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a b s t r a c t

We prove the following converse of the passivity theorem. Consider a causal system given by a sum of
a linear time-invariant and a passive linear time-varying input–output map. Then, in order to guarantee
stability (in the sense of finite L2-gain) of the feedback interconnection of the system with an arbitrary
nonlinear output strictly passive system, the given systemmust itself be output strictly passive. The proof
is based on the S-procedure lossless theorem. We discuss the importance of this result for the control of
systems interacting with an output strictly passive, but otherwise completely unknown, environment.
Similarly, we prove the necessity of the small-gain condition for closed-loop stability of certain time-
varying systems, extending the well-known necessity result in linear robust control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The passivity and small-gain theorems are fundamental to large
parts of systems and control theory, see e.g. Megretski and Rantzer
(1997), Moylan and Hill (1978), van der Schaft (2017), Vidyasagar
(1981) and Willems (1972). Both theorems provide a stability
‘certificate’ when feedback interconnecting the given system with
an arbitrary system which is either (in the small-gain setting)
assumed to have an L2-gain smaller than the reciprocal of the
L2-gain of the given system, or is (output strictly) passive like
the given system. These theorems are valid from linear finite-
dimensional systems to nonlinear and infinite-dimensional sys-
tems.

The current paper is concerned with the converse of these
theorems; that is the necessity of the (strict) passivity or the small-
gain condition for closed-loop stability when interconnecting in
feedback a given system with an arbitrary system, which is un-
known apart from a passivity or L2-gain assumption. Surprisingly,
this converse of the passivity theorem has hardly been studied in
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matics and its Applications, where this work was initiated during the 2015–2016
program on Control Theory and its Applications. The second author thanks Stefano
Stramigioli for inspiring conversations on the converse passivity theorem and its
importance in robotics. The material in this paper was partially presented at the
20th World Congress of the International Federation of Automatic Control, July 9–
14, 2017, Toulouse, France. This paper was recommended for publication in revised
formbyAssociate Editor Tong Zhouunder the direction of Editor RichardMiddleton.
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(A. van der Schaft).

the literature; despite its fundamental importance in applications.
For example, in order to guarantee stability of a controlled robotic
system interacting with a passive, but else completely unknown,
environment, the converse of the passivity theorem tells us that the
controlled robot must be output strictly passive as seen from the
interaction port of the robot with the environment. This has far-
reaching methodological implications for control design, since it
means that rendering by control the system output strictly passive
at the interaction port is not only a valid option, but is also the
only option guaranteeing stability for an unknown passive envi-
ronment. The same holds within the context of robust nonlinear
control whenever we replace ‘environment’ by the uncertain part
of the system.

Up to now this converse passivity theoremwas only proved for
linear time-invariant single-input single-output systems in Colgate
andHogan (1988), using arguments fromNyquist stability theory, 1
exactlywith the roboticsmotivation inmind. The samemotivation
was elaborated on in Stramigioli (2015), where the following
form of a converse passivity theorem was obtained for nonlinear
systems in state space form. If a system is not passive then for any
given constantK one can define a passive system that extracts from
the given system an amount of energy that is larger than K , imply-
ing that the norm of the state of the constructed system becomes
larger than K , thereby demonstrating some sort of instability of
the closed-loop system. In the present paper, a converse of the

1 Roughly speaking, by showing that if Σ1 is not passive, a positive-real transfer
function (corresponding to a passive system Σ2) can be constructed such that the
closed-loop system fails the Nyquist stability test.
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passivity theorem will be derived for a class of input–output maps,
namely those decomposable into a sum of a linear time-invariant
map and a passive linear time-varyingmap. This converse passivity
theorem involves feedback interconnections with nonlinear sys-
tems and will be formulated in three versions in Section 3, with
their own range of applicability. In all cases the proofs are based
on the S-procedure lossless theorem due to Megretski and Treil
(1993); see also Jönsson (2001, Thm. 7).

