
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014 3385

Noisy Gradient Descent Bit-Flip
Decoding for LDPC Codes

Gopalakrishnan Sundararajan, Student Member, IEEE, Chris Winstead, Senior Member, IEEE, and
Emmanuel Boutillon, Senior Member, IEEE

Abstract—A modified Gradient Descent Bit Flipping (GDBF)
algorithm is proposed for decoding Low Density Parity Check
(LDPC) codes on the binary-input additive white Gaussian noise
channel. The new algorithm, called Noisy GDBF (NGDBF), in-
troduces a random perturbation into each symbol metric at each
iteration. The noise perturbation allows the algorithm to escape
from undesirable local maxima, resulting in improved perfor-
mance. A combination of heuristic improvements to the algorithm
are proposed and evaluated. When the proposed heuristics are
applied, NGDBF performs better than any previously reported
GDBF variant, and comes within 0.5 dB of the belief propagation
algorithm for several tested codes. Unlike other previous GDBF
algorithms that provide an escape from local maxima, the pro-
posed algorithm uses only local, fully parallelizable operations
and does not require computing a global objective function or a
sort over symbol metrics, making it highly efficient in comparison.
The proposed NGDBF algorithm requires channel state informa-
tion which must be obtained from a signal to noise ratio (SNR)
estimator. Architectural details are presented for implementing
the NGDBF algorithm. Complexity analysis and optimizations are
also discussed.

Index Terms—GDBF, bit flipping, LDPC, weighted bit flipping,
noisy GDBF.

I. INTRODUCTION

LOW DENSITY PARITY CHECK (LDPC) codes gained
considerable research attention in recent years. Due to

their powerful decoding performance, LDPC codes are in-
creasingly deployed in communication standards. The perfor-
mance and cost of using LDPC codes are partly determined by
the choice of decoding algorithm. LDPC decoding algorithms
are usually iterative in nature. They operate by exchanging
messages between basic processing nodes. Among the vari-
ous decoding algorithms, the soft decision Belief Propagation
(BP) algorithm and the approximate Min-Sum (MS) algorithm

Manuscript received February 7, 2014; revised June 24, 2014 and August 20,
2014; accepted August 29, 2014. Date of publication September 9, 2014; date
of current version October 17, 2014. This work was supported by the US
National Science Foundation under award ECCS-0954747, and by the Franco-
American Fulbright Commission for the Exchange of Scholars. The work also
used resources of the CPER PALMYRE II, with funding from FEDER and
the region of Brittany, France. The work of G. Sundararajan is supported by
a Sant Graduate Innovation Fellowship at Utah State University. The associate
editor coordinating the review of this paper and approving it for publication was
M. Lentmaier.

G. Sundararajan and C. Winstead are with the Department of Electrical and
Computer Engineering, Utah State University, Logan, UT 84322-4120 USA
(e-mail: gopal.sundar@aggiemail.usu.edu; chris.winstead@usu.edu).

E. Boutillon is with the lab-STICC, UMR 6285, Université de Bretagne Sud,
56321 Lorient, France (e-mail: emmanuel.boutillon@univ-ubs.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2014.2356458

offer the best performance on the binary-input additive white
Gaussian noise (AWGN) channel [1], [2], but these algorithms
require a large number of arithmetic operations repeated over
many iterations. These operations must be implemented with
some degree of parallelism to support the throughput require-
ments of modern communication systems [3], [4]. As a result,
LDPC decoders can be highly complex devices.

Significant effort has been invested to develop reduced-
complexity decoding algorithms known “bit-flipping” decoders.
These algorithms are similar in complexity to hard-decision
decoding algorithms, but obtain improved performance by
accounting for soft channel information. In most bit-
flipping algorithms, the symbol node updates are governed by
an inversion function that estimates the reliability of received
channel samples. The inversion function includes the received
channel information in addition to the hard-decision syndrome
components obtained from the code’s parity-check equations.
In the so-called single bit-flipping algorithms, the least reliable
bit is flipped during each iteration. In multiple bit-flipping
algorithms, any bit is flipped if its reliability falls below a
designated threshold, hence multiple bits may be flipped in
parallel, allowing for faster operation.

A recently emerged branch of the bit-flipping family is
Gradient Descent Bit Flipping (GDBF), which formulates the
inversion function as a gradient descent problem. GDBF algo-
rithms demonstrate a favorable tradeoff between performance
and complexity relative to other bit-flipping algorithms. One
difficulty for GDBF algorithms is that they are affected by un-
desirable local maxima which cause the decoder to converge on
an erroneous message. Various schemes have been proposed to
avoid or escape local maxima, but require additional complexity
due to multiple thresholds or computing a global function over
the code’s entire block length. In this work, we propose an
improved version of the GDBF algorithm, called Noisy GDBF
(NGDBF) that offers a low-complexity solution to escape spuri-
ous local maxima. The proposed method works by introducing
a random perturbation to the inversion function. The resulting
algorithm provides improved performance and requires only
local operations that can be executed fully in parallel (except
for a global binary stopping condition). The proposed NGDBF
algorithm comprises a set of heuristic methods that are empir-
ically found to provide good performance for typical codes.
Simulation results indicate that the NGDBF’s optimal noise
variance is proportional to the channel noise variance. This
introduces a possible drawback compared to previous GDBF
algorithms: NGDBF requires knowledge of the channel noise
variance, which must be obtained from an estimator external to

0090-6778 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3386 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

TABLE I
SUMMARY AND COMPARISON OF BIT-FLIPPING ALGORITHMS

the decoder. Because of the heuristic nature of these results, the
paper is organized to present the algorithm’s technical details
and empirical results first, followed by theoretical analyses that
provide explanations for some of the observed results.

The remainder of this paper is organized as follows:
Section II discusses the related work on bit-flipping algorithms,
as well as some recently reported decoding algorithms that
benefit from noise perturbations. Section III describes nota-
tion and summarizes the proposed NGDBF algorithm and its
heuristic modifications. Section IV presents simulation results,
and offers a comparative analysis of the various heuristics.
Section V presents architectural simplifications and complexity
analysis. Section VI presents an evaluation and comparison of
the algorithms’ convergence to the global maximum-likelihood
(ML) solution, and Section VII presents an analysis of some
of NGDBF’s heuristics—namely threshold adaptation and syn-
drome weighting—which are interpreted in terms of evolving
ML decisions on the local neighborhoods of symbol nodes.
Conclusions are presented in Section VIII.

II. RELATED WORK

This section presents a review of bit-flipping algorithms and
other methods related to the new NGDBF algorithms described
in this article. As an aid to the reader, a qualitative summary
of the considered bit-flipping algorithms and their comparative
characteristics are provided in Table I. The performance and
complexity comparisons in Table I are qualitative estimates
made solely within the family of bit-flipping algorithms.

The original bit-flipping algorithm (BFA) was introduced by
Gallager in his seminal work on LDPC codes [5]. Gallager’s
BFA is a hard-decision algorithm for decoding on the binary
symmetric channel (BSC), in which only hard channel bits are
available to the decoder. To correct errors, the BFA computes
a sum over the adjacent parity-check equations for each bit
in the code. If, for any bit, the number of adjacent parity
violations exceeds a specified threshold, then the bit is flipped.

This process is repeated until all parity checks are satisfied,
or until a maximum iteration limit is reached. The BFA has
very low complexity since it only requires, in each iteration,
a summation over binary parity-check values for each sym-
bol; however the BFA provides weak decoding performance.
Miladinovic et al. considered a probabilistic BFA (PBFA)
which adds randomness to the bit-flip decision, resulting in
improved performance [6]. In PBFA, when a bit’s parity-check
sum crosses the flip threshold, it is flipped with probability
p. The parameter p is optimized empirically and is adapted
towards one during successive iterations.

Kou et al. introduced the Weighted Bit-Flipping (WBF) algo-
rithm which improves performance over the BFA by incorpo-
rating soft channel information, making it better suited for use
on the Additive White Gaussian Noise (AWGN) channel and
other soft-information channels [2]. In the WBF algorithm, all
parity-check results are weighted by a magnitude that indicates
reliability. For each parity-check, the weight value is obtained
by finding the lowest magnitude in the set of adjacent channel
samples. During each iteration, a summation Ek is computed
over the adjacent weighted parity-check results for each symbol
position k. The symbol with the maximum Ek (or minimum,
depending on convention) is flipped. The weights are only
calculated once, at the start of decoding, however the WBF
algorithm requires at every iteration a summation over several
weights for each symbol—a substantial increase in complexity
compared to the original BFA. In addition to the increased
arithmetic complexity, WBF has two major drawbacks: first,
a potentially large number of iterations are required because
only one bit may be flipped in each iteration. Second, the
algorithm must perform a global search to find the maximum
Ek out of all symbols, resulting in a large latency per iteration
that increases with codeword length, thereby hindering a high-
throughput implementation.

Researchers introduced several improvements to the WBF.
Zhang et al. introduced the Modified WBF (MWBF) algorithm,
which obtained improved performance with a slight increase
in complexity. Jiang et al. described another Improved MWBF
(IMWBF) algorithm which offered further improvement by
using the parity-check procedure from the MS algorithm to de-
termine the parity-check weights—another substantial increase
in complexity. Both of these methods inherit the two key draw-
backs associated with single-bit flipping in the WBF algorithm.

