284 research outputs found

    The converse of the passivity and small-gain theorems for input-output maps

    Get PDF
    We prove the following converse of the passivity theorem. Consider a causal system given by a sum of a linear time-invariant and a passive linear time-varying input-output map. Then, in order to guarantee stability (in the sense of finite L2-gain) of the feedback interconnection of the system with an arbitrary nonlinear output strictly passive system, the given system must itself be output strictly passive. The proof is based on the S-procedure lossless theorem. We discuss the importance of this result for the control of systems interacting with an output strictly passive, but otherwise completely unknown, environment. Similarly, we prove the necessity of the small-gain condition for closed-loop stability of certain time-varying systems, extending the well-known necessity result in linear robust control.Comment: 15 pages, 3 figure

    Converse negative imaginary theorems

    Full text link
    Converse negative imaginary theorems for linear time-invariant systems are derived. In particular, we provide necessary and sufficient conditions for a feedback system to be robustly stable against various types of negative imaginary (NI) uncertainty. Both marginally stable and exponentially stable uncertain NI systems with restrictions on their static or instantaneous gains are considered. It is shown that robust stability against the former class entails the well-known strict NI property, whereas the latter class entails a new type of output strict NI property that is hitherto unexplored. We also establish a non-existence result that no stable system can robustly stabilise all marginally stable NI uncertainty, thereby showing that the uncertainty class of NI systems is too large as far as robust feedback stability is concerned, thus justifying the consideration of subclasses of NI systems with constrained static or instantaneous gains.Comment: This paper has been submitted for possible publication at Automatic

    Transverse Contraction Criteria for Existence, Stability, and Robustness of a Limit Cycle

    Full text link
    This paper derives a differential contraction condition for the existence of an orbitally-stable limit cycle in an autonomous system. This transverse contraction condition can be represented as a pointwise linear matrix inequality (LMI), thus allowing convex optimization tools such as sum-of-squares programming to be used to search for certificates of the existence of a stable limit cycle. Many desirable properties of contracting dynamics are extended to this context, including preservation of contraction under a broad class of interconnections. In addition, by introducing the concepts of differential dissipativity and transverse differential dissipativity, contraction and transverse contraction can be established for large scale systems via LMI conditions on component subsystems.Comment: 6 pages, 1 figure. Conference submissio

    Converse negative imaginary theorems

    Get PDF
    Converse negative imaginary theorems for linear time-invariant systems are derived. In particular, we provide necessary and sufficient conditions for a feedback system to be robustly stable against various types of negative imaginary (NI) uncertainty. Uncertainty classes of marginally stable NI systems and stable strictly NI systems with restrictions on their static or instantaneous gains are considered. It is shown that robust stability against the former class entails the strictly NI property, whereas the latter class entails the NI property. We also establish a non-existence result that no stable system can robustly stabilise all marginally stable NI uncertainty, thereby showing that the uncertainty class of NI systems is too large as far as robust feedback stability is concerned, thus justifying the consideration of subclasses of NI systems with constrained static or instantaneous gains

    Dissipative Systems Theory

    Get PDF
    In this chapter the general theory of dissipative systems is treated, laying much of the foundation for subsequent chapters

    A Small-Gain Theorem with Applications to Input/Output Systems, Incremental Stability, Detectability, and Interconnections

    Full text link
    A general ISS-type small-gain result is presented. It specializes to a small-gain theorem for ISS operators, and it also recovers the classical statement for ISS systems in state-space form. In addition, we highlight applications to incrementally stable systems, detectable systems, and to interconnections of stable systems.Comment: 16 pages, no figure

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis
    • …
    corecore