Converse statements of the small-gain theorem are much more
present in the literature; see e.g. Zhou, Doyle, and Glover (1996,
Theorem 9.1) for the finite-dimensional linear case and Curtain
and Zwart (1995) for infinite-dimensional linear systems. How-
ever, to the best of our knowledge, the converse of the small-gain
theorem for linear time-varying systems interconnected in feed-
backwith nonlinear systems, as obtained in Section 4, is new,while
also the proof line is different from the existing one. Similarly to the
passivity case, this converse will be formulated for a class of linear
time-varying input–output maps, and the proofs, in two different
versions, will be based on the S-procedure lossless theorem.

Finally, Section 5 presents the conclusions, and discusses prob-
lems for further research. A preliminary version of some of the
results in Section 3 of this paper was presented at the IFAC World
Congress 2017; cf. Khong and van der Schaft (2017).

2. Preliminaries

This section summarizes the background for this paper; see
e.g. van der Schaft (2017) for details. Denote the set of Rn-valued
Lebesgue square-integrable functions by

Ln2 :=

{
v : [0, ∞) → Rn

| ∥v∥
2
2 :=

∫
∞

0
v(t)Tv(t) dt < ∞

}
.

For any two v, w ∈ Ln2 denote the Ln2-inner product as

⟨v, w⟩ :=

∫
∞

0
v(t)Tw(t) dt

Define the truncation operator (PTv)(t) := v(t) for t ≤ T ;
(PTv)(t) := 0 for t > T , and the extended function space

Ln2e := {v : [0, ∞) → Rn
| PTv ∈ L2, ∀T ∈ [0, ∞)}.

In what follows, the superscript n will often be suppressed for no-
tational simplicity. Throughout this paper a systemwill be specified
by an input–output map ∆ : Lm2e → Lp2e satisfying ∆(0) = 0.

Define for any τ ≥ 0 the right shift operator (Sτ (u))(t) = u(t−τ )
for t ≥ τ and (Sτ (u))(t) = 0 for 0 ≤ t < τ . The system ∆ is said
to be time-invariant if Sτ∆ = ∆Sτ for all τ > 0. Furthermore, the
system ∆ is bounded if ∆ maps Lm2 into Lp2. It is said to have L2-gain
≤ γ for some γ > 0 (finite L2-gain) if

∥PT∆(u)∥2 ≤ γ ∥PTu∥2 (1)

for all u ∈ Lm2e and all T ≥ 0. The infimum of all γ satisfying (1) is
called the L2-gain of ∆. The system ∆ is causal if PT∆PT = PT∆
for all T ≥ 0. It is well-known, see e.g. van der Schaft (2017,
Proposition 1.2.3), that a causal system ∆ has finite L2-gain if and
only if, instead of (1),

∥∆(u)∥2 ≤ γ ∥u∥2 (2)

for all u ∈ Lm2 . For the purpose of interconnection of systems the
above notions are generalized frommaps to relations R ⊂ Lm2e × Lp2e
satisfying (0, 0) ∈ R as follows van der Schaft (2017). A relation R
is said to be bounded if whenever (u, y) ∈ R and u ∈ L2 then also
y ∈ L2. Furthermore, R has finite L2-gain if

∥PTy∥2 ≤ γ ∥PTu∥2 (3)

Fig. 1. Feedback configuration.

for all (u, y) ∈ R and all T ≥ 0. Also, R is said to be causal if
whenever (u1, y1) ∈ R, (u2, y2) ∈ R satisfy PTu1 = PTu2, then
PTy1 = PTy2. A causal relation R has finite L2-gain if and only if
instead of (3),

∥y∥2 ≤ γ ∥u∥2 (4)

for all L2 pairs (u, y) ∈ R. The system ∆ : Lm2e → Lm2e (i.e., p = m) is
said to be passive (Vidyasagar, 1981; Willems, 1972) if∫ T

0
u(t)T (∆(u))(t) dt ≥ 0, (5)

for all u ∈ L2e, T > 0. Furthermore, it is called strictly passive if
there exist δ > 0, ϵ > 0 such that∫ T

0
u(t)T (∆(u))(t) dt ≥ δ∥PTu∥2

2 + ϵ∥PT∆(u)∥2
2

for all u ∈ L2e, T > 0, and output strictly passive if this holds
with δ = 0. In case ∆ is bounded and causal, then passivity is
equivalent (van der Schaft, 2017, Proposition 2.2.5) to∫

