283 research outputs found

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Maximum Entropy Kernels for System Identification

    Full text link
    A new nonparametric approach for system identification has been recently proposed where the impulse response is modeled as the realization of a zero-mean Gaussian process whose covariance (kernel) has to be estimated from data. In this scheme, quality of the estimates crucially depends on the parametrization of the covariance of the Gaussian process. A family of kernels that have been shown to be particularly effective in the system identification framework is the family of Diagonal/Correlated (DC) kernels. Maximum entropy properties of a related family of kernels, the Tuned/Correlated (TC) kernels, have been recently pointed out in the literature. In this paper we show that maximum entropy properties indeed extend to the whole family of DC kernels. The maximum entropy interpretation can be exploited in conjunction with results on matrix completion problems in the graphical models literature to shed light on the structure of the DC kernel. In particular, we prove that the DC kernel admits a closed-form factorization, inverse and determinant. These results can be exploited both to improve the numerical stability and to reduce the computational complexity associated with the computation of the DC estimator.Comment: Extends results of 2014 IEEE MSC Conference Proceedings (arXiv:1406.5706

    Efficient Multidimensional Regularization for Volterra Series Estimation

    Full text link
    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models

    Regularized Nonparametric Volterra Kernel Estimation

    Full text link
    In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modelled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points

    The Harmonic Analysis of Kernel Functions

    Full text link
    Kernel-based methods have been recently introduced for linear system identification as an alternative to parametric prediction error methods. Adopting the Bayesian perspective, the impulse response is modeled as a non-stationary Gaussian process with zero mean and with a certain kernel (i.e. covariance) function. Choosing the kernel is one of the most challenging and important issues. In the present paper we introduce the harmonic analysis of this non-stationary process, and argue that this is an important tool which helps in designing such kernel. Furthermore, this analysis suggests also an effective way to approximate the kernel, which allows to reduce the computational burden of the identification procedure

    Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint

    Full text link
    Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization. We also design a new class of regularizers defined by "integral" versions of stable spline/TC kernels. Under quite realistic experimental conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model order selection

    Kernel-based methods for Volterra series identification

    Get PDF
    Volterra series approximate a broad range of nonlinear systems. Their identification is challenging due to the curse of dimensionality: the number of model parameters grows exponentially with the complexity of the input-output response. This fact limits the applicability of such models and has stimulated recently much research on regularized solutions. Along this line, we propose two new strategies that use kernel-based methods. First, we introduce the multiplicative polynomial kernel (MPK). Compared to the standard polynomial kernel, the MPK is equipped with a richer set of hyperparameters, increasing flexibility in selecting the monomials that really influence the system output. Second, we introduce the smooth exponentially decaying multiplicative polynomial kernel (SEDMPK), that is a regularized version of MPK which requires less hyperparameters, allowing to handle also high-order Volterra series. Numerical results show the effectiveness of the two approaches. (C) 2021 Elsevier Ltd. All rights reserved

    Bayesian and regularization approaches to multivariable linear system identification: the role of rank penalties

    Full text link
    Recent developments in linear system identification have proposed the use of non-parameteric methods, relying on regularization strategies, to handle the so-called bias/variance trade-off. This paper introduces an impulse response estimator which relies on an â„“2\ell_2-type regularization including a rank-penalty derived using the log-det heuristic as a smooth approximation to the rank function. This allows to account for different properties of the estimated impulse response (e.g. smoothness and stability) while also penalizing high-complexity models. This also allows to account and enforce coupling between different input-output channels in MIMO systems. According to the Bayesian paradigm, the parameters defining the relative weight of the two regularization terms as well as the structure of the rank penalty are estimated optimizing the marginal likelihood. Once these hyperameters have been estimated, the impulse response estimate is available in closed form. Experiments show that the proposed method is superior to the estimator relying on the "classic" â„“2\ell_2-regularization alone as well as those based in atomic and nuclear norm.Comment: to appear in IEEE Conference on Decision and Control, 201
    • …
    corecore