells := µX .
�

([↑]False∧ [l]False)∨ 〈↑〉|Q|+3X ∨ 〈←〉X
�

.

The first part of this formula defines the position (0, 0), the second part adds the position

(i, j + |q|+ 3) to Cells for each (i, j) ∈ Cells and the last part adds (i + 1, j) to Cells for

(i, j) ∈ Cells. We call a node in Cells initial position of an encoding of a cell, or simply

initial position of a cell. In the following we identify the initial position of a cell with the

cell itself.

In the following, we use some auxiliary formulas:

244 A. Undecidability of Lµ on the Bidirectional Half-Grid

• We set Posi := 〈↑〉iCells for 0 ≤ |Q|+ 2. Posi holds on (j, k) if (j, k) is the i + 1-st bit

of the encoding of one of the cells.

• For ϕ ∈ Lµ, we write From0(ϕ) for the formula
∨|Q|+2

i=0

�

Posi ∧ 〈↑〉
iϕ
�

. Some node

(i, j) satisfies From0(ϕ) if and only if the initial position corresponding to the same

cell as (i, j) satisfies ϕ.

• We need formulas for navigation on the cells in encoded form. We set

Left(ϕ) := From0(〈↑
|Q|+3〉ϕ) and

Right(ϕ) := From0(〈↓〉
|Q|+3ϕ).

These formulas are satisfied at (i, j) if “the cell to the left of the one correspond-

ing to (i, j) satisfies ϕ”, respectively “the cell to the right . . . ”. Similarly we use

Before(ϕ) := From0(〈←〉ϕ). This formula is satisfied by node whose cell satisfied ϕ

in the preceding configuration.

As a next step we introduce some formulas that recover information about the configu-

ration from its encoding in the grid. For this we assume that X is a colouring that colours

each column of the grid with the encoding of some configuration.

• For qi ∈ Q set Stateqi
:= From0(〈↓〉

iX). This formula is satisfied at (i, j) if the head

of M is above the corresponding cell and the state of M is qi. Analogously, we write

State0 := From0(X) for the formula specifying the head is not at the cell correspond-

ing to this position.

• For σ ∈ {0, 1} we set Tapeσ := From0(〈↓〉
|Q|+1+σX). Tapeσ is satisfied if the corre-

sponding cell contains the letter σ.

Since we want to generate the encoding of the run of M on input 0ω by a fixpoint formula

in Lµ, we have to define “update-formulas” which, given the encoding of a valid configu-

ration in the i-th column, return the encoding of the following configuration in the i+1-st

column.

Let us first consider the information concerning the update of the tape. There are two

possibilities for each cell: either the head is not at this cell, then its value is preserved by

⊢, or the head is at this cell, then its value depends on ∆(q,σ) where q is the state of the

machine and σ is the symbol of this cell. For σ ∈ Σ, set

Setσ := {(τ, qk) ∈ Σ×Q :∆(qk,τ) = (σ, d, q), d ∈ {l, r}, q ∈Q}.

Note that Set1 contains those combinations of a letter σ and a state q such that the head

of M will write 1 onto the tape if it is in state q and reads σ. The analogous claim holds

for Set0. Thus,

Updateσ := Pos|Q|+1+σ ∧
�

Before(State0 ∧ Tapeσ)∨
∨

(i,q)∈Setσ

Before(Stateq ∧ Tapei)
�

are the correct update formulas for the information concerning the tape.

A.2. Reduction to the Halting Problem 245

The update for the information concerning the head of the Turing machine are slightly

more complicated because the head can reach a certain cell either from the cell to the left

or from the cell to the right. Furthermore, we also have to update the information on

those cells where the head is not positioned. There, we have to set the first bit encoding

the cell which represents the absence of the head from this cell. We start by collecting

those combinations of states and letters that induce the head to move to the left or to the

right, respectively. For q j ∈Q, set

Leftq j
:= {(σ, q) ∈ Σ×Q : ∃τ ∈ Σ ∆(q,σ) = (τ, l, q j)}, and

Rightq j
:= {(σ, q) ∈ Σ×Q : ∃τ ∈ Σ ∆(q,σ) = (τ, r, q j)}.

