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Chapter 3
Dissipative Systems Theory

In this chapter the general theory of dissipative systems is treated, laying much of the
foundation for subsequent chapters. The theorywill be shown to provide a state space
interpretation of the notions of finite L2-gain and passivity for input–output maps as
discussed in Chaps. 1 and 2, and to generalize the concept of Lyapunov functions for
autonomous dynamical systems to systems with inputs and outputs.

3.1 Dissipative Systems

Throughout we consider state space systems with inputs and outputs of the general
form

� : ẋ = f (x, u) , u ∈ U
y = h(x, u) , y ∈ Y

(3.1)

where x = (x1, . . . , xn) are local coordinates for an n-dimensional state space man-
ifold X , and U and Y are linear spaces, of dimension m, respectively p. Throughout
this chapter, as well as in the subsequent chapters, we will make the following
assumption; see also the discussion in Sect. 1.3.

Assumption 3.1.1 There exists a unique solution trajectory x(·) on the infinite time
interval [0,∞) of the differential equation ẋ = f (x, u), for all initial conditions x(0)
and all input functions u(·) ∈ L2e(U ). Furthermore it will be assumed that the thus
generated output functions y(·) = h(x(·), u(·)) are in L2e(Y ).

On the combined space U × Y of inputs and outputs consider a function

s : U × Y → R , (3.2)

called the supply rate. Denote as before R+ = [0,∞).
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34 3 Dissipative Systems Theory

Definition 3.1.2 A state space system � is said to be dissipative with respect to the
supply rate s if there exists a function S : X → R+, called the storage function, such
that for all initial conditions x(t0) = x0 ∈ X at any time t0, and for all allowed input
functions u(·) and all t1 ≥ t0 the following inequality holds1

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(u(t), y(t))dt (3.3)

If (3.3) holds with equality for all x0, t1 ≥ t0, and all u(·), then � is conservative
with respect to s. Finally,� is called cyclo-dissipative with respect to s if there exists
a function S : X → R (not necessarily nonnegative) such that (3.3) holds.

The inequality (3.3) is called the dissipation inequality. It expresses the fact that the
“stored energy” S(x(t1)) of� at any future time t1 is atmost equal to the stored energy
S(x(t0)) atpresent time t0,plus the total externally supplied energy

∫ t1
t0

s(u(t), y(t))dt
during the time interval [t0, t1]. Hence, there can be no internal “creation of energy”;
only internal dissipation of energy is possible.

Remark 3.1.3 Note that cyclo-dissipativity implies

∫ t1

t0

s(u(t), y(t))dt ≥ 0 (3.4)

for all trajectories u(·), x(·), y(·) of � on the time interval [t0, t1] which are such
that x(t1) = x(t0) (whence the terminology cyclo-dissipative).

The two most important choices of supply rates will be seen to correspond to the
notions of passivity, respectively finite L2-gain, as treated for input–output maps in
the preceding chapters.

For simplicity of exposition we will identify throughout this chapter the linear
input and output spaces U and Y with Rm , respectively Rp, equipped with the
standard Euclidean inner product and norm. Throughout the Euclidean inner product
of two vectors v, z ∈ Rm will be denoted by vT z, and the Euclidean norm of a vector
v ∈ Rm by ‖v‖.
Definition 3.1.4 A state space system � with U = Y = Rm is passive if it is dis-
sipative with respect to the supply rate s(u, y) = uT y. � is input strictly passive if
there exists δ > 0 such that � is dissipative with respect to s(u, y) = uT y − δ||u||2.
� is output strictly passive if there exists ε > 0 such that� is dissipative with respect
to s(u, y) = uT y − ε||y||2. Finally, � is lossless if it is conservative with respect to
s(u, y) = uT y.

Definition3.1.4 is directly seen to extend the definitions of (input/output) strict pas-
sivity for input–output maps G as given in the previous Chap.2. Based on Assump-
tion3.1.1 we consider for every x0 ∈ X the input–output map Gx0 : L2e(U ) →

1Here it is additionally assumed that for allowed input functions u(·) and generated output functions
y(·) the integral ∫ t1

t0
s(u(t), y(t))dt is well defined.

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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L2e(Y ), given as the map from allowed input functions u(·) on [0,∞) to output
functions y(·) on [0,∞) specified as y(t) = h(x(t), u(t)), where x(t) is the state at
time t ≥ 0 resulting from initial condition x(0) = x0 and input function u(·). Note
that all these input–output maps Gx0 , x0 ∈ X , are causal (Definition1.1.3), and time
invariant (Definition1.1.5).

