5 research outputs found

    Network forensics: detection and mitigation of botnet malicious code via darknet

    Get PDF
    Computer malwares are major threats that always find a way to penetrate the network, posing threats to the confidentiality, integrity and the availability of data. Network-borne malwares penetrate networks by exploiting vulnerabilities in networks and systems. IT administrators in campus wide network continue to look for security control solutions to reduce exposure and magnitude of potential threats. However, with multi-user computers and distributed systems, the campus wide network often becomes a breeding ground for botnets

    Metodologias para caracterização de tráfego em redes de comunicações

    Get PDF
    Tese de doutoramento em Metodologias para caracterização de tráfego em redes de comunicaçõesInternet Tra c, Internet Applications, Internet Attacks, Tra c Pro ling, Multi-Scale Analysis abstract Nowadays, the Internet can be seen as an ever-changing platform where new and di erent types of services and applications are constantly emerging. In fact, many of the existing dominant applications, such as social networks, have appeared recently, being rapidly adopted by the user community. All these new applications required the implementation of novel communication protocols that present di erent network requirements, according to the service they deploy. All this diversity and novelty has lead to an increasing need of accurately pro ling Internet users, by mapping their tra c to the originating application, in order to improve many network management tasks such as resources optimization, network performance, service personalization and security. However, accurately mapping tra c to its originating application is a di cult task due to the inherent complexity of existing network protocols and to several restrictions that prevent the analysis of the contents of the generated tra c. In fact, many technologies, such as tra c encryption, are widely deployed to assure and protect the con dentiality and integrity of communications over the Internet. On the other hand, many legal constraints also forbid the analysis of the clients' tra c in order to protect their con dentiality and privacy. Consequently, novel tra c discrimination methodologies are necessary for an accurate tra c classi cation and user pro ling. This thesis proposes several identi cation methodologies for an accurate Internet tra c pro ling while coping with the di erent mentioned restrictions and with the existing encryption techniques. By analyzing the several frequency components present in the captured tra c and inferring the presence of the di erent network and user related events, the proposed approaches are able to create a pro le for each one of the analyzed Internet applications. The use of several probabilistic models will allow the accurate association of the analyzed tra c to the corresponding application. Several enhancements will also be proposed in order to allow the identi cation of hidden illicit patterns and the real-time classi cation of captured tra c. In addition, a new network management paradigm for wired and wireless networks will be proposed. The analysis of the layer 2 tra c metrics and the di erent frequency components that are present in the captured tra c allows an e cient user pro ling in terms of the used web-application. Finally, some usage scenarios for these methodologies will be presented and discussed

    An efficient approach to online bot detection based on a reinforcement learning technique

    Get PDF
    In recent years, Botnets have been adopted as a popular method used to carry and spread many malicious codes on the Internet. These codes pave the way to conducting many fraudulent activities, including spam mail, distributed denial of service attacks (DDoS) and click fraud. While many Botnets are set up using a centralized communication architecture such as Internet Relay Chat (IRC) and Hypertext Transfer Protocol (HTTP), peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control (C&C) messages, which is a more resilient and robust communication channel infrastructure. Without a centralized point for C&C servers, P2P Botnets are more flexible to defeat countermeasures and detection procedures than traditional centralized Botnets. Several Botnet detection techniques have been proposed, but Botnet detection is still a very challenging task for the Internet security community because Botnets execute attacks stealthily in the dramatically growing volumes of network traffic. However, current Botnet detection schemes face significant problem of efficiency and adaptability. The present study combined a traffic reduction approach with reinforcement learning (RL) method in order to create an online Bot detection system. The proposed framework adopts the idea of RL to improve the system dynamically over time. In addition, the traffic reduction method is used to set up a lightweight and fast online detection method. Moreover, a host feature based on traffic at the connection-level was designed, which can identify Bot host behaviour. Therefore, the proposed technique can potentially be applied to any encrypted network traffic since it depends only on the information obtained from packets header. Therefore, it does not require Deep Packet Inspection (DPI) and cannot be confused with payload encryption techniques. The network traffic reduction technique reduces packets input to the detection system, but the proposed solution achieves good a detection rate of 98.3% as well as a low false positive rate (FPR) of 0.012% in the online evaluation. Comparison with other techniques on the same dataset shows that our strategy outperforms existing methods. The proposed solution was evaluated and tested using real network traffic datasets to increase the validity of the solution

    Forensic identification and detection of hidden and obfuscated malware

    Get PDF
    The revolution in online criminal activities and malicious software (malware) has posed a serious challenge in malware forensics. Malicious attacks have become more organized and purposefully directed. With cybercrimes escalating to great heights in quantity as well as in sophistication and stealth, the main challenge is to detect hidden and obfuscated malware. Malware authors use a variety of obfuscation methods and specialized stealth techniques of information hiding to embed malicious code, to infect systems and to thwart any attempt to detect them, specifically with the use of commercially available anti-malware engines. This has led to the situation of zero-day attacks, where malware inflict systems even with existing security measures. The aim of this thesis is to address this situation by proposing a variety of novel digital forensic and data mining techniques to automatically detect hidden and obfuscated malware. Anti-malware engines use signature matching to detect malware where signatures are generated by human experts by disassembling the file and selecting pieces of unique code. Such signature based detection works effectively with known malware but performs poorly with hidden or unknown malware. Code obfuscation techniques, such as packers, polymorphism and metamorphism, are able to fool current detection techniques by modifying the parent code to produce offspring copies resulting in malware that has the same functionality, but with a different structure. These evasion techniques exploit the drawbacks of traditional malware detection methods, which take current malware structure and create a signature for detecting this malware in the future. However, obfuscation techniques aim to reduce vulnerability to any kind of static analysis to the determent of any reverse engineering process. Furthermore, malware can be hidden in file system slack space, inherent in NTFS file system based partitions, resulting in malware detection that even more difficult.Doctor of Philosoph
    corecore