∞

0
u(t)T (∆(u))(t) dt ≥ 0 (6)

for all u ∈ Lm2 . (Note that the integral is well-defined because of
boundedness of ∆ and the Cauchy–Schwarz inequality.) Similarly,
in this case ∆ is strictly passive if there exist δ > 0, ϵ > 0 such that∫

∞

0
u(t)T (∆(u))(t) dt ≥ δ∥u∥2

2 + ϵ∥∆(u)∥2
2 ∀u ∈ Lm2 , (7)

and output strictly passive if this holds with δ = 0. For later use we
also recall the basic property that any output strictly passive sys-
tem has finite L2-gain; cf. van der Schaft (2017, Theorem 2.2.13).
Like in the L2-case these passivity notions are directly extended to
relations R ⊂ Lm2e × Lm2e satisfying (0, 0) ∈ R. Indeed, R is called
strictly passive if there exist δ > 0, ϵ > 0 such that for all2
(u, y) ∈ R, T > 0∫ T

0
u(t)Ty(t) dt ≥ δ∥PTu∥2

2 + ϵ∥PTy∥2
2, (8)

and output strictly passive if this holds with δ = 0. Furthermore,
a bounded causal relation R is strictly passive if there exist δ >
0, ϵ > 0 such that for all (u, y) ∈ R∫

∞

0
u(t)Ty(t) dt ≥ δ∥u∥2

2 + ϵ∥y∥2
2, (9)

and output strictly passive if this holds with δ = 0.
The main object of study in this paper is the feedback intercon-

nection of two systems Σ1 : Lm1
2e → Lp12e and Σ2 : Lm2

2e → Lp22e , with
m1 = p2,m2 = p1, described by (see Fig. 1)

u1 = e1 − y2, u2 = e2 + y1,
y1 = Σ1(u1), y2 = Σ2(u2).

(10)

2 Throughout it is assumed that all integrals are well-defined.
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The resulting closed-loop system with inputs (e1, e2) and outputs
(y1, y2) will be denoted by Σ1 ∥ Σ2, and defines by (10) a relation
in the space of all (e1, e2, u1, u2, y1, y2) ∈ L2e. Projection on the
space of (e1, e2, u1, u2) ∈ L2e, respectively of (e1, e2, y1, y2) ∈ L2e,
yields the relations

Reu := {(e1, e2, u1, u2) ∈ L2e | (10) holds for some y1, y2}
Rey := {(e1, e2, y1, y2) ∈ L2e | (10) holds for some u1, u2}

Definition 1. The feedback interconnection Σ1 ∥ Σ2 has finite
L2-gain if the relation Reu, or equivalently (see van der Schaft, 2017,
Lemma 1.2.12), the relation Rey, has finite L2-gain. Σ1 ∥ Σ2 with
m1 = m2 = p1 = p2 is said to be passive whenever the relation
Rey is passive. The feedback interconnection for e2 = 0, denoted
by Σ1∥e2=0Σ2, is said to have finite L2-gain if the corresponding
relation Re1y1 has finite L2-gain, and is said to be passive if Re1y1 is
passive. For notational convenience, we denote the map from e1 to
y1 by Σ1∥e2=0Σ2.

Finally, if the systems Σ1 and Σ2 are causal, then so are the
relations Rey and Reu; see van der Schaft (2017, Proposition 1.2.14).
The same statement is easily seen to hold for Re1y1 . All systems and
relations are taken to be causal throughout this paper.

3. Passivity as a necessary condition for stable interaction

The classical passivity theorem, see e.g. van der Schaft (2017),
asserts that the feedback interconnection Σ1 ∥ Σ2 of two passive
systems Σ1, Σ2 is again a passive system. Similarly, the intercon-
nected system Σ1∥e2=0Σ2 is passive. In this section we will derive
a converse passivity theorem3 stating that a necessary condition
in order that any closed-loop system arising from interconnecting
a given system Σ1 to with an unknown, but output strictly passive,
system Σ2 is stable (in the sense of having finite L2-gain), is that
the system Σ1 is itself output strictly passive. As already indicated
in the introduction, this result is crucial e.g. in the control of
robotic systems; see also the discussion and example at the end
of this section. We will formulate three different versions of this
theorem. Before doing so we first state the following version of the
S-procedure lossless theorem,which can be obtained from Jönsson
(2001, Thm. 7 and Ex. 28), based on Megretski and Treil (1993).