Recently, Wu et al. introduced a Parallel WBF (PWBF)
algorithm, which reduces the drawbacks associated with single-
bit flipping in the other WBF varieties [7]. In the PWBF algo-
rithm, the maximum (or minimum) Ei metric is found within
the subset of symbols associated with each parity-check. The
authors of [7] also developed a theory relating PWBF to the BP
and MS algorithms, and showed that PWBF has performance
comparable to IMWBF [8]. In the PWBF algorithm, it is still
necessary to find the maximum Ei from a set of values, which
costs delay, but the set size is significantly reduced compared
to the other WBF methods, and it is independent of codeword
length. In spite of these improvements, PWBF retains the
complex arithmetic associated with IMWBF.

To reduce the arithmetic complexity of bit-flipping algo-
rithms, Wadayama et al. devised the GDBF algorithm as

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3387

a gradient-descent optimization model for the ML decoding
problem [9]. Based on this model, the authors of [9] obtained
single-bit and multi-bit flipping algorithms that require mainly
binary operations, similar to the original BFA. The GDBF
methods require summation of binary parity-check values,
which is less complex than the WBF algorithms that require
summation over independently weighted syndrome values. The
single-bit version of the GDBF algorithm (S-GDBF) requires a
global search to discover the least reliable bit at each iteration.
The multi-bit GDBF algorithm (M-GDBF) uses local threshold
operations instead of a global search, hence achieving a faster
initial convergence. In practice, the M-GDBF algorithm did
not always provide stable convergence to the final solution.
To improve convergence, the authors of [9] adopted a mode-
switching strategy in which M-GDBF decoding is always fol-
lowed by a phase of S-GDBF decoding, leveraging high-speed
in the first phase and accurate convergence in the second.

Although the mode-switching strategy provided a significant
benefit, the algorithm was still subject to spurious local max-
ima. Wadayama et al. obtained further improvements by intro-
ducing a “hybrid” GDBF algorithm (H-GDBF) with an escape
process to evade local maxima. The H-GDBF algorithm obtains
performance comparable to MS, but the escape process requires
evaluating a global objective function across all symbols. When
the objective function crosses a specified threshold during the
S-GDBF phase, the decoder switches back to M-GDBF mode,
then back to S-GDBF mode, and so on until a valid result is
reached. To date, H-GDBF is the best performing GDBF vari-
ant, but requires a maximum of 300 iterations to obtain its best
performance, compared to 100 for M-GDBF and S-GDBF. The
major disadvantages of this algorithm are its use of multiple
decoding modes, the need to optimize dual thresholds for
mode switching and bit flipping, the global search operation
and the global objective function used for mode switching.
These global operations require an arithmetic operation to be
computed over the entire code length, and would be expensive
to implement for practical LDPC codes with large codeword
length.

Several researchers proposed alternative GDBF algorithms
to obtain fully parallel bit-flipping and improved performance.
Ismail et al. proposed an Adaptive Threshold GDBF
(AT-GDBF) algorithm that achieves good performance without
the use of mode-switching, allowing for fully-parallel opera-
tion [10]. The same authors also introduced an early-stopping
condition (ES-AT-GDBF) that significantly reduces the average
decoding iterations at lower Signal to Noise Ratio (SNR).
Phromsa-ard et al. proposed a more complex Reliability-Ratio
Weighted GDBF algorithm (RRWGDBF) that uses a weighted
summation over syndrome components with an adaptive thresh-
old to obtain reduced latency [11]. The RRWGDBF method
has the drawback of increased arithmetic complexity because
it performs a summation of weighted syndrome components,
similar to previous WBF algorithms. Haga et al. proposed an
improved multi-bit GDBF algorithm (IGDBF) that performs
very close to the H-GDBF algorithm, but requires a global sort
operation to determine which bits to flip [12].

These GDBF algorithms can be divided into two classes:
First, the low-complexity class, which includes S-GDBF and

M-GDBF, AT-GDBF and RRWGDBF; in this class, mode-
switching M-GDBF is the best performer. For low-complexity
algorithms, the typical maximum number of iterations is re-
ported as T = 100. Second is the high-performance class,
which includes H-GDBF and IGDBF. In the high-performance
class, significant arithmetic complexity is introduced and a
larger number of iterations is reported, T = 300. H-GDBF is
the best performer in this class, and in this paper we consider
H-GDBF as representative of the high-performance GDBF
algorithms.

In this work, we propose a new Noisy GDBF algo-
rithm with single-bit and multi-bit versions (S-NGDBF and
M-NGDBF, respectively). The M-NGDBF algorithm proposed
in this work employs a single threshold and also provides an
escape from the neighborhood of spurious local maxima, but
does not require the mode-switching behavior used in the orig-
inal M-GDBF. The proposed algorithm also avoids using any
sort or maximum-value operations. When using the threshold
adaptation procedure borrowed from AT-GDBF, as described in
Section III-D, the proposed M-NGDBF achieves performance
close to the H-GDBF and IGDBF methods at high SNR, with a
similar number of iterations. We also introduce a new method
called Smoothed M-NGDBF (SM-NGDBF) that contributes
an additional 0.3 dB gain at the cost of additional iterations.
It should be noted that Wadayama et al. proposed using a
small random perturbation in the H-GDBF thresholds [9]; the
NGDBF methods use a larger perturbation in combination with
other heuristics to obtain good performance with very low
complexity.

Because of its reliance on pseudo-random noise and single-
bit messages, the proposed NGDBF algorithms bear some
resemblance to the family of stochastic iterative decoders that
were first introduced by Gaudet and Rapley [13]. One of the
authors (Winstead) introduced stochastic decoding for codes
with loopy factor graphs [14], and Sharifi-Tehrani et al. later
demonstrated stochastic decoding for LDPC codes [15], [16].
High throughput stochastic decoders have been more recently
demonstrated by Sharifi Tehrani et al. [17]–[19] and by
Onizawa et al. [20]. Stochastic decoders are known to have
performance very close to BP, allow for fully-parallel imple-
mentations, and use very simple arithmetic while exchanging
single-bit messages. They may therefore serve as an appropriate
benchmark for comparing complexity against the proposed
SM-NGDBF algorithm (an analysis of comparative complexity
is presented in Section V-C).

In addition to recent work on low-complexity decoding, there
has also been some exploration of noise-perturbed decoding
using traditional MS and BP algorithms. Leduc et al. demon-
strated a beneficial effect of noise perturbations for the BP al-
gorithm, using a method called dithered belief propagation [21].
Kameni Ngassa et al. examined the effect of noise perturbations
on MS decoders and found beneficial effects under certain
conditions [22]. The authors of [23] offered the conjecture that
noise perturbations assist the MS algorithm in escaping from
spurious fixed-point attractors, similar to the hypothesis offered
in this paper to motivate the NGDBF algorithm.

Up to now, there is not yet a developed body of theory for
analyzing noise-perturbed decoding algorithms, and the recent

3388 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

research on this topic tends to adopt a heuristic approach. In this
paper we also adopt the heuristic approach, and demonstrate
through empirical analysis that noise perturbations improve the
performance of GDBF decoders.

III. PROPOSED NOISY GDBF ALGORITHM

A. Notation

Let H be a binary m× n parity check matrix, where n >

m ≥ 1. To H is associated a binary linear code defined by C Δ
=

{c ∈ Fn
2 : Hc = 0}, where F2 denotes the binary Galois field.

The set of bipolar codewords, Ĉ ⊆ {−1,+1}n, corresponding

to C is defined by Ĉ Δ
= {(1− 2c1), (1− 2c2), . . . , (1− 2cn) :

c ∈ C}. Symbols are transmitted over a binary input AWGN
channel defined by the operation y = ĉ+ z, where ĉ ∈ Ĉ, z
is a vector of independent and identically distributed Gaussian
random variables with zero mean and variance N0/2, N0 is the
noise spectral density, and y is the vector of samples obtained
at the receiver.

We define a decision vector x ∈ {−1,+1}n. We say that
x(t) is the decision vector at a specific iteration t, where t is
an integer in the range [0, T], and T is the maximum number of
iterations permitted by the algorithm. In iterative bit-flipping
algorithms, the decision values may be flipped one or more
times during decoding. We will often omit the dependence on
t when there is no ambiguity. The decision vector is initialized
as the sign of received samples, i.e., xk(t = 0) = sign(yk) for
k = 1, 2, . . . , n.

The parity-check neighborhoods are defined as N (i)
Δ
= {j :

hij = 1} for i = 1, 2, . . . ,m, where hij is the (i, j)th element
of the parity check matrix H. The symbol neighborhoods are

defined similarly as M(j)
Δ
= {i : hij = 1} for j = 1, 2, . . . , n.

The code’s parity check conditions can be expressed as

bipolar syndrome components si(t)
Δ
=

∏
j∈N (i) xj(t) for i =

1, 2, . . . ,m. A parity check node is said to be satisfied when
its corresponding syndrome component is si = +1.

