8,784 research outputs found

    Transient handover blocking probabilities in road covering cellular mobile networks

    Get PDF
    This paper investigates handover and fresh call blocking probabilities for subscribers moving along a road in a traffic jam passing through consecutive cells of a wireless network. It is observed and theoretically motivated that the handover blocking probabilities show a sharp peak in the initial part of a traffic jam roughly at the moment when the traffic jam starts covering a new cell. The theoretical motivation relates handover blocking probabilities to blocking probabilities in the M/D/C/C queue with time-varying arrival rates. We provide a numerically efficient recursion for these blocking probabilities. \u

    Low-complexity medium access control protocols for QoS support in third-generation radio access networks

    Get PDF
    One approach to maximizing the efficiency of medium access control (MAC) on the uplink in a future wideband code-division multiple-access (WCDMA)-based third-generation radio access network, and hence maximize spectral efficiency, is to employ a low-complexity distributed scheduling control approach. The maximization of spectral efficiency in third-generation radio access networks is complicated by the need to provide bandwidth-on-demand to diverse services characterized by diverse quality of service (QoS) requirements in an interference limited environment. However, the ability to exploit the full potential of resource allocation algorithms in third-generation radio access networks has been limited by the absence of a metric that captures the two-dimensional radio resource requirement, in terms of power and bandwidth, in the third-generation radio access network environment, where different users may have different signal-to-interference ratio requirements. This paper presents a novel resource metric as a solution to this fundamental problem. Also, a novel deadline-driven backoff procedure has been presented as the backoff scheme of the proposed distributed scheduling MAC protocols to enable the efficient support of services with QoS imposed delay constraints without the need for centralized scheduling. The main conclusion is that low-complexity distributed scheduling control strategies using overload avoidance/overload detection can be designed using the proposed resource metric to give near optimal performance and thus maintain a high spectral efficiency in third-generation radio access networks and that importantly overload detection is superior to overload avoidance

    Flow Level QoE of Video Streaming in Wireless Networks

    Full text link
    The Quality of Experience (QoE) of streaming service is often degraded by frequent playback interruptions. To mitigate the interruptions, the media player prefetches streaming contents before starting playback, at a cost of delay. We study the QoE of streaming from the perspective of flow dynamics. First, a framework is developed for QoE when streaming users join the network randomly and leave after downloading completion. We compute the distribution of prefetching delay using partial differential equations (PDEs), and the probability generating function of playout buffer starvations using ordinary differential equations (ODEs) for CBR streaming. Second, we extend our framework to characterize the throughput variation caused by opportunistic scheduling at the base station, and the playback variation of VBR streaming. Our study reveals that the flow dynamics is the fundamental reason of playback starvation. The QoE of streaming service is dominated by the first moments such as the average throughput of opportunistic scheduling and the mean playback rate. While the variances of throughput and playback rate have very limited impact on starvation behavior.Comment: 14 page

    Stability conditions for a discrete-time decentralised medium access algorithm

    Full text link
    We consider a stochastic queueing system modelling the behaviour of a wireless network with nodes employing a discrete-time version of the standard decentralised medium access algorithm. The system is {\em unsaturated} -- each node receives an exogenous flow of packets at the rate λ\lambda packets per time slot. Each packet takes one slot to transmit, but neighboring nodes cannot transmit simultaneously. The algorithm we study is {\em standard} in that: a node with empty queue does {\em not} compete for medium access; the access procedure by a node does {\em not} depend on its queue length, as long as it is non-zero. Two system topologies are considered, with nodes arranged in a circle and in a line. We prove that, for either topology, the system is stochastically stable under condition λ<2/5\lambda < 2/5. This result is intuitive for the circle topology as the throughput each node receives in a saturated system (with infinite queues) is equal to the so called {\em parking constant}, which is larger than 2/52/5. (The latter fact, however, does not help to prove our result.) The result is not intuitive at all for the line topology as in a saturated system some nodes receive a throughput lower than 2/52/5.Comment: 22 page

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    On the performance of machine-type communications networks under Markovian arrival sources

    Get PDF
    Abstract. This thesis evaluates the performance of reliability and latency in machine type communication networks, which composed of single transmitter and receiver in the presence of Rayleigh fading channel. The source’s traffic arrivals are modeled as Markovian processes namely Discrete-Time Markov process, Fluid Markov process, Discrete-Time Markov Modulated Poisson process and Continuous-Time Markov Modulated Poisson process, and delay/buffer overflow constraints are imposed. Our approach is based on the reliability and latency outage probability, where transmitter not knowing the channel condition, therefore the transmitter would be transmitting information over the fixed rate. The fixed rate transmission is modeled as a two-state Discrete-time Markov process, which identifies the reliability level of wireless transmission. Using effective bandwidth and effective capacity theories, we evaluate the trade-off between reliability-latency and identify QoS requirement. The impact of different source traffic originated from MTC devices under QoS constraints on the effective transmission rate are investigated
    corecore