Proposition 2 (S-Procedure Lossless Theorem). Let H ⊂ L2 be a
vector space satisfying SτH ⊂ H for all τ ≥ 0 and σi : H → R
be defined as σi(f ) := ⟨f , Φif ⟩, where Φi = ΦT

i is a constant matrix,
i = 0,1. Suppose there exists an f ∗

∈ H such that σ1(f ∗) > 0, then
the following are equivalent:

(i) σ0(f ) ≤ 0 for all f ∈ H such that σ1(f ) ≥ 0;
(ii) ∃µ ≥ 0 such that σ0(f ) + µσ1(f ) ≤ 0, ∀f ∈ H.

The first version of the converse passivity theorem is as follows.

Theorem 3. Given bounded Σ1 = G + ∆, where G is linear time-
invariant and ∆ is linear passive, then there exists γ > 0 such that
the closed-loop system Σ1 ∥ Σ2 has L2-gain ≤ γ for all bounded
passive Σ2 if and only if Σ1 is strictly passive.

Proof. Sufficiency is well known in the literature. Indeed, strict
passivity of Σ1 together with passivity of Σ2 yields

ϵ(∥y1∥2
2 + ∥u1∥

2
2) ≤ ⟨u1, y1⟩ + ⟨u2, y2⟩

= ⟨e1 − y2, y1⟩ + ⟨e2 + y1, y2⟩
= ⟨e1, y1⟩ + ⟨e2, y2⟩.

3 A different, and easy to prove, converse result stating that passivity of Σ1 ∥ Σ2
implies that both Σ1 and Σ2 are passive was formulated in Kerber and van der
Schaft (2011) and Khong and van der Schaft (2017); see also van der Schaft (2017,
Proposition 4.3.8).

Therefore, substituting u1 = e1 − y2, u2 = e2 + y1,

∥y1∥2
2 + ⟨e1 − y2, e1 − y2⟩ ≤

1
ϵ
(⟨e1, y1⟩ + ⟨e2, y2⟩),

or

∥y1∥2
2 + ∥y2∥2

2 − 2⟨e1, y2⟩ + ∥e1∥2
2 ≤

1
ϵ
(⟨e1, y1⟩ + ⟨e2, y2⟩).

It follows that

∥y∥2
2 ≤ 2⟨e1, y2⟩ +

1
ϵ
⟨e, y⟩ ≤

(
2 +

1
ϵ

)
∥e∥2∥y∥2,

where y := (y1, y2)T and e := (e1, e2)T , and the Cauchy–Schwarz
inequality has been used. Dividing both sides by ∥y∥2 the result
follows.

To show necessity, let G̃ϵ := G − ϵI and ∆̃ϵ := ∆ + ϵI for
ϵ > 0 so that Σ1 = G̃ϵ + ∆̃ϵ . Recall from the theory of loop
transformations (Green & Limebeer, 1995, Section 3.5) that the
finite L2-gain of Σ1 ∥ Σ2 is equivalent to that of G̃ϵ ∥ [Σ2∥e2=0∆̃ϵ].
Furthermore, since ∆̃ϵ is strictly passive, that G̃ϵ ∥ [Σ2∥e2=0∆̃ϵ]

has L2-gain≤ γ for all bounded passive Σ2 and ϵ > 0 is equivalent
to G ∥ Σ2 having L2-gain ≤ γ for all bounded passive Σ2. Define
the vector space

H := {(u1, u2, e1, e2) ∈ L2 | u2 = e2 + G(u1)}.