Proposition 3.1.5 Consider the state space system � with U = Y = Rm, and
consider for any x0 the input–output map Gx0 . If � is passive, input strictly pas-
sive, respectively output strictly passive, then so are the input–output maps Gx0 for
every x0.

Proof Suppose � is dissipative with respect to the supply rate s(u, y) = uT y. Then
for some function S ≥ 0

∫ T

0
uT (t)y(t)dt ≥ S(x(T )) − S(x(0)) ≥ − S(x(0)) (3.5)

for all x(0) = x0, and all T ≥ 0 and all input functions u(·). This means precisely
that the input–output maps Gx0 of �, for every x0 ∈ X , are passive in the sense of
Definition2.2.1 (with bias β given as S(x0)). The (input or output) strict passivity
case follows similarly.

�

A second important class of supply rates is

s(u, y) = 1

2
γ2||u||2 − 1

2
||y||2 , γ ≥ 0 , (3.6)

where ||u|| and ||y|| denote the Euclidian norms on U = Rm , respectively Y = Rp.

Definition 3.1.6 A state space system � with U = Rm, Y = Rp has L2-gain ≤ γ
if it is dissipative with respect to the supply rate s(u, y) = 1

2γ
2||u||2 − 1

2 ||y||2. The
L2-gain of � is defined as γ(�) := inf{γ | � has L2-gain ≤ γ}. � is said to have
L2-gain < γ if there exists γ̃ < γ such that � has L2-gain ≤ γ̃. Finally � is called
inner if it is conservative with respect to s(u, y) = 1

2 ||u||2 − 1
2 ||y||2.

Definition3.1.6 is immediately seen to extend the definition of finite L2-gain from
Chaps. 1 and 2.

Proposition 3.1.7 Suppose � is dissipative with respect to s(u, y) = 1
2γ

2||u||2 −
1
2 ||y||2 for some γ > 0. Then all input–output maps Gx0 : L2e(U ) → L2e(Y ) have
L2-gain ≤ γ. Furthermore, the infimum of the L2-gains of Gx0 over all x0 is equal
to the L2-gain of �.

Proof If � is dissipative with respect to s(u, y) = 1
2γ

2||u||2 − 1
2 ||y||2 then there

exists S ≥ 0 such that for all T ≥ 0, x(0), and u(·)

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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1

2

∫ T

0
(γ2||u(t)||2 − ||y(t)||2)dt ≥ S(x(T )) − S(x(0))|! ≥ S(x(0)) (3.7)

and thus ∫ T

0
||y(t)||2dt ≤ γ2

∫ T

0
||u(t)||2dt + 2S(x(0)) (3.8)

This implies by Proposition1.2.7 that the input–output maps Gx0 for every initial
condition x(0) = x0 have L2-gain ≤ γ. The rest of the statements follows directly.

�
Remark 3.1.8 Note that by considering supply rates s(u, y) = γ̃||u||q − ||y||q we
may also treat Lq -gain for q �= 2; this will not be further discussed.

In the subsequent chapters we will elaborate on the special cases s(u, y) = uT y and
s(u, y) = 1

2γ
2||u||2 − 1

2 ||y||2 corresponding to, respectively, passivity (Chap.4) and
finite L2-gain (Chap.8), in much more detail. Instead, in the current chapter we will
focus on the general theory of dissipative systems.

Before doing so we mention one immediate generalization of the definition of
dissipativity. In Chaps. 1 and 2 we already noticed that the notions of finite L2-gain
and passivity can be extended from input–output maps to relations. In the same vein,
the definition of dissipativity for input–state–output systems � as in (3.1) can be
extended to state space systems described by a mixture of differential and algebraic
equations, where we do not distinguish a priori between input and output variables.
That is, we may consider systems of the general form

F(x, ẋ, w) = 0, (3.9)

where x = (x1, . . . , xn) are local coordinates for an n-dimensional state space man-
ifold X , and w ∈ W = Rs denotes the total vector of external variables. Note
that this entails two generalizations of (3.1): (i) we replace the combined vector
(u, y) ∈ Y × U by a vector w ∈ W (where we do not make an a priori splitting into
input and output variables), and (ii) we replace the explicit differential and algebraic
equations in (3.1) by a general mixture, called a set of differential–algebraic equa-
tions (DAEs). Note that systems (3.9) include implicit and constrained state space
systems. In this more general context the supply rate s is now simply defined as a
function

s : W → R,

while the DAE system (3.9) is called dissipative with respect to s if there exists a
function S : X → R+ such that

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(w(t))dt, (3.10)

for all2 solutions x(·), w(·) of (3.9).