B. GDBF Algorithm

The GDBF algorithm proposed in [9] was derived by consid-
ering the maximum likelihood problem as an objective function
for gradient descent optimization. The standard ML decoding
problem is to find the decision vector xML ∈ Ĉ that has maxi-
mum correlation with the received samples y:

xML = argmax
x∈Ĉ

n∑
k=1

xkyk. (1)

To include information from the code’s parity check equations,
the syndrome components are introduced as a penalty term, re-
sulting in the objective function proposed by Wadayama et al.:

f(x) =

n∑
k=1

xkyk +

m∑
i=1

si. (2)

In the GDBF algorithm, a stopping criterion is used to en-
force the condition x ∈ Ĉ, i.e., any allowable solution x must
be a valid codeword. Under this constraint, a solution that

maximizes the objective function (2) is also a solution to the
ML problem defined by (1). This is because for any valid
codeword x, the summation

∑m
i=1 si is constant and equal to

m. Since the objective functions in (1) and (2) differ only by a
constant term, they must have the same maxima and minima.

By taking the partial derivative with respect to a particular
symbol xk, the local inversion function is obtained as

Ek = xk
∂f(x)

∂xk
= xkyk +

∑
i∈M(k)

si. (3)

Wadayama et al. showed that the objective function can be
increased by flipping one or more xk with the most negative
Ek values. The resulting iterative maximization algorithm is
described as follows:

Step 1: Compute syndrome components si =
∏

j∈N (i) xj ,
for all i ∈ {1, 2,,m}. If si = +1 for all i, output
x and stop.

Step 2: Compute inversion functions. For k ∈ {1, 2, . . . , n}
compute

Ek = xkyk +
∑

i∈M(k)

si.

Step 3: Bit-flip operations. Perform one of the following:
a) Single-bit version: Flip the bit xk for k =

argmink∈{1,2,...,n} Ek.
b) Multi-bit version: Flip any bits for which Ek < θ,

where θ ∈ R
− is the inversion threshold.

Step 4: Repeat steps 1 to 3 till a valid codeword is detected
or maximum number of iterations is reached.

The inversion threshold is a negative real number, i.e., θ < 0,
to ensure that only bits with negative-valued Ek are flipped.
The optimal value of θ is found empirically, as discussed in
Section IV-C. The single-bit GDBF algorithm (S-GDBF) incurs
a penalty in parallel implementations due to the requirement
of finding the minimum from among n values. The multi-
bit version (M-GDBF) is trivially parallelized, but does not
converge well because there tend to be large changes in the
objective function after each iteration. The objective function
increases rapidly during initial iterations, but is not able to
obtain stable convergence unless a mechanism is introduced
to reduce the flipping activity during later iterations. In this
paper, we consider two such mechanisms: mode-switching and
adaptive thresholds.

To improve performance, the authors of [9] proposed a
mode-switching modification for M-GDBF, controlled by a
parameter μ ∈ {0, 1}: During a decoding iteration, if μ = 1
then step 3b is executed; otherwise step 3a is executed. At the
start of decoding, μ is initialized to 1. After each iteration,
the global objective function (2) is evaluated. If, during any
iteration t, f(x(t)) < f(x(t− 1)), then μ is changed to 0. This
modification adds complexity to the algorithm, but also signif-
icantly improves performance. In the sequel (Section III-D),
it is explained that AT-GDBF eliminates the need for mode-
switching by using the strictly parallel mechanism of adaptive
thresholds [10].

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3389

C. Noisy GDBF

To provide a low-complexity mechanism to escape from
local maxima in the GDBF algorithm, we propose to introduce
a random perturbation in the inversion function. Based on this
approach, we modify the step 2 of the GDBF algorithm as
follows:

Step 2: Symbol node update. For k = 1, 2, . . . , n compute

Ek = xkyk + w
∑

i∈M(k)

si + qk,

where w ∈ R
+ is a syndrome weight parameter and qk

is a Gaussian distributed random variable with zero mean
and variance σ2 = η2N0/2, where 0 < η ≤ 1. All qk are
independent and identically distributed.

In this step, a syndrome weighting parameter w is introduced.
Syndrome weighting is motivated by the local maximum like-
lihood analysis presented in Section VII. Typically w and η are
close to one, and are found through numerical optimization.
The optimal values for w and η are code dependent, and are
found to be weakly SNR dependent in some cases.

Throughout this paper, we refer to this algorithm and its
variants as Noisy GDBF (NGDBF). Both single-bit and multi-
bit versions are possible, and are indicated as S-NGDBF and
M-NGDBF, respectively. In this paper, mode-switching is never
used in association with NGDBF; instead, threshold adaptation
is employed as explained in the next subsection.

The perturbation variance proportional to N0/2 was chosen
based on an intuition that the algorithm’s random search region
should cover the same distance as the original perturbation
introduced by the channel noise. The noise-scale parameter
η is introduced to fine-tune the optimal perturbation variance
for each code. The effect of η on performance is studied
empirically in Section IV-D. For some codes, good performance
is obtained when using a single SNR-independent value for η.
In other cases, η must be varied to get the best performance at
different SNR values.

D. Threshold Adaptation

Methods of threshold adaptation were previously investi-
gated to improve the convergence of multi-bit flipping algo-
rithms. In this paper we consider a local Adaptive Threshold
GDBF (AT-GDBF) algorithm described by Ismail et al. [10] in
which a separate threshold θk is associated with each symbol
node. For k = 1, 2, . . . , n, the threshold θk is adjusted in each
iteration by adding these steps to the M-GDBF algorithm:

Step 0: Initialize θk(t = 0) = θ for all k, where θ ∈ R
− is

the global initial threshold parameter.
Step 3b: For all k, compute the inversion function Ek. If

Ek(t) ≥ θk(t), make the adjustment θk(t+ 1) =
θk(t)λ, where λ is a global adaptation parameter for
which 0 < λ ≤ 1. If Ek(t) < θk(t), flip the sign of
the corresponding decision xk.

In practice, the adaptation parameter λ must be very close
to one. The case λ = 1.0 is equivalent to non-adaptive
M-GDBF. According to the authors of [10], AT-GDBF

obtains the same performance as M-GDBF with mode-
switching, hence it enables fully parallel implementation with
only local arithmetic operations. In the sequel we will show
that threshold adaptation significantly improves performance
in the M-NGDBF algorithm, at the cost of some additional
complexity in the bit-flip operations.

E. Output Decision Smoothing

Convergence failures in the M-NGDBF algorithm may arise
from excessive flipping among low-confidence symbols. This
may occur as a consequence of the stochastic perturbation term.
In this situation, the decoder may converge in mean to the
correct codeword, but that does not guarantee that it will satisfy
all parity checks at any specific time prior to the iteration limit
T . More precisely, suppose the decoder is in an initially correct
state, i.e., initially all xk = ĉk. When the inversion function
is computed for some xk, there is a non-zero probability of
erroneous flipping due to the noise contribution:

pf,k = Pr

⎛
⎝xkyk + w

∑
i∈M(k)

si + qk < θ

⎞
⎠ . (4)

Now suppose that pf is the least among the pf,k values among
all symbols. Then the probability PF that at least one erroneous
flip occurs in an iteration is bounded by

PF ≥ 1− (1− pf)
n. (5)

This probability approaches one as n → ∞ for any pf > 0.
For a sufficiently large code, it would be unlikely to satisfy all
checks in a small number of iterations, even if all decisions are
initially correct.

This problem may be compensated by introducing an up/
down counter at the output of every xk. The counter consists
of a running sum Xk for each of the N output decisions. At the
start of decoding, the counters are initialized at zero. During
each decoding iteration, the counter is updated according to
the rule

Xk(t+ 1) = Xk(t) + xk(t) (6)

If the stopping criterion is met (i.e., all parity checks are
satisfied) then xk is output directly. If the iteration limit T
is reached without satisfying the stopping condition, then the
smoothed decision is xk = sign(Xk). In practice, the summa-
tion in (6) can be delayed until the very end of decoding.
This saves activity in the up/down counter and hence reduces
power consumption. Results in the sequel are obtained with
summation only over the interval from t = T − 64 up to T .
When using this procedure, we refer to the algorithm as the
“smoothed” M-GDBF method, or in shortened form as SM-
NGDBF.

IV. SIMULATION RESULTS

A. BER Performance

The proposed NGDBF algorithms were simulated on an
AWGN channel with binary antipodal modulation using various

3390 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

Fig. 1. BER versus Eb/N0 curves for S-NGDBF with T = 100 and η = 1.0
using the rate 1/2 PEGReg504x1008 code simulated over an AWGN channel
with binary antipodal modulation. The newly proposed S-NGDBF algorithm is
indicated by an asterisk (∗).

regular LDPC codes selected from MacKay’s online encyclo-
pedia [26] (all selected codes are partially irregular in parity-
check degree, but are still considered regular codes). For each
code, the NGDBF decoding parameters, including θ, λ, η, and
w, were optimized one at a time, holding fixed values for all
but one parameter. The free parameter was adjusted using a suc-
cessive approximation procedure, repeating the BER simulation
in each trial, and iteratively shrinking the search domain until
the best value was found. This procedure was repeated for each
parameter to obtain good-performing parameters.