Note that SτH ⊂ H for all τ ≥ 0 due to the time-invariance of G.
Define now the following quadratic forms σi : H → R, i = 0,1, as

σ0(u1, u2, e1, e2) :=

⟨⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦ ,

⎡⎢⎣
I 0 0 0
0 I 0 0
0 0 −γ 2I 0
0 0 0 −γ 2I

⎤⎥⎦
⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦⟩

σ1(u1, u2, e1, e2) :=
1
2

⟨⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦ ,

⎡⎢⎣ 0 −I 0 0
−I 0 I 0
0 I 0 0
0 0 0 0

⎤⎥⎦
⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦⟩
.

Note that σ1(u1, u2, e1, e2) = uT
2(e1−u1), and hence it is easy to see

that there exists (u∗

1, u
∗

2, e
∗

1, e
∗

2) ∈ H such that σ1(u∗

1, u
∗

2, e
∗

1, e
∗

2) >
0. It is immediately seen that σ0 ≤ 0 corresponds to the L2-gain of
Reu being ≤ γ , while σ1 ≥ 0 corresponds to any bounded passive
Σ2. Hence, if the closed-loop system G ∥ Σ2 has L2-gain ≤ γ for
all bounded passive Σ2, then

σ0(u1, u2, e1, e2) ≤ 0 ∀(u1, u2, e1, e2) ∈ H
such that σ1(u1, u2, e1, e2) ≥ 0.

This is equivalent, via the S-procedure lossless theorem (cf.
Proposition 2), to the existence of µ ≥ 0 such that

σ0(u1, u2, e1, e2) + µσ1(u1, u2,e1, e2) ≤ 0,
∀(u1, u2, e1, e2) ∈ H.

Within the subset {(u1, u2, 0, 0) ∈ L2 | u2 = G(u1)} ⊂ H, this yields

∥G(u1)∥2
2 + ∥u1∥

2
2 − µ⟨u1,G(u1)⟩ ≤ 0, ∀u1 ∈ L2.

This implies µ > 0, and thus

⟨u1,G(u1)⟩ ≥
1
µ
(∥G(u1)∥2

2 + ∥u1∥
2
2), ∀u1 ∈ L2,

i.e., G is strictly passive. Consequently, Σ1 is strictly passive.
Roughly speaking, the new ‘only if’ direction of the above the-

orem can be summarized by saying that in order that Σ1 ∥ Σ2
is stable (in the sense of having uniformly bounded L2-gain) for
all passive Σ2, then Σ1 needs to be strictly passive. On the other
hand, often in physical system examples (e.g., most mechanical
systems) output strict passivity is a more natural property, since
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Fig. 2. Loop transformation.

strict passivity can only occur for systems with direct feedthrough
term; see van der Schaft (2017, Proposition 4.1.2). The following
second version of the converse passivity theorem obviates this
problem.

Theorem 4. Given bounded Σ̃1 = G + ∆, where G is linear time-
invariant and ∆ is linear passive, then there exists γ > 0 such that
the closed-loop system Σ̃1 ∥ Σ̃2 has L2-gain≤ γ for all output strictly
passive Σ̃2 if and only if Σ̃1 is output strictly passive.

Proof. Sufficiency can be shown in a similar manner using the
arguments in the sufficiency proof for Theorem 3; see also van der
Schaft (2017). For necessity, note that for any ϵ > 0 the output
strictly passive Σ̃2 can be written as the feedback interconnection
of a bounded passive Σ2 and ϵI , where I denotes the identity
operator. To see this, define Σ2 as in Fig. 2. Then by output strict
passivity of Σ̃2∫

∞

0
ũ2(t)Ty2(t) dt ≥ ϵ∥y2∥2

2 ∀ũ2 ∈ L2,

implying that∫
∞

0
(ũ2(t) − ϵy2(t))Ty2(t) dt =

∫
∞

0
u2(t)Ty2(t) dt ≥ 0.

The last inequality holds for all u2 ∈ L2, since given any u2 ∈ L2,
ũ2 := (I + ϵΣ2)u2 ∈ L2 yields the desired u2. It follows that Σ2
is bounded and passive. By the same token, the negative feedback
interconnection of a bounded passive Σ2 and ϵI with ϵ > 0 is
output strictly passive. By defining Σ1 := Σ̃1 + ϵI as illustrated in
Fig. 2, one obtains the loop transformation configuration therein.
Since finite L2-gain of the closed-loop system Σ̃1 ∥ Σ̃2 in Fig. 2 is
equivalent to that of Σ1 ∥ Σ2 in Fig. 1 (Green & Limebeer, 1995,
Section 3.5), application of Theorem 3 then yields thatΣ1 is strictly
passive. For sufficiently small ϵ > 0, it follows that Σ̃1 = Σ1 − ϵI
is output strictly passive.