2Here we naturally restrict to continuous solutions.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Let us now return to the definition of dissipativity given in Definition3.1.2. First,
we notice that in general the storage function of a dissipative system is far from
unique. Nonuniqueness already arises from the fact that we may always add a non-
negative constant to a storage function, and so obtain another storage function.
Indeed, the dissipation inequality (3.3) is invariant under addition of a constant
to the storage function S. However, apart from this rather trivial nonuniqueness,
more often than not dissipative systems will admit really different storage func-
tions. Furthermore, if S1 and S2 are storage functions then any convex combina-
tion αS1 + (1 − α)S2,α ∈ [0, 1], is also a storage function, as immediately follows
from substitution into the dissipation inequality. Hence the set of storage functions
is always a convex set.

The storage function is guaranteed to be unique (up to a constant) in case the
system is conservative and a controllability condition is met, as formulated in the
following proposition.

Proposition 3.1.9 Consider a system � that is conservative with respect to some
supply rate s. Assume that the system is “connected” in the sense that for every
two states xa, xb, there exists a number of intermediate states x1, x2, . . . , xm with
x1 = xa, xm = xb, such that for every pair xi , xi+1 either xi can be steered (by the
application of a suitable input function) to xi+1, or, conversely, xi+1 can be steered
to xi , i = 1, 2 . . . , m. Then the storage function is unique up to a constant.

Proof Let S1, S2 be two storage functions. By the dissipation equality, the difference
S2 − S1 is constant along any state trajectory of the system. By the above property of
“connectedness” this constant is the same for every state trajectory. Hence S2 = S1

up to this constant. �

Remark 3.1.10 A simple physical example of a dissipative system that is not con-
servative, but still has unique (up to a constant) storage function will be provided in
Example4.1.7 in Chap.4.

A fundamental question is how we may decide if � is dissipative with respect to a
given supply rate s. The following theorem gives an intrinsic variational character-
ization of dissipativity.

Theorem 3.1.11 Consider the system � and supply rate s(u, y). Then � is dissi-
pative with respect to s if and only if

Sa(x) := sup
u(·)
T ≥0

−
∫ T

0
s(u(t), y(t))dt , x(0) = x, (3.11)

is finite (<∞) for all x ∈ X . Furthermore, if Sa is finite for all x ∈ X then Sa

is a storage function, called the available storage, and all other possible storage
functions S satisfy

Sa(x) ≤ S(x) − inf
x

S(x) , ∀ x ∈ X (3.12)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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Moreover,
inf

x
Sa(x) = 0 (3.13)

Proof Suppose Sa is finite. Clearly Sa ≥ 0 (take T = 0 in (3.11)). Compare now
Sa(x(t0)) with Sa(x(t1)) − ∫ t1

t0
s(u(t), y(t))dt , for a given u : [t0, t1] → Rm and

resulting state x(t1). Since Sa is given as the supremum over all u(·) in (3.11) it
immediately follows that

Sa(x(t0)) ≥ Sa(x(t1)) −
∫ t1

t0

s(u(t), y(t))dt , (3.14)

and thus Sa is a storage function, proving that � is dissipative with respect to the
supply rate s.

Suppose conversely that � is dissipative. Then there exists S ≥ 0 such that for
all u(·)

S(x(0)) +
∫ T

0
s(u(t), y(t))dt ≥ S(x(T )) ≥ 0 , (3.15)

which shows that

S(x(0)) ≥ sup−
∫ T

0
s(u(t), y(t))dt = Sa(x(0)) , (3.16)

proving finiteness of Sa . On the other hand, S′ := S − inf x S(x) is a storage func-
tion as well (since we have just subtracted the constant inf x S(x) from S and
thus the dissipation inequality remains to hold, while clearly S′ ≥ 0). Hence also
S′(x0) ≥ Sa(x0) for all x0, proving (3.12). Moreover, since inf x S′(x) = 0, also inf x

Sa(x) = 0. �

The quantity Sa(x0) can be interpreted as the maximal “energy” which can be
extracted from the system � starting at initial condition x0. Theorem3.1.11 thus
states that � is dissipative if and only if this “extractable energy” is finite for every
initial condition.

Under additional conditions the following equivalent characterizations of the
available storage Sa can be obtained.

