1,386 research outputs found

    Posets arising as 1-skeleta of simple polytopes, the nonrevisiting path conjecture, and poset topology

    Full text link
    Given any polytope PP and any generic linear functional c{\bf c} , one obtains a directed graph G(P,c)G(P,{\bf c}) by taking the 1-skeleton of PP and orienting each edge e(u,v)e(u,v) from uu to vv for c(u)<c(v){\bf c} (u) < {\bf c} ( v). This paper raises the question of finding sufficient conditions on a polytope PP and generic cost vector c{\bf c} so that the graph G(P,c)G(P, {\bf c} ) will not have any directed paths which revisit any face of PP after departing from that face. This is in a sense equivalent to the question of finding conditions on PP and c{\bf c} under which the simplex method for linear programming will be efficient under all choices of pivot rules. Conditions on PP and c{\bf c} are given which provably yield a corollary of the desired face nonrevisiting property and which are conjectured to give the desired property itself. This conjecture is proven for 3-polytopes and for spindles having the two distinguished vertices as source and sink; this shows that known counterexamples to the Hirsch Conjecture will not provide counterexamples to this conjecture. A part of the proposed set of conditions is that G(P,c)G(P, {\bf c} ) be the Hasse diagram of a partially ordered set, which is equivalent to requiring non revisiting of 1-dimensional faces. This opens the door to the usage of poset-theoretic techniques. This work also leads to a result for simple polytopes in which G(P,c)G(P, {\bf c}) is the Hasse diagram of a lattice L that the order complex of each open interval in L is homotopy equivalent to a ball or a sphere of some dimension. Applications are given to the weak Bruhat order, the Tamari lattice, and more generally to the Cambrian lattices, using realizations of the Hasse diagrams of these posets as 1-skeleta of permutahedra, associahedra, and generalized associahedra.Comment: new results for 3-polytopes and spindles added; exposition substantially improved throughou

    Computational determination of the largest lattice polytope diameter

    Full text link
    A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let {\delta}(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine {\delta}(d, k) for small instances. We show that {\delta}(3, 4) = 7 and {\delta}(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby {\delta}(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors

    Computational determination of the largest lattice polytope diameter

    Full text link
    A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let {\delta}(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine {\delta}(d, k) for small instances. We show that {\delta}(3, 4) = 7 and {\delta}(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby {\delta}(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than n−dn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    The Gromov Norm of the Product of Two Surfaces

    Full text link
    We make an estimation of the value of the Gromov norm of the Cartesian product of two surfaces. Our method uses a connection between these norms and the minimal size of triangulations of the products of two polygons. This allows us to prove that the Gromov norm of this product is between 32 and 52 when both factors have genus 2. The case of arbitrary genera is easy to deduce form this one.Comment: The journal version contains an error that invalidates one direction of the main theorem. The present version contains an erratum, at the end, explaining thi
    • …
    corecore