Both Theorems 3 and 4 require an exogenous signal e2, which
is often not the typical case in applications. This motivates the
following third version of the converse passivity theorem.

Theorem 5. Given bounded Σ1 = G + ∆, where G is linear time-
invariant and ∆ is linear passive, then there exists γ > 0 such that
the closed-loop system Σ1∥e2=0Σ2 has L2-gain from e1 to y1 less than

or equal to γ for all bounded passive Σ2 if and only if Σ1 is output
strictly passive.

Proof. Sufficiency is well known in the literature. Indeed, if Σ1 is
output strictly passive and Σ2 is passive, then for some ε > 0

⟨e1, y1⟩ = ⟨u1 + y2, y1⟩ = ⟨u1, y1⟩ + ⟨y2, y1⟩

= ⟨u1, y1⟩ + ⟨u2, y2⟩ ≥ ε∥y1∥2
2,

showing that the closed-loop system is ε-output strictly passive,
and hence (see e.g. van der Schaft (2017), Theorem 2.2.13) has
L2-gain ≤

1
ε
. To show necessity, note that by the same arguments

in Theorem 3, the hypothesis is equivalent to G∥e2=0Σ2 having
L2-gain ≤ γ for all bounded passive Σ2. Define

H := {(u1, y1, e1) ∈ L2 | y1 = G(u1)}

and the quadratic forms σi : H → R, i = 0,1, as

σ0(u1, y1, e1) :=

⟨[u1
y1
e1

]
,

⎡⎣0 0 0
0 I 0
0 0 −γ 2I

⎤⎦[u1
y1
e1

]⟩

σ1(u1, y1, e1) :=
1
2

⟨[u1
y1
e1

]
,

[ 0 −I 0
−I 0 I
0 I 0

][u1
y1
e1

]⟩
.

Then G∥e2=0Σ2 has L2-gain less than or equal to γ for all bounded
passive Σ2 if and only if σ0(u1, y1, e1) ≤ 0 for all (u1, y1, e1) ∈ H
with σ1(u1, y1, e1) ≥ 0. This is equivalent, via the S-procedure
lossless theorem, to the existence of µ ≥ 0 such that

σ0(u1, y1, e1) + µσ1(u1, y1, e1) ≤ 0, ∀(u1, y1, e1) ∈ H.

This implies that

∥y1∥2
2 − γ 2

∥e1∥2
2 − µ⟨u1, y1⟩ + µ⟨e1, y1⟩ ≤ 0, ∀e1 ∈ L2,

and thus in the subset {(u1, y1, 0) ∈ L2 | y1 = G(u1)} ⊂ H, this
yields

µ⟨u1, y1⟩ ≥ ∥y1∥2
2, ∀u1 ∈ L2,

i.e., G is output strictly passive. Consequently, Σ1 is output strictly
passive.

Remark 6. Note that by van der Schaft (2017, Prop. 3.1.14) the
previous converse passivity theorems extend to the same converse
passivity statements for state space systems that are reachable from
a ground state x∗ for which the input–outputmap∆ defined by the
state space system satisfies the conditions of Theorems 3, 4, 5.

Especially the last version of the converse passivity theorem
presented in Theorem 5 is crucial for applications. It implies that
closed-loop stability (in the sense of finite L2-gain) of a system
interacting with an unknown, but passive, environment can only
be guaranteed if the system seen from the interaction port with
the environment is output strictly passive. This has obvious impli-
cations in robotics, where the given system is the controlled robot,
interacting with its unknown but physical (and thus typically
passive) environment. It is also of importance in the analysis and
control of reduced-order models, in case the neglected dynamics
can be regarded as a passive feedback loop for the reduced-order
model. An illustration of this main idea, in a very simple and linear
context, is provided in the following examplewith a robotics flavor.