Proposition 3.1.12 (i) Assume the system � and supply rate s(u, y) are such that
for any x there exists u(x) such that

s(u(x), h(x, u(x))) ≤ 0, x ∈ X (3.17)

Then

Sa(x) = sup
u(·)

−
∫ ∞

0
s(u(t), y(t))dt, x(0) = x (3.18)
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(i i) Assume � and s(u, y) are such that there exists a state feedback u(x) such that
(3.17) holds, while furthermore x∗ is a globally asymptotically stable equilibrium of
the closed-loop system3 ẋ = f (x, u(x)). Then

Sa(x) = sup
u(·), x→x∗

−
∫ ∞

0
s(u(t), y(t))dt, x(0) = x (3.19)

Proof (i) By letting T → ∞ in (3.11) we have sup
u(·)

− ∫ ∞
0 s(u(t), y(t))dt≤ Sa(x).

Conversely, note that

− ∫ ∞
0 s(u(t), y(t))dt = − ∫ T

0 s(u(t), y(t))dt − ∫ ∞
T s(u(t), y(t))dt

≥ − ∫ T
0 s(u(t), y(t))dt ,

(3.20)

whenever u(·) is such that s(u(t), y(t)) ≤ 0 for all t ∈ [T,∞). Hence for any
ū : [0, T ] → U there exists u : [0,∞) → U with uT = ū such that − ∫ ∞

0 s(u(t),

y(t))dt ≥ − ∫ T
0 s(ū(t), y(t))dt . Therefore, by taking the supremum at both sides of

this inequality we obtain the inequality sup
u(·)

− ∫ ∞
0 s(u(t), y(t))dt ≥ Sa(x).

(i i) As in the proof of part (i) we have sup
u(·), x→x∗

− ∫ ∞
0 s(u(t), y(t))dt ≤ Sa(x). For

the reverse inequality we apply the same reasoning as in the proof of part (i), by
considering extensions of ū : [0, T ] → U to u : [0,∞) → U which are such that
x(t) → x∗ for t → ∞. �

Remark 3.1.13 Note that part (i) of Proposition3.1.12 applies to the (input strict
or output strict) passivity supply rate and to the L2-gain supply rate by taking
u = 0. Furthermore, part (i i) applies whenever � has a globally asymptotically
stable equilibrium x∗ for u = 0.

The next proposition shows that if the system is reachable from some state, then the
finiteness of extractable energy needs only to be checked for this initial condition.

Proposition 3.1.14 Assume that � is reachable from x∗ ∈ X . Then � is dissipative
if and only if Sa(x∗) < ∞.

Proof (Only if ) Trivial. (If) Suppose there exists x ∈ X such that Sa(x) = ∞. Since
by reachability we can steer x∗ to x in finite time, this would imply (using time
invariance) that also Sa(x∗) = ∞. �

Corollary 3.1.15 Assume that � is reachable from x∗ ∈ X . Then � is passive if
and only if the input–output map Gx∗ is passive, and � has L2-gain ≤ γ if and only
if Gx∗ has L2-gain ≤ γ, while γ(�) = γ(Gx∗). Furthermore, if Gx∗ is passive with
zero bias or has L2-gain ≤ γ with zero bias, then Sa(x∗) = 0.

3Here it is assumed that ẋ = f (x, u(x)) has unique solutions on [0,∞) for all initial conditions.
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Proof Suppose the input–output map Gx∗ is passive, then ∃ β < ∞ such that
(cf. Definition2.2.1) ∫ T

0
uT (t)y(t)dt ≥ −β (3.21)

for all u(·), T ≥ 0. Therefore

Sa(x∗) = sup
u(·), T ≥0

−
∫ T

0
uT (t)y(t)dt ≤ β < ∞ , x(0) = x∗ (3.22)

and by Proposition3.1.14 � is passive. If β = 0 then Sa(x∗) = 0.
Similarly, let Gx∗ have L2-gain ≤ γ, then (cf. Proposition1.2.7) for all γ̃ > γ

there exists a constant c such that

∫ T

0
||y(t)||2dt ≤ γ̃2

∫ T

0
||u(t)||2dt + c (3.23)

yielding (with x(0) = x∗)

Sa(x∗) = sup
u(·), T ≥0

−
∫ T

0

(
1

2
γ̃2||u(t)||2 − 1

2
||y(t)||2

)
dt ≤ c

2
, (3.24)

implying that � has L2-gain ≤ γ̃ for all γ̃ > γ. If c = 0, then clearly Sa(x∗) = 0. It
also follows that γ(�) = γ(Gx∗). �

If � is reachable from a state x∗ then, in addition to the available storage Sa , there
exists another canonically defined storage function. Contrary to the available stor-
age, which is the minimal storage function (see (3.12)), this storage function has a
maximality property, in the following sense.