Now, we can use these sets to define the position of the head in the next configuration. We

set

Updateq j
:= Pos j∧

(
∨

(σ,q)∈Leftq j

Before(Right(Stateq ∧ Tapeσ))∨
∨

(σ,q)∈Rightq j

Before(Left(Stateq ∧ Tapeσ))).

These formulas update correctly the information on the head of the tape, i.e., if X encodes

some configuration in the i-th column of the grid, then Updateqk
will hold at some (i+1, k)

if and only if the next configuration has state qk, (i + 1, k) corresponds to the encoding of

state qk in some cell, and the head is at this cell in the next configuration. Of course, we

also have to propagate the “no-head” information along all other cells. This is the case if

either the head is neither to the left nor to the right in the previous configuration or it is

positioned one step to the left, respectively right, but will move further left, respectively

right. Note that by the definition of a Turing machine, the sets (Leftq)q∈Q and (Rightq)q∈Q

form a partition of Σ×Q. Hence, the following formula updates the “no-head” information:

Update0 :=
�

Pos0∧Before(Left(State0))∧ Before(Right(State0))
�

∨
∨

(σ,q)∈Leftq j

Before(Left(Stateq ∧ Tapeσ))

∨
∨

(σ,q)∈Rightq j

Before(Right(Stateq ∧ Tapeσ)).

The first part of this formula deals with positions where the head in the previous configu-

ration is not one step to the left or to the right and the second and third part update the

“no-head” information if the head is close but is going to move further away.

Having defined the necessary formulas for the update from one configuration to the

next, we have to define the colouring of the initial configuration of the run of M on input

0ω in order to obtain the encoding of the full run by a least fixpoint induction. For this

purpose, we assume that qI = q1 and we set

Init := 〈←〉False∧ (Pos|Q|+1 ∨ (Left(True)∧ Pos0)∨ (Left(False)∧ Pos1)).

246 A. Undecidability of Lµ on the Bidirectional Half-Grid

Init holds only at positions on the leftmost column of the grid which means that it only

initialises the encoding of the first configuration. The first part sets in each cell the position

|Q|+ 1 which corresponds to setting all cells to 0. Secondly, we set in all but the first cell

the “no-head” information. Finally, we set the state qI = q1 in the first cell. Hence, Init is

the definition of the encoding of the first configuration of the run of M on input 0ω.

We claim that the formula

ϕM := µX .(Init∨
∨

q∈Q

Updateq ∨Update0 ∨
∨

σ∈Σ

Updateσ)

defines the encoding of the run of M on input 0ω on the bidirectional grid. In fact, an easy

but technical induction shows that the n-th stage of the fixpoint of ϕM defines exactly the

encoding of the first n configurations of the run of M on input 0ω.

From the translation of runs of Turing machines into Lµ formulas on the grid, the unde-

cidability of the Lµ model checking on the grid follows immediately.

Lemma A.2.2. Lµ model checking is undecidable on the bidirectional grid.

Proof. By reduction to the halting problem: Deciding the halting problem for M is the

same as deciding whether ϕM defines some cell where StateqF
holds. But this is the same

as deciding whether

Halting := µY.StateqF
(ϕM)∨ 〈↓〉Y ∨ 〈→〉Y

is satisfied in the position (0, 0) of the bidirectional grid. Thus, a model checking algorithm

of Lµ on the bidirectional grid would lead to a decision procedure for the halting problem.

This proves the undecidability of Lµ on the grid.

Remark A.2.3. In the presence of a universal modality, the proof can be adapted to show

the undecidability of the N×N grid only with the modalities left and up. The search for

a cell with state qF can be done by using the universal modality. Hence, we only have to

remove the down modalities from the update formulas. This can be achieved by shifting

the beginning of the encoding of the i-th column by 2i(|Q|+ 3).