Example 7. Consider an actuated mass

mv̇ = −dv + u1,

where v is the velocity of the mass, m > 0 its mass parameter, d
the possibly negative ‘damping’ parameter, u1 the external force,
and y1 = v the output. Clearly the system is output strictly passive
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if and only if d > 0. Consider an unknown environment modeled
by a spring system with spring constant k > 0 given as

q̇ = −sq + u2,

where q is the extension of the spring, u2 an input velocity and sq
a drag velocity (proportional to the spring force kq, and thus to q).
The spring system with output y2 = kq is passive if and only if
s ≥ 0. The interconnection u1 = −y2 + e1, u2 = y1 of the mass
system (for arbitrary d ∈ R) with the spring system results in the
closed-loop system[

v̇

q̇

]
=

[
−

d
m

−
1
m

1 −s

][
v

q

]
+

[ e1
m
0

]
,

with e1 an external force. This system has L2-gain ≤ γ for some
γ > 0 iff the system for e1 = 0 is asymptotically stable, which
is the case iff d

m + s > 0. Hence the closed-loop system has
L2-gain ≤ γ for some γ > 0 if and only if d

m + s > 0 for all s ≥ 0,
or equivalently, iff d > 0, i.e., the mass system is output strictly
passive.

4. The converse of the small-gain theorem

Using similar reasoning as in the passivity case we provide in
this section two versions of the converse small-gain theorem. These
results extend the well-known necessity of the small-gain con-
dition for linear systems based on transfer function analysis; see
e.g. Zhou et al. (1996). The necessity of the small-gain condition is
crucial in robust control theory based onmodeling the uncertainty
in the ‘plant’ system by a feedback loop with an unknown system,
with magnitude bounded by its L2-gain; see e.g. Zhou et al. (1996)
for the linear case and van der Schaft (2017) (and references
therein) for the nonlinear case.

Theorem 8. Given Σ1 = ∆2G∆1 and α > 0, where G is linear time-
invariant, ∆i is linear with L2-gain = 1 and has an inverse with L2-
gain = 1 , then for some γ > 0, the closed-loop system Σ1 ∥ Σ2 has
L2-gain ≤ γ for all Σ2 with L2-gain ≤ α if and only if Σ1 has L2-gain
< 1

α
.

Proof. Sufficiency is well known in the literature. In order to show
necessity, note that by the theory ofmultipliers (Green&Limebeer,
1995, Section 3.5), Σ1 ∥ Σ2 having L2-gain ≤ γ is equivalent to
G ∥ ∆1Σ2∆2 having L2-gain ≤ γ , which in turn is equivalent to
G ∥ Σ2 having L2-gain ≤ γ , for all Σ2 with L2-gain ≤ α. Define

H := {(u1, u2, e1, e2) ∈ L2 | u2 = e2 + G(u1)}

and the quadratic forms σi : H → R, i = 0,1, as

σ0(u1, u2, e1, e2) :=

⟨⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦ ,

⎡⎢⎣
I 0 0 0
0 I 0 0
0 0 −γ 2I 0
0 0 0 −γ 2I

⎤⎥⎦
⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦⟩

σ1(u1, u2, e1, e2) :=

⟨⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦ ,

⎡⎢⎣−I 0 I 0
0 α2I 0 0
I 0 −I 0
0 0 0 0

⎤⎥⎦
⎡⎢⎣u1
u2
e1
e2

⎤⎥⎦⟩
.

Then G ∥ Σ2 has L2-gain ≤ γ for all Σ2 with L2-gain ≤ α if and
only if

σ0(u1, u2, e1, e2) ≤ 0

for all (u1, u2, e1, e2) ∈ H such that σ1(u1, u2, e1, e2) ≥ 0. This is
equivalent, via the S-procedure lossless theorem, to the existence
of µ ≥ 0 such that

σ0(u1, u2, e1, e2) + µσ1(u1, u2,e1, e2) ≤ 0,
∀(u1, u2, e1, e2) ∈ H.