All NGDBF algorithms were evaluated for the rate 1/2
(3, 6) regular LDPC code identified as PEGReg504x1008 in
MacKay’s encyclopedia, which is commonly used as a bench-
mark in previous papers on WBF and GDBF algorithms.
Because our primary attention is directed at SM-NGDBF, ad-
ditional simulations were performed to verify this algorithm on
the rate 1/2 regular (4, 8) code identified as 4000.2000.4.244,
and on the rate 0.9356 (4, 62) code identified as 4376.282.
4.9598. Unless stated otherwise, all simulations use double pre-
cision floating-point arithmetic, channel samples are saturated
at Ymax = 2.5, and the syndrome weighting is w = 0.75.

In each simulation, comparison results are provided for the
BP algorithm with 250 iterations, for the MS algorithm with
5, 10, and 100 iterations. Additional appropriate comparisons
are described for each result presented in this section. The MS
results presented here represent the strict MS algorithm, i.e.,
they do not reflect performance for offset-MS or normalized-
MS. For the M-GDBF results, the mode-switching procedure
was used to obtain the best performance in all cases.

To verify the beneficial effect of added noise, we first verified
the S-NGDBF algorithm for the PEGReg504x1008 code with
T = 100. The results are shown in Fig. 1, with comparative re-
sults for S-GDBF (T = 100), WBF (T = 100), MS and BP. The
results show a gain approaching 1 dB for S-NGDBF compared
to S-GDBF. This provides a basic empirical validation for the
NGDBF concept.

Simulation results for the M-NGDBF algorithm are shown
in Fig. 2. The results in this figure were obtained for the
PEGReg504x1008 code with T = 100. The M-NGDBF

Fig. 2. BER versus Eb/N0 curves for M-NGDBF with T = 100 using the
rate 1/2 PEGReg504x1008 code simulated over an AWGN channel with binary
antipodal modulation. The newly proposed M-NGDBF algorithms (adaptive
and non-adaptive) are indicated by asterisks (∗). Several other known algo-
rithms are shown for comparison, including M-GDBF (T = 100), AT-GDBF
(T = 100) and H-GDBF with escape process (T = 300).

Fig. 3. BER versus Eb/N0 curves for SM-NGDBF and H-GDBF with T =
300 using the rate 1/2 PEGReg504x1008 code over an AWGN channel with
binary anitpodal modulation. The proposed algorithms are indicated by an
asterisk (∗).

results are shown for the non-adaptive case (λ=1.0) and for
the adaptive-threshold case with initial threshold θ = −0.9
and η=0.95, where η is the noise-scale parameter described
in Section III-C. For SNR<3.5 dB, the best performance
was obtained with an adaptation parameter of λ = 0.99. At
higher SNR values, λ was decreased to 0.97 at 3.5 dB, 0.94
at 4.0 dB, and 0.9 at 4.25 dB and 4.5 dB. The performance of
adaptive M-NGDBF is nearly identical to that of H-GDBF with
escape process, which requires T = 300, and is also very close
to MS with T = 5.

Results for the SM-NGDBF algorithm are shown in Fig. 3.
For SM-NGDBF with T = 100, performance was equal to
M-NGDBF (i.e., there was no gain from smoothing when T =
100), so these results are not shown. The most improved results
were obtained with T = 300, the same number of iterations
used for H-GDBF with escape process. SM-NGDBF is found
to achieve about 0.3 dB of coding gain compared to H-GDBF,
for the same value of T . Compared to M-NGDBF, SM-NGDBF
is found to achieve about 0.3 dB of coding gain, at the cost of

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3391

Fig. 4. BER versus Eb/N0 curves for SM-NGDBF with T = 300 using the
rate 1/2 4000.2000.4.244 code over an AWGN channel with binary antipodal
modulation. These results were obtained using θ=−0.9, λ=0.99, and η va-
ried between 0.625 at low SNR (below 2.8) and 0.7 at higher SNR (above 2.8).

Fig. 5. BER versus Eb/N0 curves for SM-NGDBF with T = 300 using
the rate 0.9356 4376.282.4.9598 code over an AWGN channel with binary
antipodal modulation. Several other algorithms are also shown for comparison.
These results were obtained using θ = −0.7, η = 0.65 and λ = 0.993. The
dynamic range and syndrome weighting were also modified for this simulation,
using Ymax = 2.0 and w = 0.1875.

additional iterations (T = 300 for SM-NGDBF vs T = 100 for
M-NGDBF).

To confirm robust performance of the SM-NGDBF algo-
rithm, it was simulated for two other LDPC codes, yielding
the results shown in Figs. 4 and 5. These results confirm that
SM-NGDBF achieves good performance on codes with higher
variable-node degree (in the case of Fig. 4) and for codes
with rates above 0.9 (in the case of Fig. 5). In both cases,
SM-NGDBF remains competitive with MS decoding.

Among the previously reported bit-flip algorithms, the best
performance was achieved by Wadayama et al.’s H-GDBF
algortihm with escape process. Haga and Usami’s IGDBF
achieved nearly identical performance to H-GDBF. Both
H-GDBF and IGDBF allow a maximum of 300 iterations to
achieve the best performance. Our results indicate that the
adaptive M-NGDBF algorithm equals the H-GDBF perfor-
mance with a maximum of only 100 iterations. Furthermore
SM-NGDBF exceeds the H-GDBF performance when

Fig. 6. Average number of iterations versus Eb/N0 curves for existing GDBF
and proposed NGDBF algorithms using PEGReg504x1008 code in an AWGN
channel, maximum iterations limited to 100 except for SM-NGDBF and
H-GDBF, which have T = 300. The newly proposed algorithms are indicated
by an asterisk (∗).

300 iterations are allowed. These results may be interpreted in
two ways. First, the adaptive M-NGDBF algorithm requires
fewer iterations and is less complex than H-GDBF, but achieves
the same performance (Fig. 2)—hence it can be interpreted
as a gain in speed and complexity over H-GDBF. Second, by
using additional iterations with output smoothing, the speed
improvement can be traded for additional coding gain (Fig. 3).

B. Average Iterations per Frame

Fig. 6 shows the average number of iterations per frame as
a function of Eb/N0, using the PEGReg504x1008 code. This
plot considers results for M-NGDBF and S-GDBF with T =
100, and for the SM-NGDBF algorithm which has T = 300.
The comparison curves show previously known GDBF algo-
rithms with T = 100, and also H-GDBF with T = 300. For the
H-GDBF algorithm, the full iteration profile was not disclosed,
but it was stated to be 25.6 iterations at an SNR of 4 dB [9]
(shown as a single point in Fig. 6). From the plot, we see
that the S-NGDBF provides no benefit in iteration count com-
pared to previous algorithms. The M-NGDBF algorithms are
comparable to previous alternatives; only the Early Stopping
(ES) AT-GDBF algorithm converges faster than M-NGDBF,
and this advantage disappears at higher SNR. At high SNR, i.e.,
Eb/N0 ≥ 5 dB, the average iteration count is nearly the same
for the M-NGDBF, SM-NGDBF, and ES-AT-GDBF methods.

At high SNR, the SM-NGDBF algorithm has the same aver-
age iterations as M-NGDBF. Although SM-NGDBF requires
T = 300—three times higher than M-NGDBF—on average
these algorithms require the same number of iterations when
operating at the same SNR. As an alternative comparison, we
compare the average number of iterations needed to achieve a
given BER performance. Fig. 7 shows the average iterations per
frame plotted against the measured BER for M-NGDBF and
SM-NGDBF. When compared for the same BER, the number
of iterations needed for SM-NGDBF is on average double the
number of iterations required for M-NGDBF. This result shows
that the performance gain of SM-NGDBF comes at the cost of
increased average iterations.

3392 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

Fig. 7. Average number of iterations versus BER for the proposed M-NGDBF
and SM-NGDBF algorithms.

Fig. 8. Threshold sensitivity of the non-adaptive M-NGDBF algorithm with
parameters λ = 1.0, T = 100, η = 1.0 for the PEGReg504x1008 code.

Since the average number of iterations for SM-NGDBF tends
to be small, the smoothing operation is only used in a fraction
of received frames. This is because the smoothing operation is
only applied when the number of iterations exceeds T − 64.
For the PEGReg504x1008 code, the smoothing operation was
found to be required for only 6.1% of decoded frames when
simulated at an SNR of 2.75 dB, 1.45% of frames at 3.0 dB,
0.51% of frames at 3.25 dB, and 0.16% of frames at 3.5 dB.

C. Sensitivity to Threshold Parameter θ

The optimal threshold values for the non-adaptive
M-NGDBF algorithm (i.e., with λ = 1.0) were found
empirically through a numerical search. Results from that
search are shown in Fig. 8 for the PEGReg504x1008 code,
in which the algorithm’s BER is shown as a function of the
threshold parameter. From this figure, it can be seen that the
M-NGDBF algorithm is highly sensitive to the value of θ,
which may prove problematic if the algorithm is implemented
with fixed-point arithmetic at lower precision.

The adaptive M-NGDBF algorithm was simulated in a sim-
ilar way, and the results shown in Fig. 9 reveal much less

Fig. 9. Threshold sensitivity of adaptive M-NGDBF algorithm with parame-
ters λ = 0.9, T = 100, η = 1.0 for the PEGReg504x1008 code.