Having obtained the undecidability of Lµ on the grid, we want to refine the result such

that it applies to the half-grid. But this is easy by noting that the head of the Turing

machine in the i-th configuration of a run can only have visited the first i-cells of the tape.

Corollary A.2.4. Lµ on the bidirectional half-grid is undecidable.

Proof. Instead of encoding the i-th configuration of the run of M in the i-th row, we can

use the i(|Q|+ |Σ|+ 1)-st row instead. Doing this, the head of the Turing machine is in

all configurations at some cell which is encoded by elements in the grid of the form (i, j)

where i > j. Thus, we can treat the missing nodes in the half-grid {(i, j) ∈ N×N : i > j}

as the encodings of cells which contain the symbol 0 and which contain the “no-head”

marker.

A.2. Reduction to the Halting Problem 247

Bibliography

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level

2 for string languages. Technical Report RR-04-23, Oxford University Computing

Laboratory, October 2004.

[2] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Proc. 18th

International Conference on Computer-Aided Verification, volume 4144 of LNCS, pages

329–342. Springer, 2006.

[3] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase-

structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunika-

tionsforschung, 14(2):143–172, 1961.

[4] V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite struc-

tures. Submitted for publication.

[5] V. Bárány, Ł. Kaiser, and A. Rabinovich. Cardinality quantifiers in MLO over trees. In

CSL 2009, volume 5771 of LNCS, pages 117–132. Springer, 2009.

[6] P. Blackburn, F. Wolter, and J. van Benthem, editors. Handbook of Modal Logic. Else-

vier, 2007.

[7] A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.

[8] A. Blumensath. On the structure of graphs in the Caucal hierarchy. Theoretical

Computer Science, 400:19–45, 2008.

[9] A. Blumensath, T. Colcombet, and C. Löding. Logical theories and compatible oper-

ations. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and automata: History and

Perspectives, pages 72–106. Amsterdam University Press, 2007.

[10] A. Blumensath and E. Grädel. Automatic structures. In Proc. 15th IEEE Symp. on

Logic in Computer Science, pages 51–62. IEEE Computer Society Press, 2000.

[11] A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata

and interpretations. Theory of Computing Systems, 37:641 – 674, 2004.

[12] C. H. Broadbent. Private communication. September 2010.

[13] C. H. Broadbent, A. Carayol, C.-H. Luke Ong, and O. Serre. Recursion schemes and

logical reflection. In LICS, Proceedings of the 25th Annual IEEE Symposium on Logic

in Computer Science, pages 120–129, 2010.

[14] J. R. Büchi. Regular canonical systems. Archiv für mathematische Logik und Grundla-

genforschung, (6):91–111, 1964.

[15] A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS 05, pages 168–

179, 2005.

249

[16] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic

and higher-order pushdown automata. In Proceedings of the 23rd Conference on Foun-

dations of Software Technology and Theoretical Computer Science, FSTTCS 2003, vol-

ume 2914 of LNCS, pages 112–123. Springer, 2003.

[17] D. Caucal. On infinite terms having a decidable monadic theory. In MFCS 02, pages

165–176, 2002.

[18] E. M. Clarke and E. Allen. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs, pages 52–71, 1981.

[19] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-

son, and M. Tommasi. Tree automata techniques and applications. Available on:

http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[20] B. Courcelle. Graph rewriting: an algebraic and logic approach. In Jan van Leeuwen,

editor, Handbook of theoretical computer science (vol. B), pages 193–242. MIT Press,

1990.

[21] J. Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci.,

4(5):406–451, 1970.

[22] A. Ehrenfeucht. An application of games to the completeness problem for formalized

theories. Fund. Math., 49:129–141, 1960/1961.

[23] J. Ferrante and C.W. Rackoff. The Computational Complexity of Logical Theories.

Springer-Verlag, Berlin, 1979.