In the subset {(u1, u2, 0, 0) ∈ L2 | u2 = G(u1)} ⊂ H, this implies
that

∥u1∥
2
2 + ∥Gu1∥

2
2 − µ∥u1∥

2
2 + µα2

∥G(u1)∥2
2 ≤ 0, ∀u1 ∈ L2.

It is obvious from the inequality above that µ ̸= 0, and hence
µ > 0. Thus

µα2
∥G(u1)∥2

2 < µ∥u1∥
2
2, ∀u1 ∈ L2 with u1 ̸= 0,

and hence ∥G(u1)∥2
2 < 1

α2 ∥u1∥
2
2, showing that G, and henceΣ1, has

L2-gain < 1
α
.

In analogy with Theorem 5we formulate the following alterna-
tive version for the case e2 = 0.

Theorem 9. Given Σ1 = ∆2G∆1 and α > 0, where G is linear time-
invariant, ∆i is linear with L2-gain = 1 and has an inverse with L2-
gain = 1 , then there exists γ such that Σ1∥e2=0Σ2 has L2-gain ≤ γ

from e1 to y1 for allΣ2 with L2-gain≤ α if and only if Σ1 has L2-gain
< 1

α
.

Proof. Sufficiency is clear. For necessity, note that as in Theorem 8,
the hypothesis is equivalent to G∥e2=0Σ2 having L2-gain≤ γ for all
Σ2 with L2-gain ≤ α. Define

H := {(u1, y1, e1) ∈ L2 | y1 = G(u1)}

and the quadratic forms σi : H → R, i = 0,1, as

σ0(u1, y1, e1) :=

⟨[u1
y1
e1

]
,

⎡⎣0 0 0
0 I 0
0 0 −γ 2I

⎤⎦[u1
y1
e1

]⟩
,

σ1(u1, y1, e1) :=

⟨[u1
y1
e1

]
,

⎡⎣−I 0 I
0 α2I 0
I 0 −I

⎤⎦[u1
y1
e1

]⟩
.

Then L2-gain≤ γ of G∥e2=0Σ2 for allΣ2 with L2-gain≤ α amounts
to

σ0(u1, y1, e1) ≤ 0 ∀(u1, y1, e1) ∈ H
such that σ1(u1, y1, e1) ≥ 0.

This is equivalent, via the S-procedure lossless theorem, to the
existence of µ ≥ 0 such that

σ0(u1, y1, e1) + µσ1(u1, y1, e1) ≤ 0, ∀(u1, y1, e1) ∈ H.

This implies that

∥y1∥2
2 − γ 2

∥e1∥2
2

+µ
(
u1(−u1 + e1) + α2

∥y1∥2
2 + e1(u1 − e1)

)
≤ 0

for all e1 ∈ L2. Thus in the subset {(u1, y1, 0) ∈ L2 | y1 = G(u1)} ⊂

H this yields

∥y1∥2
+ µα2

∥y1∥2
2 − µ∥u1∥

2
≤ 0, ∀u1 ∈ L2.

This implies µ ̸= 0 and thus µ > 0, and hence by dividing by µ it
follows that G, and hence Σ1, has L2-gain < 1

α
.

5. Conclusions

We proved (different versions of the) converse passivity and
small-gain theorems for certain linear time-varying systems inter-
connected in feedback with nonlinear systems by making crucial
use of the S-procedure lossless theorem. Such converse results are
fundamental in the control of systems interacting with unknown
environments (e.g., in robotics), and in robust control theory (mod-
eling uncertainty in the to-be-controlled systemby unknown feed-
back loops). Surprisingly, a full state space version of these results
seems to be non-trivial (see Stramigioli (2015) for partial results).
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We also refer to the discussion in Stramigioli (2015) for further
generalizations of the converse passivity theorem; in particular the
quantification of closed-loop stability under interaction with an
unknown environment that is allowed to be active in a constrained
manner. This is closely related to the well-known fact that ‘lack of
passivity’ of the second system may be ‘compensated by’ excess
of passivity, of the first system; cf. van der Schaft (2017, Theorem
2.2.18) and various work on passivity indices, see e.g. Bao and
Lee (2007). Future work also involves seeking converse results for
network-interconnected systems.
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