Theorem 3.1.16 Assume that � is reachable from x∗ ∈ X . Define the required sup-
ply (from x∗) Sr : X → R ∪ {−∞} as

Sr (x) := inf
u(·), T ≥0

∫ 0

−T
s(u(t), y(t))dt , x(−T ) = x∗, x(0) = x (3.25)

Then Sr satisfies the dissipation inequality (3.3). Furthermore, � is dissipative if and
only if there exists K > −∞ such that Sr (x) ≥ K for all x ∈ X . Moreover, if S is a
storage function for �, then

S(x) ≤ Sr (x) + S(x∗) , ∀x ∈ X , (3.26)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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and Sr (x) + S(x∗) is itself a storage function. In particular, Sr (x) + Sa(x∗) is a
storage function.

Proof The fact that Sr satisfies the dissipation inequality (3.3) follows from the
variational definitionof Sr in (3.25). Indeed, in taking the system from x∗ at t = −T to
x(t1) at time t1 we can restrict to those input functions u(·) : [−T, t1] → U whichfirst
take x∗ to x(t0) at time t0 ≤ t1, and then are equal to a given input u(·) : [t0, t1] → U
transferring x(t0) to x(t1). This will a be suboptimal control policy, whence

Sr (x(t0)) +
∫ t1

t0

s(u(t), y(t))dt ≥ Sr (x(t1)) (3.27)

For the second claim, note that by definition of Sa and Sr

Sa(x∗) = sup
x

−Sr (x), (3.28)

from which by Proposition3.1.14 it follows that� is dissipative if and only if ∃ K >

−∞ such that Sr (x) ≥ −K for all x .
Finally, let S satisfy the dissipation inequality (3.3). Then for anyu(·) : [−T, 0] →

Rm transferring x(−T ) = x∗ to x(0) = x we have by the dissipation inequality

S(x) − S(x∗) ≤
∫ 0

−T
s(u(t), y(t))dt (3.29)

Taking the infimum on the right-hand side over all those u(·) yields (3.26). Further-
more if S ≥ 0, then by (3.26) Sr + S(x∗) ≥ 0, and by adding S(x∗) to both sides of
(3.27) it follows that also Sr + S(x∗) satisfies the dissipation inequality. �

Remark 3.1.17 Let � be reachable from x∗. Then under the additional assumption
of existence of u∗ such that f (x∗, u∗) = 0, h(x∗, u∗) = 0 it can be verified that the
required supply is equivalently given as

Sr (x) = lim
t1→−∞ inf

u(·), x(t1)=x∗, x(0)=x

∫ 0

t1

s(u(t), y(t))dt (3.30)

Furthermore, we note that in case � is dissipative with a storage function S which
attains its global minimum at some point x∗ ∈ X , then also S − S(x∗) will be a
storage function, which is zero at x∗. Hence in this case any motion starting from x∗
at time 0 satisfies by the dissipation inequality

∫ T

0
s(u(t), y(t))dt ≥ 0 , x(0) = x∗, ∀T ≥ 0 (3.31)
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Thus if we start from the state of “minimal energy” x∗ then the net supply flow is
always directed into the system.4 This leads to the following alternative definition
of dissipativity.

Definition 3.1.18 Consider a system � and supply rate s. The system is called
dissipative from x∗ if (3.31) holds.

Proposition 3.1.19 Let � be dissipative with storage function S satisfying S(x∗) =
0. Then the system is also dissipative from x∗. Conversely, if the system is dissipative
from x∗ then Sa(x∗) = 0. If additionally the system is reachable from x∗ then the
system is dissipative, while its required supply satisfies Sr (x∗) = 0.

Proof The fact that dissipativitywith storage function S satisfying S(x∗) = 0 implies
(3.31) was already observed in (3.31). Conversely, assume that the system is dissi-
pative from x∗. Then by definition of Sa in (3.11) it directly follows that Sa(x∗) = 0.
Furthermore by Proposition3.1.14 it follows that the system is dissipative, while
clearly Sr (x∗) = 0. �

Hence, if � is dissipative as well dissipative from x∗, then both Sa and Sr attain
their minimum 0 at x∗. Under an additional assumption it can be shown that all other
storage functions attain their minimum at x∗ as well, as formulated in the following
proposition.