[24] R. Fraïssé. Sur quelques classifications des systèmes de relations. Publications Scien-

tifiques de l’Université d’Alger, série A, 1:35–182, 1954.

[25] H. Gaifman. On local and nonlocal properties. In Proceedings of the Herbrand sym-

posium (Marseilles, 1981), volume 107 of Stud. Logic Found. Math., pages 105–135.

North-Holland, Amsterdam, 1982.

[26] E. Grädel. Simple Interpretations among Complicated Theories. Information Process-

ing Letters, 35:235–238, 1990.

[27] M. Hague, A. S. Murawski, C-H. L. Ong, and O. Serre. Collapsible pushdown au-

tomata and recursion schemes. In LICS ’08: Proceedings of the 2008 23rd Annual

IEEE Symposium on Logic in Computer Science, pages 452–461, 2008.

[28] W. P. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison,

L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland, Amsterdam,

1965.

[29] David Harel. Towards a theory of recursive structures. In Patrice Enjalbert, Ernst W.

Mayr, and Klaus W. Wagner, editors, STACS, volume 775 of LNCS, pages 633–645.

Springer, 1994.

[30] Takeshi Hayashi. On derivation trees of indexed grammars. Publ. RIMS, Kyoto Univ.,

9:61–92, 1973.

250 Bibliography

[31] B. R. Hodgson. On direct products of automaton decidable theories. Theor. Comput.

Sci., 19:331–335, 1982.

[32] B.R. Hodgson. Décidabilité par automate fini. Ann. sc. math. Québec, 7(1):39–57,

1983.

[33] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[34] A. Kartzow. FO model checking on nested pushdown trees. In MFCS 09, volume

5734 of LNCS, pages 451–463. Springer, 2009.

[35] A. Kartzow. Collapsible pushdown graphs of level 2 are tree-automatic. In STACS

10, volume 5 of LIPIcs, pages 501–512. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik, 2010.

[36] B. Khoussainov and M. Minnes. Model-theoretic complexity of automatic structures.

Ann. Pure Appl. Logic, 161(3):416–426, 2009.

[37] B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC, pages

367–392, 1994.

[38] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: Richness

and limitations. Logical Methods in Computer Science, 3(2), 2007.

[39] B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary

alphabet. Journal of Automata, Languages and Combinatorics, 6(4):467–480, 2001.

[40] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic

structures. In Volker Diekert and Michel Habib, editors, STACS, volume 2996 of

LNCS, pages 440–451. Springer, 2004.

[41] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In

FOSSACS’02, volume 2303 of LNCS, pages 205–222. Springer, 2002.

[42] B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise

de Mathématiques, 6:133–134, 1928.

[43] N. Kobayashi. Types and higher-order recursion schemes for verification of higher-

order programs. In POPL 09, pages 416–428. ACM, 2009.

[44] D. Kuske. Is Cantor’s theorem automatic? In LPAR, pages 332–345, 2003.

[45] D. Kuske. Theories of automatic structures and their complexity. In CAI’09, Third

International Conference on Algebraic Informatics, volume 5725 of LNCS, pages 81–

98. Springer, 2009.

[46] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic

structures. In LICS, Proceedings of the 25th Annual IEEE Symposium on Logic in

Computer Science, pages 160–169, 2010.

[47] D. Kuske and M. Lohrey. Automatic structures of bounded degree revisited. In CSL,

pages 364–378, 2009.

Bibliography 251

[48] C. I. Lewis. A Survey of Symbolic Logic. University of California Press, 1918.

[49] P. Lindstrom. First order predicate logic with generalized quantifiers. Theoria 32,

pages 186–195, 1966.

[50] M. Magidor and J. Malitz. Compact extensions of L(Q). Annals of Mathematical Logic,

11:217–261, 1977.

[51] R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T. research monograph

no. 65). The MIT Press, 1971.

