5,530 research outputs found

    Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders

    Full text link
    Polar codes are a recently proposed family of provably capacity-achieving error-correction codes that received a lot of attention. While their theoretical properties render them interesting, their practicality compared to other types of codes has not been thoroughly studied. Towards this end, in this paper, we perform a comparison of polar decoders against LDPC and Turbo decoders that are used in existing communications standards. More specifically, we compare both the error-correction performance and the hardware efficiency of the corresponding hardware implementations. This comparison enables us to identify applications where polar codes are superior to existing error-correction coding solutions as well as to determine the most promising research direction in terms of the hardware implementation of polar decoders.Comment: Fixes small mistakes from the paper to appear in the proceedings of IEEE WCNC 2017. Results were presented in the "Polar Coding in Wireless Communications: Theory and Implementation" Worksho

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes

    Get PDF
    A modified Gradient Descent Bit Flipping (GDBF) algorithm is proposed for decoding Low Density Parity Check (LDPC) codes on the binary-input additive white Gaussian noise channel. The new algorithm, called Noisy GDBF (NGDBF), introduces a random perturbation into each symbol metric at each iteration. The noise perturbation allows the algorithm to escape from undesirable local maxima, resulting in improved performance. A combination of heuristic improvements to the algorithm are proposed and evaluated. When the proposed heuristics are applied, NGDBF performs better than any previously reported GDBF variant, and comes within 0.5 dB of the belief propagation algorithm for several tested codes. Unlike other previous GDBF algorithms that provide an escape from local maxima, the proposed algorithm uses only local, fully parallelizable operations and does not require computing a global objective function or a sort over symbol metrics, making it highly efficient in comparison. The proposed NGDBF algorithm requires channel state information which must be obtained from a signal to noise ratio (SNR) estimator. Architectural details are presented for implementing the NGDBF algorithm. Complexity analysis and optimizations are also discussed.Comment: 16 pages, 22 figures, 2 table

    Network-Coded Multiple Access

    Full text link
    This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access mode as Network-Coded Multiple Access (NCMA). Prior studies on PNC mostly focused on relay networks. NCMA is the first realized multiple access scheme that establishes the usefulness of PNC in a non-relay setting. NCMA allows multiple nodes to transmit simultaneously to the access point (AP) to boost throughput. In the non-relay setting, when two nodes A and B transmit to the AP simultaneously, the AP aims to obtain both packet A and packet B rather than their network-coded packet. An interesting question is whether network coding, specifically PNC which extracts packet (A XOR B), can still be useful in such a setting. We provide an affirmative answer to this question with a novel two-layer decoding approach amenable to real-time implementation. Our USRP prototype indicates that NCMA can boost throughput by 100% in the medium-high SNR regime (>=10dB). We believe further throughput enhancement is possible by allowing more than two users to transmit together
    corecore