Proposition 3.1.20 Let � be dissipative and dissipative from x∗. Suppose further-
more the supply rate s is such that there exists a feedback u(x) satisfying (3.17)
for which x∗ is a globally asymptotically equilibrium for the closed-loop system
ẋ = f (x, u(x)). Then any storage function S attains its minimum at x∗, implying
that S(x) − S(x∗) is a storage function that is zero at x∗. Furthermore

Sa(x) ≤ S(x) − S(x∗), x ∈ X (3.32)

Proof Consider the dissipation inequality for any storage function S, rewritten as

−
∫ T

0
s(u(t), y(t))dt ≤ S(x) − S(x(T )) (3.33)

with x(0) = x . Extend u(·) : [0, T ] → U to the infinite time interval [0,∞) by
considering on (T,∞) a feedback u(x) as in (3.17) such that x∗ is a globally asymp-
totically equilibrium ẋ = f (x, u(x)). It follows from (3.20) and convergence of x(t)
to x∗ for t → ∞ that

−
∫ T

0
s(u(t), y(t))dt ≤ S(x) − S(x∗) (3.34)

4Note however that there does not always exist such a state of minimal internal energy. In particular
infx Sa(x) = 0 but not necessarily the minimum is attained.
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Hence by taking the supremum at the left-hand side over all u(·) : [0, T ] → U and
T ≥ 0 we obtain (3.32), also implying that S attains its minimum at x∗. �

The above developments can be summarized as follows.

Corollary 3.1.21 Consider a system (3.1) that is dissipative from x∗, reachable
from x∗, and for which there exists a feedback u(x) satisfying (3.17) such that x∗ is a
globally asymptotically equilibrium of ẋ = f (x, u(x)). Then any storage function S
attains its minimum at x∗ and the storage function S′(x) := S(x) − S(x∗) satisfies

Sa(x) ≤ S′(x) ≤ Sr (x), for all x ∈ X , (3.35)

where Sa(x∗) = Sr (x∗) = 0.

Remark 3.1.22 For a linear system ẋ = Ax + Bu, y = Cx + Du with x∗ = 0 sat-
isfying the assumptions of Corollary3.1.21 it can be proved by standard optimal
control arguments [351] that Sa and Sr are given by quadratic functions 1

2 xT Qa x ,
respectively 1

2 xT Qr x , with Qa, Qr symmetric matrices satisfying Qa ≤ Qr .

3.2 Stability of Dissipative Systems

In this section we will elaborate on the close connection between dissipative systems
theory and the theory of Lyapunov functions for autonomous dynamical systems
ẋ = f (x).

Consider the dissipation inequality (3.3),wherewe assume throughout this section
that the storage functions S areC1 (continuously differentiable); see the discussion in
the Notes for this chapter for generalizations. By dividing the dissipation inequality
by t1 − t0, and letting t1 → t0 we see that (3.3) is equivalent to

Sx (x) f (x, u) ≤ s(u, h(x, u)) , for all x, u, (3.36)

with Sx (x) denoting the row vector of partial derivatives

Sx (x) =
(

∂S

∂x1
(x), . . . ,

∂S

∂xn
(x)

)
(3.37)

The inequality (3.36) is called the differential dissipation inequality, and is much
easier to check than (3.3) since we do not have to compute the system trajectories
(which for most nonlinear systems is even not possible).

In order to make the connection with the theory of Lyapunov functions we recall
some basic notions and results from Lyapunov stability theory. Consider the set of
differential equations

ẋ = f (x) (3.38)
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Here x are local coordinates for an n-dimensional manifold X , and thus (3.38) is the
local coordinate expression of a vector field on X . Throughout we assume that f
is locally Lipschitz continuous; implying existence and uniqueness of solutions of
(3.38), at least for small time. The solution of (3.38) for initial condition x(0) = x0
will be denoted as x(t; x0), with t ∈ [0, T (x0)) and T (x0) > 0 maximal.

Definition 3.2.1 Let x∗ be an equilibrium of (3.38), that is f (x∗) = 0, and thus
x(t; x∗) = x∗, for all t . The equilibrium x∗ is

(a) stable, if for each ε > 0 there exists δ(ε) such that

‖ x0 − x∗ ‖< δ(ε) ⇒‖ x(t; x0) − x∗ ‖< ε, ∀t ≥ 0 (3.39)

(b) asymptotically stable, if it is stable and additionally there exists δ̄ > 0 such that

‖ x0 − x∗ ‖< δ̄ ⇒ lim
t→∞ x(t, x0) = x∗ (3.40)

(c) globally asymptotically stable, if it is stable and lim
t→∞ x(t; x0) = x∗ for all x0 ∈ X .