Fig. 10. Average iterations for adaptive M-NGDBF as a function of the
initial threshold parameter θ for the PEGReg504x1008 code. The remaining
parameters are λ = 0.9 and T = 100.

sensitivity to θ. The reduced threshold sensitivity is expected
because the local thresholds θk are iteratively adjusted during
decoding. Since it will take some number of iterations for the
θk to settle, the optimal initial threshold should be chosen as the
value that minimizes the average iterations per frame. Fig. 10
shows the average number of iterations per frame as a function
of θ. The iteration count is seen to be only weakly a function of
θ, with the minimum appearing at θ = −0.6.

For adaptive M-NGDBF, the optimal value of λ is found
through a similar empirical search. Results from that search are
shown in Fig. 11 for the PEGReg504x1008 code. These results
reveal a smooth relationship between BER and λ, allowing the
optimal value of λ to be found reliably. The sensitivity revealed
in Fig. 11 may prove to be difficult for implementations with
quantized arithmetic; this problem is analyzed and resolved in
Section V-A.

D. Sensitivity to Perturbation Variance

The NGDBF algorithms’ performance is sensitive to the
precise variance of the noise perturbation terms. As with the
θ and λ parameters, the optimal value of the noise-scale

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3393

Fig. 11. Sensitivity of performance for M-NGDBF relative to the global
adaptation parameter λ, with parameters θ = −0.9, T = 100, η = 0.96, for
the PEGReg504x1008 code.

Fig. 12. Sensitivity of performance for SM-NGDBF relative to the noise scale
parameter η.

parameter η is found through an empirical search. This search
may produce different values for different codes and at different
SNR values. Example results are shown in Fig. 12 for the SM-
NGDBF algorithm simulated on the PEGReg504x1008 code.
These results show that the optimal η is typically somewhat less
than one, and tends to increase toward one at higher SNR.

E. Effects of Quantization on NGDBF

In this section we consider the performance of the
M-NGDBF algorithm when implemented with limited preci-
sion. The algorithm was simulated with quantized arithmetic
using Q bits by applying a uniform quantization with NQ =
2Q levels in the range [−Ymax, Ymax] (zero is excluded). The
quantized channel sample ỹk is given by the quantization
function g(y):

g(y) = sign(y)

(⌊
|y|NQ

2Ymax

⌋
+

1

2

)(
2Ymax

NQ

)
. (7)

The quantization function is used to obtain quantized values.
The vector of quantized channel samples is denoted by ỹ,
and each quantized channel sample is ỹk = g(yk). The same
function is used to obtain the quantized inversion threshold,
θ̃ = g(θ), the noise perturbation, q̃k = g(qk), and the syndrome

Fig. 13. BER versus Eb/N0 curves for quantized implementations of the pro-
posed M-NGDBF and SM-NGDBF algorithms, using the PEGReg504x1008
code on an AWGN channel with binary antipodal modulation. Solid curves
indicate results for M-GDBF with T = 100, and dashed curves indicate results
for SM-NGDBF with T = 300.

weight parameter, w̃ = g(w). After quantization, the inversion
function is

Ẽk(t) = xk(t)ỹk + w̃
∑

i∈M(k)

si + q̃k(t). (8)

The adaptive M-NGDBF and SM-NGDBF algorithms were
simulated using the quantized inversion function with the
PEGReg504x1008 code. The BER results are shown in Fig. 13.
The quantized simulations reported in this section also use
quantized threshold adaptation and the noise sample reuse
method described in Section V. The results show that the al-
gorithm is very close to unquantized performance when Q=3,
and the best BER performance is reached when Q = 4. There
is a diminishing benefit to BER when Q > 4, however an
additional effect is observed in the Frame Error Rate (FER)
results shown in Fig. 14. Here we see an “error flare” ef-
fect for all cases for M-NGDBF, i.e., when output smoothing
is not used. The flare improves when Q is increased. For
SM-NGDBF, i.e., when output smoothing is used, the flare evi-
dently does not occur at all, or occurs at a very low FER. These
simulations were performed with parameter values Ymax =
1.7− 1.75, λ = 0.98− 0.99, θ = −0.7, and w = 0.67− 0.75.
Parameter values were adjusted within these ranges to optimize
for BER performance.

V. ARCHITECTURE CONSIDERATIONS

This section considers practical concerns for implementing
the adaptive SM-NGDBF algorithm. These concerns include
limited-precision arithmetic and architectural simplifications.

A. Implementing Threshold Adaptation

In Section IV, threshold adaptation was shown to provide
a significant performance improvement to the M-NGDBF and
SM-NGDBF algorithms. When threshold adaptation is ap-
plied, as described in Section III-D, each symbol node must
independently implement threshold scaling by parameter λ

3394 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

Fig. 14. FER versus Eb/N0 curves for quantized implementations of the pro-
posed M-NGDBF and SM-NGDBF algorithms, using the PEGReg504x1008
code on an AWGN channel with binary antipodal modulation. Solid curves
indicate results for M-GDBF with T = 100, and dashed curves indicate results
for SM-NGDBF with T = 300.

during every iteration. If implemented with arbitrary precision,
this would require implementing multiplication and division
operations. When the algorithm is implemented with limited
precision, however, only a small number of quantized threshold
values are required. The threshold adaptation procedure can
therefore be expressed as

θk(t+ 1) =

{
θk(t)λ xk not flipped
θk(t) xk flipped

(9)

If quantized arithmetic is used with low precision, and if λ is
close to one (as is commonly the case), then it is possible that
g(θkλ) = θk, where g(·) is the quantization function defined
by (7). This case represents a failure of threshold adaptation
because the local threshold is never able to change.

To avoid adaptation failures in quantized arithmetic, we
introduce the symbol uk as a counter for non-flip events. The
counter is initialized at the start of decoding as uk(t = 0) = 0,
and the counter is incremented according to the rule

uk(t+ 1) = uk(t) +
1 + δk(t)

2
(10)

where δk(t) = sign(Ẽk(t)− θ̃k(t)). Then the threshold at iter-
ation t can be expressed as

θk (uk(t)) = θλuk(t), (11)

so the quantized threshold value is then given by

θ̃k (uk(t)) = g
(
θλuk(t)

)
. (12)

In a finite-precision implementation, the quantized threshold
θ̃k(t) only changes for certain values of uk. We say that an
adaptation event occurs for some uk(t) = τ̃ if θ̃(τ̃) �= θ̃(τ̃ −
1). Since uk can only be changed by zero or one during
any iteration, the threshold adaptation can be implemented
by storing a pre-computed list of adaptation events (θ̃, τ̃).
Threshold adaptation can thus be implemented using a simple
combinational logic circuit that detects when uk = τ (i) and
outputs the corresponding θ̃ = θ̃(i).

TABLE II
THRESHOLD ADAPTATION EVENTS FOR θ = −0.9, λ = 0.99, Ymax = 2.5

Table II shows threshold adaptation events for an example
design with θ = −0.9, λ = 0.99, T = 300, and Ymax = 2.5.
The table shows the threshold values θ̃(i) and the corresponding
adaptation level τ̃ (i) at which the threshold value becomes
active. Only two unique threshold values occur when Q = 3;
three values occur when Q = 4; and six values occur when
Q = 5. There is typically a small number of distinct threshold
values, because the values only span a small portion of the
quantization range.

B. Simplification of Noise Sample Generation

The NGDBF algorithms require generating a Gaussian dis-
tributed random number at each symbol node during each
iteration. Gaussian random number generators add significant
hardware complexity. To simplify the implementation, we con-
sidered using only a single Gaussian Random Number Genera-
tor (RNG). The random samples are shifted from one symbol
node to the next using a shift-register chain, as shown in
Fig. 15. This method requires a powerup initialization so that all
shift registers are pre-loaded with random samples. Simulations
were performed using this method to obtain the results shown
in Figs. 13 and 14, which come very close to the floating-point
performance.

As a further simplification, uniform noise samples may be
used in place of Gaussian samples, but with an associated
performance loss. When repeating the cases from Figs. 13 and
14 using uniformly distributed noise samples, a performance
loss of 0.1–0.2 dB was observed. Because this performance
loss is undesirable, in the remainder of this paper we will only
consider Gaussian distributed noise samples.

C. Complexity Analysis

The foregoing considerations are combined to arrive at the
top-level architecture shown in Fig. 15. In addition to the shown
architecture, a channel SNR estimator is required to obtain σ.
The symbol node implementation is shown in Fig. 16 and the
check node implementation is shown in Fig. 17. The check node
implementation is uncomplicated and standard, requiring only
dc − 1 binary XNOR operations per parity-check node. The
symbol node requires one ordinary counter and one up/down
counter, a (θ̃, τ̃) memory and a signed adder with three Q-
bit inputs and dv single-bit inputs. Four single-bit operations
are also required, including a toggle flip-flop, a sign multiplier
(equivalent to an XNOR operation) and two inverters.

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3395

Fig. 15. Architecture of the NGDBF decoder. Gaussian-distributed noise
samples are produced serially at the output of a Random Number Generator
(RNG). The RNG requires inputs η and N0, and the latter must be generated by
a channel parameter estimator (not shown). A shift-register (SR) chain is used
to distribute the random Gaussian samples that serve as the qk perturbations.
The symbol Pi indicates the set of syndrome messages that arrive at symbol
node Si, corresponding to the index set N (i). The symbol Xj is the set
of messages that arrive at parity-check node Pj , corresponding to the index
set M(j).