[52] A. Mostowski. On a generalization of quantifiers. Fundamenta Mathematicae, 44:12–

36, 1957.

[53] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-

order logic. Theor. Comput. Sci., 37:51–75, 1985.

[54] E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society, 52:264–268, 1946.

[55] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.

Transaction of the American Mathematical Society, 141:1–35, 1969.

[56] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. Series 2, 30:264

– 286, 1930.

[57] S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin

of Symbolic Logic, 14(2):169–209, 2008.

[58] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.

PhD thesis, MIT, Cambridge, Massasuchets, USA, 1974.

[59] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an appli-

cation to a decision problem of second-order logic. Mathematical Systems Theory,

2(1):57–81, 1968.

[60] A. W. To and L. Libkin. Recurrent reachability analysis in regular model checking. In

Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of

LNCS, pages 198–213. Springer, 2008.

[61] A. M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,

1936.

[62] J. A. Väänänen. Generalized quantifiers. Bulletin of the EATCS, 62, 1997.

[63] I. Walukiewicz. Pushdown processes: games and model checking. Information and

Computation, 164:234–263, 2001.

252 Bibliography

Wissenschaftlicher Werdegang von Alexander Kartzow,

geboren am 12. Januar 1983 in Gießen

Schulabschluss

Juni 2002 Abitur

Studium

2002-2007 Studium der Mathematik mit Nebenfach Informatik

an der TU Darmstadt

2005-2006 Studium der Mathematik und der Informatik

an der Universidad de Salamanca, Spanien

November 2007 Diplom in Mathematik

Promotion

2007 - 2011 Promotionsstudium

an der TU Darmstadt

253

	Introduction
	Verification and Model Checking
	Collapsible Pushdown Graphs and Nested Pushdown Trees
	Goal and Outline of this Thesis

	Basic Definitions and Technical Results
	Logics and Interpretations
	First-Order Logic, Locality and Ehrenfeucht-Fraïssé Games
	Extensions of First-Order Logic
	Basic Modal Logic and L
	Logical Interpretations

	Grids and Trees
	A Grid-Like Structure
	Words and Trees

	Generalised Pushdown Graphs
	Pushdown Graphs
	Nested Pushdown Trees
	Collapsible Pushdown Graphs

	Technical Results on the Structure of Collapsible Pushdown Graphs
	Milestones and Loops
	Loops and Returns
	Computing Returns
	Computing Loops

	Automatic Structures
	Finite Automata
	Automatic Structures

	Main Results
	Level 2 Collapsible Pushdown Graphs are Tree-Automatic
	Encoding of Level 2 Stacks in Trees
	Recognising Reachable Configurations
	Regularity of the Stack Operations
	Tree-Automaticity of Regular Reachability Predicates
	Combination of FO and L Model Checking
	Lower Bound for FO Model Checking
	Model Checking on Higher-Order Collapsible Pushdown Graphs

	An FO Model Checking Algorithm on Nested Pushdown Trees
	Interpretation of NPT in CPG
	A Modularity Result for Games on Graphs of Small Diameter
	-Pumping on NPT
	First-Order Model Checking on NPT is in 2-EXPSPACE

	Higher-Order Nested Pushdown Trees
	Definition of Higher-Order Nested Pushdown Trees
	Comparison with Known Pushdown Hierarchies
	Towards FO Model Checking on Nested Pushdown Trees of Level 2
	Relevant Ancestors
	A Family of Equivalence Relations on Words and Stacks
	Small-Witness Property via Isomorphisms of Relevant Ancestors
	FO Model Checking Algorithm for Level 2 Nested Pushdown Trees

	Decidability of Ramsey Quantifiers on Tree-Automatic Structures
	Tree-Combs
	Reduction of the Ramsey Quantifier
	Soundness of the Reduction
	Correctness of the Reduction
	Recurrent Reachability on Automatic Structures

	Conclusions
	Undecidability of L on the Bidirectional Half-Grid
	Turing Machines
	Reduction to the Halting Problem