(d) unstable, if it is not stable.

Remark 3.2.2 If x∗ is a globally asymptotically stable equilibrium then necessarily
X is diffeomorphic toRn .

An important tool in the stability analysis of equilibria are Lyapunov functions.

Definition 3.2.3 Let x∗ be an equilibrium of (3.38). A C1 function V : X → R+
satisfying

V (x∗) = 0, V (x) > 0, x �= x∗ (3.41)

(that is, V is positive definite at x∗), as well as

V̇ (x) := Vx (x) f (x) ≤ 0, x ∈ X , (3.42)

is called a Lyapunov function for the equilibrium x∗.

Theorem 3.2.4 Let x∗ be an equilibrium of (3.38). If there exists a Lyapunov function
for the equilibrium x∗, then x∗ is a stable equilibrium. If moreover

V̇ (x) < 0, ∀x ∈ X , x �= x∗, (3.43)

then x∗ is an asymptotically stable equilibrium, which is globally asymptotically
stable if V is proper (that is, the sets {x ∈ X | 0 ≤ V (x) ≤ c} are compact for every
c ∈ R+).

Remark 3.2.5 Theorem3.2.4 can be also applied to any neighborhood X̃ of x∗. In
particular, if (3.41) and (3.42), or (3.41) and (3.43) hold on a neighborhood of x∗,
then x∗ is still a stable, respectively, asymptotically stable, equilibrium.
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Remark 3.2.6 ForX = Rn the requirement of properness amounts to V being radi-
ally unbounded; that is, V (x) → ∞ whenever ‖x‖ → ∞.

With the aid of Theorem3.2.4 the following stability result for dissipative systems
is readily established.

Proposition 3.2.7 Let s(u, y) be a supply rate, and S : X → R+ be a C1 storage
function for �. Assume that s satisfies

s(0, y) ≤ 0 , ∀y ∈ Y (3.44)

Assume furthermore that x∗ ∈ X is a strict local minimum for S. Then x∗ is a stable
equilibrium of the unforced system ẋ = f (x, 0) with Lyapunov function V (x) :=
S(x) − S(x∗) for x around x∗, while s(0, h(x∗, 0)) = 0. If additionally, Ṡ(x) < 0,
for all x �= x∗, then x∗ is an asymptotically stable equilibrium.

Proof By (3.36) and (3.44) Sx (x) f (x, 0) ≤ s(0, h(x, 0)) ≤ 0, and thus S is nonin-
creasing along solutions of ẋ = f (x, 0). Since S has a strict minimum at x∗ this
implies f (x∗, 0) = 0, and thus s(0, h(x∗, 0)) = 0. The rest follows directly from
Theorem3.2.4. �

An important weakness in the asymptotic stability statement of Proposition3.2.7
concerns the condition Ṡ(x) < 0 for all x �= x∗. In general, this condition cannot be
inferred from the dissipation inequality (unless e.g., y = x). An important general-
ization of Theorem3.2.4 to remedy this weakness is based on LaSalle’s Invariance
principle. Recall that a set N ⊂ X is invariant for ẋ = f (x) if x(t; x0) ∈ N for all
x0 ∈ N and for all t ∈ R, and is positively invariant if this holds for all t ≥ 0, where
x(t; x0), t ≥ 0, denotes the solution of ẋ = f (x) for x(0) = x0.

Theorem 3.2.8 Let V : X → R be a C1 function for which V̇ (x) := Vx (x)

f (x) ≤ 0, for all x ∈ X . Suppose there exists a compact set C which is posi-
tively invariant for ẋ = f (x). Then for any x0 ∈ C the solution x(t; x0) converges
for t → ∞ to the largest subset of {x ∈ X | V̇ (x) = 0} ∩ C that is invariant for
ẋ = f (x).

The usual way of applying Theorem3.2.8 is as follows. Since V̇ (x) ≤ 0, the con-
nected component of {x ∈ X | V (x) ≤ V (x0)} containing x0 is positively invariant.
If additionally V is assumed to be positive definite at x∗ then the connected compo-
nent of {x ∈ X | V (x) ≤ V (x0)} containing x0 will be compact for x0 close enough
to x∗, and hence may serve as the compact set C in the above theorem.