Fig. 16. Symbol node schematic. F1 is a toggle flip-flop. The si messages are
locally indexed. The sgn operator refers to sign-bit extraction. The multiplica-
tion ⊗ is binary, as it applies only to the sign bit of ỹk .

Fig. 17. Check node schematic showing a tree of XNOR operations over dc −
1 input messages. The xi messages are locally indexed.

The most complex operation is the multi-input adder. To
remove the weight parameter w̃ from the syndrome inputs, we
require that all ỹk, q̃k, and θ̃ values are pre-scaled by the factor
w̃−1 (this pre-scaling is not expressly indicated in Fig. 16).
Then the scaled inversion function is

Ẽkw̃
−1 = xkỹkw̃

−1 + q̃kw̃
−1 +

∑
i∈M(k)

si (13)

and the flip decision can be expressed as the sign of the
difference δk = Ẽkw̃

−1 − θ̃kw̃
−1. This detail allows for the

simplified adder implementation shown in Fig. 16. The effec-
tive complexity of this operation is that of two Q-bit binary
adders and a dv-bit adder.

Based on this proposed architecture, it is possible to make
some high-level complexity comparisons against other related
decoding methods. When making comparisons at this level,
it is not possible to make strong predictions about power
consumption, throughput, gate count or energy efficiency, but
it is possible to make some interesting observations about the
algorithms’ comparative features.

1) Comparison With Previous GDBF Algorithms: Previ-
ously reported GDBF algorithms do not depend on the channel
SNR, so NGDBF introduces a fixed complexity cost (i.e., the
cost is independent of the code’s length) because it requires
a channel parameter estimator. At minimum, all GDBF algo-
rithms require dc − 1 XNOR operations in each parity-check
node. At the symbol nodes, they require addition over the dv
single-bit syndromes in each symbol node, which has gate com-
plexity equivalent to a dv-bit adder. A second Q-bit addition is
needed to incorporate the channel information. In the S-GDBF
algorithm, the minimum metric must be found, requiring n− 1
comparisons. Since a comparison can be implemented using
a signed adder, we say that the S-GDBF algorithm requires a
total of 3n− 1 additions and m(dc − 1) XNOR operations. In
the M-GDBF algorithm, the global comparison is not required,
but a comparison must still be made in each symbol node to
implement the threshold operation, hence M-GDBF requires
3n additions. The SM-NGDBF algorithm requires 3n adders,
and also requires an additional 2n counters (a counter requires
fewer gates than an adder). A single RNG module and a
channel parameter estimator are also required, but these are
fixed overhead that does not scale with n.

2) Comparison With the MS Algorithm: The MS algorithm
does not require channel SNR information. NGDBF again
incurs a fixed complexity penalty due to channel parameter
estimation. In a single iteration, the MS algorithm requires at

3396 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

least 2dv additions for every symbol node. For every parity-
check node, 2dc comparisons and 2dc − 1 XNOR operations
are needed. MS decoders typically allow an internal dynamic
range that exceeds the channel quantization of Q bits, so the
arithmetic is assumed to be quantized on Q+D bits, where
D ≥ 0 is the number of extra bits to accommodate the larger
dynamic range. The messages exchanged between symbol and
parity-check nodes are also comprised of Q+D bits.

The gate requirements are clearly less for SM-NGDBF com-
pared to MS. Based on the foregoing analysis, and using the
(3, 6) PEGReg504x1008 code as an example, SM-NGDBF re-
quires 75% fewer additions and comparisons. In terms of mes-
sage routing, all GDBF algorithms exchange a total of n+m
single-bit signals in each iteration, compared to 2ndv(Q+D)
for MS. In the example code, assuming channel quantization
with Q = 5 and D = 3, this means the required signal routing
is reduced by 78.27%. Based on these comparisons, we may
conclude that the GDBF algorithms (including SM-NGDBF)
require substantially less circuit area than MS. This analysis is
not sufficient to evaluate throughput or power efficiency, since
those figures depend on a variety of circuit-level considerations
such as critical path delay and average switching activity in
combination with the average number of iterations per frame.

Another aspect of complexity is the algorithms’ decoding
latency. On first inspection, we observe that the MS algorithm
requires much fewer iterations than the SM-NGDBF algorithm.
For example, only 4.1 iterations are needed on average for
MS decoding (assuming T = 10 with stoppping condition)
on the PEGReg504x1008 code, operating at 3.5 dB. The
SM-NGDBF algorithm, at the same SNR, requires an average
of 47 iterations. While it appears that latency is much greater for
SM-NGDBF, we must also account for the latency per iteration
in the two algorithms. In typical implementations, MS de-
coders utilize multiple clock cycles per iteration; for example,
Zhang et al. used 12 clock cycles per iteration [27], which
we use here as a representative value. Due to SM-NGDBF’s
comparatively low gate and routing complexity, we expect
an SM-NGDBF decoder to require only one clock cycle per
iteration. We may therefore estimate the average latency of MS
decoding at 49 clock cycles, compared to 47 clock cycles for
SM-NGDBF. We therefore anticipate that an eventual imple-
mentation of SM-NGDBF could be comparable to previous MS
implementations in terms of total latency.

3) Comparison With Stochastic Decoders: The M-NGDBF
algorithm bears some similarity to stochastic LDPC decoders,
as was mentioned in Section II. Stochastic LDPC decoders
are known to provide performance within 0.5 dB of BP while
exchanging single-bit messages with low-complexity logic pro-
cessing. Stochastic decoders also require channel SNR estima-
tion, so they share this fixed complexity cost with NGDBF.
The most efficient stochastic decoding strategy is the Tracking
Forecast Memory (TFM) described by Tehrani et al. [18].
The TFM-based decoder requires 2dc − 1 XOR operations at
each parity-check node, nearly twice the number of XNOR
operations needed by GDBF algorithms. At each symbol node,
2dv Q-bit adders and dv comparisons are used, for a total of
3ndv equivalent additions. Some additional supporting logic
is also required, including a Linear Feedback Shift Register

(LFSR) to generate random bits, and a control circuit to regulate
the inputs to the TFM adder.

Tehrani et al. also described a reduced-complexity Majority
TFM (MTFM) design which reduces the required additions to
approximately 3n [17], making it very close to SM-NGDBF.
The MTFM decoder exchanges a total of 2ndv single-bit mes-
sages per iteration, compared to n+m for GDBF algorithms.
For the PEGReg504x1008 code, SM-NGDBF exchanges about
50% fewer single-bit messages than an MTFM stochastic de-
coder for the same code. In terms of total iterations, MTFM-
based stochastic decoders require about 20–40 iterations at
higher SNR [17], whereas SM-NGDBF requires a comparable
number at 30–50 iterations for similar SNR values. We may
conclude that these algorithms have very similar complexity,
but SM-NGDBF should require less circuit area due to the
reduced message signal routing, and because fewer XNOR
operations are required.

VI. CONVERGENCE ANALYSIS

The NGDBF algorithms are built on the more general con-
cept of noise-perturbed gradient descent optimization. The
optimization task is the maximum likelihood (ML) decoding
problem specified by (1), with the corresponding objective
function f(x) defined by (2), as described in Section III-B.
The objective function is a non-linear function and has many
local maxima. For gradient-descent optimization methods, local
maxima are the major source of sub-optimality. NGDBF rests
on the hypothesis that the noisy perturbation is beneficial for
escaping from local maxima, thereby improving the likelihood
of obtaining the correct global maximum. This section exam-
ines that hypothesis by analyzing a detailed case example of
convergence dynamics, in which NGDBF is compared to other
GDBF algorithms. We expect that the algorithms’ comparative
convergence errors should follow the same order as their com-
parative BER performance.

All GDBF and NGDBF algorithms attempt to maximize
f(x) by iteratively adjusting x. By using the stopping con-
dition requiring that all parity-checks are satisfied—i.e., that∏m

i=1(1 + si)/2 = 1—the GDBF algorithms enforce the con-
straint that candidate solutions are codewords in Ĉ, so long
as decoding completes before reaching the maximum iteration
count. For any ML-decodable case, the original transmitted
codeword ĉ ∈ Ĉ should also be the ML solution. Then the
global maximum for f(x) is given by

fmax =
n∑

k=1

ĉkyk +
m∑
i=1

∏
j∈N (i)

ĉj

=

n∑
k=1

ĉkyk +m. (14)

Fig. 18 shows the behavior of the objective functions evalu-
ated for several algorithms as a function of iterations. Results
are shown for the original GDBF and the proposed S-NGDBF
algorithms for a simulated ML-decodable case with Eb/N0

value of 4 dB. In the case of the S-GDBF algorithm, the
objective function value gradually increases with the number of

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3397

Fig. 18. Convergence behavior of the S-GDBF and S-NGDBF algorithms for
a single frame sampled at Eb/N0 = 4 dB. The true maximum is fmax =
1523. The S-GDBF algorithm is able to obtain a maximum value of 1514.
S-NGDBF obtains the global maximum in this case.

Fig. 19. Convergence behavior of the M-GDBF and M-NGDBF algorithms
for a single frame sampled at Eb/N0 = 4 dB. Threshold adaptation is used
in the case of M-NGDBF algorithm, with λ = 0.99. The true maximum is
fmax = 1508. The M-GDBF algorithm is able to obtain a maximum value
of 1502; the AT-GDBF algorithm is able to obtain a value of 1497; M-NGDBF
obtains the global maximum in this case.

iterations. However, after 60 iterations the rise eventually stops
and the objective function flattens out. This flat part corresponds
to a local maximum. S-NGDBF reaches the global maximum
value after 90 iterations, indicating that the S-NGDBF algo-
rithm is able to escape from the spurious local maximum.
A similar comparison is shown in Fig. 19 for the M-GDBF
and M-NGDBF algorithms. The figure demonstrates that, for
this example, M-GDBF is stuck in a local maximum, but
M-NGDBF is able to escape from the local maximum and
obtain the global solution.

The results shown in Figs. 18 and 19 represent single cases,
and only partially demonstrate the superior convergence of
NGDBF algorithms. To gain more insight into the convergence
properties, we performed statistical analysis on the objective
functions of several GDBF and NGDBF algorithms over many
frames. For each algorithm, the convergence error was mea-
sured at the final iteration T and averaged over F transmitted
frames. The convergence error is defined by

εalg =
1

F

F∑
i=1

(
fi

(
x(i)(T)

)
− fmax,i

)
. (15)

where the subscript “alg” is replaced with the appropriate
algorithm name, i is the index of a unique sample frame,

Fig. 20. Average convergence error for several GDBF and NGDBF algo-
rithms at Eb/N0 = 5 dB. Threshold adaptation is used for M-NGDBF, with
λ = 0.99. For all algorithms, the maximum number of iterations is T = 100.

and the superscripted x(i)(T) indicates the solution obtained
for the ith frame. The subscript i is added to f and fmax to
emphasize their dependence on the received channel samples.
For the ith sampled frame, the transmitted message is ĉ(i), the
received channel samples are y(i), and the objective function is
maximized by

fmax,i =

n∑
k=1

ĉ
(i)
k y

(i)
k +m. (16)

Fig. 20 shows the average convergence error values for the
tested algorithms at Eb/N0 of 5 dB. The total number of frames
F is 100. From Fig. 20, we see that the average convergence
error for the proposed NGDBF algorithms is lower compared
to the average error of the previously known GDBF algorithms.
This shows that the NGDBF algorithms are more likely, on
average, to arrive in the neighborhood of the correct solution,
and are therefore more likely to have a better error correcting
performance than the other GDBF algorithms.

VII. LOCAL MAXIMUM LIKELIHOOD INTERPRETATION

The GDBF and NGDBF algorithms are developed based
on heuristic approaches for combinatorial optimization of the
global ML objective function. In this section, we provide a
theoretical analysis to motivate the use of threshold adaptation
and syndrome weighting. To explain the beneficial effects of
these heuristics, we consider the Local Maximum Likelihood
(LML) bit-flip decision at the symbol node level given the local
information from the channel and adjacent partial syndrome
values. The LML analysis predicts a pattern by which the
flip decisions should evolve as the decoder converges toward
an error-free codeword. When using threshold adaptation and
syndrome weighting heuristics with a GDBF algorithm, the
evolution of flip decisions is brought into closer correspondence
with the LML decisions. During the initial iterations, LML
decisions are found to be mainly determined by the channel
information. In later iterations, the LML decisions are more
heavily influenced by the partial syndrome values. We show
that this behavior is very close to that of GDBF under threshold

3398 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

adaptation. We further propose that GDBF can be improved
by introducing a weight factor to the syndrome components,
so that the local flip decisions evolve similarly to the LML
decisions.

In this section, we introduce one minor change in notation.
Since only scalar values are considered in this section, bold-
faced letters are used to indicate random variables instead of
vector quantities. We consider the problem of gradient descent
decoding on a local channel sample ỹk and a set of dv adjacent
syndromes si, i ∈ M(k). The channel sample is assumed to
be quantized using the quantization procedure described in
Section IV-E. For a binary-input AWGN channel, we may
obtain the probability masses for ỹk conditioned on the trans-
mitted symbol ĉk.

Pr (ỹk|ĉk = −1) =F−1

(
ỹ+k

)
− F−1

(
ỹ−k

)
, (17)

Pr (ỹk|ĉk = +1) =F1

(
ỹ+k

)
− F1

(
ỹ−k

)
, (18)

where ỹ+k and ỹ−k are the upper and lower boundary points of
the quantization range that contains ỹk, and F−1 and F1 are
cumulative Gaussian distribution functions with variance σ2 =
N0/2 and means −1 and +1, respectively.

Initially, the decision xk(t = 0) has error probability p
(0)
e =

P (xk �= ĉk) given by pe = F1(0). Recalling that the syndrome
values are given by si =

∏
j∈N (i) xj , we have si = xkνik

where νik is the partial syndrome at parity-check i, excluding
the influence of symbol node k. Finally, we define Sk as the
penalty term Sk =

∑
i∈M(k) si. The penalty term can also be

expressed as Sk = (
∑

i∈M(k) νik)xk.
From this we directly obtain the partial syndrome error prob-

abilities pc = Pr(νik �= ĉk) by enumerating over combinations
in which an odd number of symbol errors has occurred out of
dc − 1 independent, identically distributed neighbors:

pc =

	 dc−1
2
∑

j=1

(
dc − 1

2j − 1

)
(1− pe)

dc−2jp2j−1
e . (19)

The probability P (ne) of having ne errors among the partial
syndrome values νik is thus:

P (ne) =

(
dv
ne

)
pne
c (1− pc)

dv−ne . (20)

If xk = ĉk, then ne errors give a penalty Sk = dv − 2ne

(summation of dv − ne syndrome +1 and ne syndromes −1).
Symmetrically, if xk = −ĉk, then Sk = 2ne − dv . In other
words, knowing the observation Sk, we can deduce:

P (Sk|xk = ĉk) = P (ne = (dv − Sk)/2) (21)

and

P (Sk|xk = −ĉk) = P (ne = (dv + Sk)/2) (22)

Then the LML decision is

x̂k,LML = argmax
xk

Pr(ỹk|xk) Pr(Sk|xk). (23)

Fig. 21. Example of evolution of the LML flip matrix Φ for a (3, 6) LDPC
code, with Q = 4 and an Eb/N0 = 3.50 dB. The initial value of Pe is 0.0672.
Since Φ is symmetric with Φ(i, j) = Φ(NQ + 1− i, dv + 2− j), only the
top NQ/2 rows are shown.

To relate the LML result to bit flipping algorithms, it can be
expressed as an LML flip decision φ, defined by

φ(xk, ỹk, Sk) = sign log

(
Pr(ỹk|xk) Pr(Sk|xk)

Pr(ỹk| − xk) Pr(Sk| − xk)

)
.

(24)
If φ = −1, then the optimal decision is to flip xk.

To visualize the LML behavior on a quantized channel,
we arrange the decisions in a flip matrix Φ that expresses
all possible states; the rows of Φ correspond to the possible
channel sample values, and the columns correspond to the
possible values of Sk. There are dv + 1 possible values of
Sk : −dv,−dv + 2, . . . , dv − 2, dv . We index these values in
ascending order as S(j)

k , j = 1, 2, . . . , dv + 1. The possible ỹk

values are similarly indexed in ascending order as ỹ
(i)
k , i =

1, 2, . . . , NQ. Then Φ is an NQ × (dv + 1) matrix with entries

φi,j = φ(xk, ỹ
(i)
k , S

(j)
k). For a given locally received ỹk and Sk,

if the corresponding φij = −1, then the corresponding decision
xk should be flipped.

The LML flip decision depends on the partial syndrome
error probabilities, which change in successive iterations. To
understand how the LML decision evolves across iterations,
we suppose that the bit error probability is a function of the
iteration number, t, and that pe(t) is decreasing with successive
iterations. As the error probability decreases, the flip matrix is
found to evolve from an initial pattern in which decisions are
heavily dependent on ỹk, with increasing dependence on Sk in
later iterations as pe(t) decreases toward zero. An example of
this evolution is shown in Fig. 21, for the case xk = 1 with
parameters Ymax = 1.5, σ = 0.668, Q = 4, and dv = 3. For a
(3, 6) LDPC code, this corresponds to Eb/N0 = 3.50 dB.

With threshold adaptation, the GDBF algorithm’s behavior
is similar to the LML flip matrix. Initially, the threshold θ is
set to a significantly negative value, say θ = −1.0. For a given
set of parameters, we may obtain a matrix E of values for
the inversion function, with members Ei,j = ỹ

(i)
k + S

(j)
k . By

applying the threshold θ to all the elements of E, we obtain
the flip matrix for the GDBF algorithm. As the threshold is
adapted toward zero, the flip matrix evolves to place increased
weight on the syndrome information, similar to the LML flip
matrix evolution. The GDBF flip matrices do not correspond
perfectly to the LML predictions. To bring closer agreement,
a weight factor is introduced, giving a modified weighted
inversion function

Ẽk = xkỹk + w
∑

i∈M(k)

si + q̃k, (25)

SUNDARARAJAN et al.: NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES 3399

Fig. 22. Evolution of the flip matrix for the weighted GDBF algorithm with
threshold adaptation. Use of threshold adaptation and syndrome weighting
achieves qualitative agreement with the LML flip decisions in Fig. 21.

The best value for w is found empirically and may be code
dependent. Based on the parameters σ = 0.668, Ymax = 1.5,
w = 0.75, and dv = 3, the flip matrix evolution corresponding
to Ẽk is shown in Fig. 22.

The relationship between LML and the GDBF heuristics is
not an exact correspondence. The LML analysis predicts the
desirable behavior of the flip matrix over time during a success-
ful decoding event. When GDBF is augmented by introducing
the threshold adapation and syndrome weighting heuristics, its
behavior is brought into approximate correspondence with the
LML prediction. This provides a new theoretical motivation for
using these heuristic methods, which has not been addressed in
the previous literature.

VIII. CONCLUSION

This paper introduced a collection of novel Noisy GDBF
algorithms, based on a noisy gradient descent heuristic, that
outperforms existing GBDF algorithms. We found that previ-
ous GDBF algorithms, including the S-GDBF, M-GDBF, and
AT-GDBF algorithms, are significantly improved when
combined with the noise perturbation. Additional heuristic
improvements were introduced that achieved a significant per-
formance benefit in comparison to the best known versions of
GDBF, achieving performance comparable to the standard min-
sum algorithm for several LDPC codes. We also provided an
architecture for implementing the new algorithm with quan-
tized channel information, and showed that its implementation
complexity is quite low compared to min-sum or stochastic
decoding. The NGDBF algorithms do require estimation of the
channel SNR, which introduces a fixed complexity cost that
does not affect the previously known GDBF of MS algorithms.

The NGDBF decoding algorithms are based on a heuristic
approach. To gain additional validation for those heuristics,
we examined the convergence characteristics and found that,
on average, the NGDBF algorithm converges closer to the
global maximum whereas other algorithms are more frequently
trapped in suboptimal local maxima. We also examined the
approximate local ML solution for bit-flip behavior. From this
analysis, we proposed using a weight factor to bring GDBF
closer to the LML behavior. As a result of these analyses, we
obtained a new bit-flipping decoding algorithm that avoids us-
ing any global search or sort operations. The resulting algorithm
is feasibly a competitor to the popular min-sum algorithm, since
it requires less computational effort while maintaining good
BER and FER performance.

ACKNOWLEDGMENT

The authors would like to express his thanks to the anony-
mous reviewers of IEEE Transactions on Communications for
their comments, which helped to improve the quality of the
manuscript.

REFERENCES

[1] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low
density parity check codes,” IEEE Electron. Lett., vol. 33, no. 6, pp. 457–
458, Mar. 1997.

[2] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based
on finite geometries: A rediscovery and new results,” IEEE Trans. Inf.
Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.

[3] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE
Trans. VLSI Syst., vol. 11, no. 6, pp. 976–996, Dec. 2003.

[4] F. Guilloud, E. Boutillon, J. Tousch, and J.-L. Danger, “Generic descrip-
tion and synthesis of LDPC decoders,” IEEE Trans. Commun., vol. 55,
no. 11, pp. 2084–2091, Nov. 2007.

[5] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[6] N. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of
low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 51, no. 4,
pp. 1594–1606, Apr. 2005.

[7] X. Wu, C. Zhao, and X. You, “Parallel weighted bit-flipping decoding,”
IEEE Commun. Lett., vol. 11, no. 8, pp. 671–673, Aug. 2007.

[8] X. Wu et al., “New insights into weighted bit-flipping decoding,” IEEE
Trans. Commun., vol. 57, no. 8, pp. 2177–2180, Aug. 2009.

[9] T. Wadayama et al., “Gradient descent bit flipping algorithms for decoding
LDPC codes,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1610–1614,
Jun. 2010.

[10] M. Ismail, I. Ahmed, and J. Coon, “Low power decoding of LDPC codes,”
ISRN Sensor Netw., vol. 2013, pp. 650740-1–650740-12, 2013.

[11] T. Phromsa-ard et al., “Improved gradient descent bit flipping algorithms
for LDPC decoding,” in Proc. 2nd Int. Conf. DICTAP, 2012, pp. 324–328.

[12] R. Haga and S. Usami, “Multi-bit flip type gradient descent bit flipping
decoding using no thresholds,” in Proc. ISITA, 2012, pp. 6–10.

[13] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic com-
putation,” Electron. Lett., vol. 39, no. 3, pp. 299–301, Feb. 2003.

[14] C. Winstead, V. C. Gaudet, A. C. Rapley, and C. Schlegel, “Stochastic
iterative decoders,” in Proc. ISIT , 2005, pp. 1116–1120.

[15] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding
of LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718,
Oct. 2006.

[16] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic
LDPC decoders,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5692–
5703, Nov. 2008.

[17] S. Sharifi Tehrani et al., “Majority-based tracking forecast memories for
stochastic LDPC decoding,” IEEE Trans. Signal Process., vol. 58, no. 9,
pp. 4883–4896, Sep. 2010.

[18] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and
W. J. Gross, “Tracking forecast memories for stochastic decoding,”
J. Signal Process. Syst., vol. 63, no. 1, pp. 117–127, Apr. 2011.

[19] S. Sharifi Tehrani et al., “Relaxation dynamics in stochastic iterative
decoders,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5955–5961,
Nov. 2010.

[20] N. Onizawa, W. J. Gross, T. Hanyu, and V. C. Gaudet, “Clockless stochas-
tic decoding of low-density parity-check codes: Architecture and sim-
ulation model,” J. Signal Process. Syst., vol. 76, no. 2, pp. 185–194,
Aug. 2014.

[21] F. Leduc-Primeau, S. Hemati, S. Mannor, and W. Gross, “Dithered belief
propagation decoding,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2042–
2047, Aug. 2012.

[22] C. K. Ngassa, V. Savin, and D. Declercq, “Unconventional behavior of the
noisy min-sum decoder over the binary symmetric channel,” in Proc. Int.
Workshop ITA, San Diego, CA, USA, Feb. 2014, pp. 1–10.

[23] C. K. Ngassa, V. Savin, and D. Declercq, “Min-sum-based decoders
running on noisy hardware,” in Proc. IEEE GLOBECOM, Dec. 2013,
pp. 1879–1884.

[24] J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping de-
coding of low-density parity-check codes,” IEEE Commun. Lett., vol. 8,
no. 3, pp. 165–167, Mar. 2004.

3400 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 10, OCTOBER 2014

[25] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the mod-
ified weighted bit flipping decoding algorithm for LDPC codes,” IEEE
Commun. Lett., vol. 9, no. 9, pp. 814–816, Sep. 2005.

[26] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html,
accessed: 2014-06-20

[27] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An efficient
10GBASE-T ethernet LDPC decoder design with low error floors,” IEEE
J. Solid-State Circuit, vol. 45, no. 4, pp. 843–855, Apr. 2010.

Gopalakrishnan Sundararajan was born in
Madras, Chennai, Tamil Nadu, India. He received
the B.Eng. degree from Anna University, India,
and the M.S. degree in electrical and computer
engineering from Oklahoma State University,
Stillwater, OK, USA, in 2010. He is currenly
working towards the Ph.D. degree in electrical and
computer engineering at Utah State University,
Logan, UT, USA. His research intersts include
novel LDPC decoding algorithms and their VLSI
implementation, fault tolerant circuit techniques,

low power and process variation tolerant circuit design. Gopalakrishnan
received a Sant Graduate Innovation Fellowship from Utah State University’s
College of Engineering in 2014.

Chris Winstead (SM’11) received the B.S. degree
in electrical and computer engineering from the
University of Utah, Salt Lake City, UT, USA, in
2000, and the Ph.D. degree from the University of
Alberta, Edmonton, AB, Canada, in 2005. He is
currently with the ECE Department at Utah State
University, Logan, UT, USA, where he holds the
rank of Associate Professor. His research interests
include reliable wireless communication systems,
implementation of error-correction algorithms, low-
power electronics and fault-tolerant VLSI circuits.

Dr. Winstead received the NSF Career award for research in low-energy
wireless communication circuits, and is a Fulbright scholar. He is a member
of the Tau Beta Pi engineering honor society.

Emmanuel Boutillon received the Diploma in engi-
neering in 1990 and the Ph.D. degree in 1995, both
from the Telecom Paris Tech, Paris, France. From
1995 to 2000, he was an Assistant Professor in Tele-
com Paris Tech. In 1998, he spent a sabbatical year at
the University of Toronto, Toronto, ON, Canada. In
2000, he moved to the University of Bretagne Sud as
a Professor. He headed the LESTER lab from 2005
up to end of 2007 and, since 2008, he is the head
of CACS department (lab-STICC). In 2011, he had
a sabbatical year at INICTEL-UNI, Lima (Peru). His

research interests are on the interactions between algorithm and architecture
in the field of wireless communications and high speed signal processing. In
particular, he works on Turbo Codes and LDPC decoders.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