Using this reasoning Theorem3.2.8 yields the following connection between dis-
sipativity and asymptotic stability.

Proposition 3.2.9 Let S : X → R+ be a C1 storage function for �. Assume that
the supply rate s satisfies

s(0, y) ≤ 0 , for all y (3.45)
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Assume that x∗ ∈ X is a strict local minimum for S. Furthermore, assume that no
solution of ẋ = f (x, 0) other than x(t) ≡ x∗ remains in {x ∈ X | s(0, h(x, 0)) = 0}
for all t . Then x∗ is an asymptotically stable equilibrium of ẋ = f (x, 0), which is
globally asymptotically stable if V ≥ 0 is proper.

Proof Note that Ṡ(x) = 0 implies s(0, h(x, 0)) = 0, which by assumption implies
h(x, 0) = 0. The statement now directly follows from LaSalle’s Invariance
principle. �

Remark 3.2.10 The requirement s(0, y) ≤ 0 for all y is satisfied by the (output and
input strict) passivity and L2-gain supply rates.

A main condition on the storage function S in the previous statements is the require-
ment that S has a strict (local) minimum at the equilibrium x∗. This is not part of
the standard definition of a storage function. On the other hand, in case S(x∗) = 0
(see also Proposition3.1.20), then the property of a strict (local) minimum may be
sometimes derived making use of an additional observability condition.

In the rest of this section we assume that � has no feedthrough terms, i.e., y =
h(x). Without loss of generality take x∗ = 0. Moreover, assume h(0) = 0.

Definition 3.2.11 � with y = h(x) is zero-state observable if u(t) = 0,
y(t) = 0,∀t ≥ 0, implies x(t) = 0,∀t ≥ 0.

Proposition 3.2.12 Let S ≥ 0 be a C1 storage function with S(0) = 0 for a supply
rate s satisfying s(0, y) ≤ 0 for all y, and such that s(0, y) = 0 implies y = 0.
Suppose �a is zero-state observable, then S(x) > 0 for all x �= 0.

Proof By substituting u = 0 in (3.3) we obtain

S(x(T )) − S(x(0)) ≤
∫ T

0
s(0, y(t))dt

implying, since S(x(T )) ≥ 0,

S(x(0)) ≥
∫ T

0
s(0, y(t))dt

which is > 0 for x(0) �= 0. �

Remark 3.2.13 The same result follows for any supply rate s(u, y) for which
there exists an output feedback u = α(y) such that s(α(y), y) ≤ 0 for all y, and
s(α(y), y) = 0 implies y = 0. Just consider in the above proof u = α(y) instead of
u = 0.

Remark 3.2.14 Note that the L2-gain and output strict passivity supply rate satisfy
the conditions in the above Proposition3.2.12,while the passivity supply rate satisfies
the conditions of Remark3.2.13 (take u = −y).
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A weaker property of observability, called zero-state detectability, is instrumental
for proving asymptotic stability based on LaSalle’s Invariance principle.

Definition 3.2.15 �a is zero-state detectable ifu(t) = 0, y(t) = 0, ∀t ≥ 0, implies
lim

t→∞ x(t) = 0.

Proposition 3.2.16 Let S be a C1 storage function with S(0) = 0 and S(x) > 0,
x �= 0, for a supply rate s satisfying s(0, y) ≤ 0 and such that s(0, y) = 0 implies
y = 0, where h(0) = 0. Suppose that �a is zero-state detectable. Then x = 0 is an
asymptotically stable equilibrium of ẋ = f (x, 0). If additionally S is proper then 0
is globally asymptotically stable.

Proof By Proposition3.2.9 x = 0 is a stable equilibrium of ẋ = f (x, 0). Further-
more

Ṡ(x) = Sx (x) f (x) ≤ s(0, h(x, 0)),

and asymptotic stability follows by LaSalle’s Invariance principle, since Ṡ(x) = 0
implies h(x, 0) = 0. �

Finally, let us investigate the case that the storage function S has a local minimum at
x∗, which is howevernot a strictminimum. In this case, S(x) − S(x∗) isnot a standard
Lyapunov function, and thus stability, let alone asymptotic stability, of x∗ is not
guaranteed. Nevertheless, even in this case one can still obtain (asymptotic) stability,
provided additional conditions are satisfied. The tool for doing this is formulated in
the following theorem; see the references in the Notes for this chapter.

Theorem 3.2.17 Let x∗ be an equilibrium of ẋ = f (x), and let V : X → R1 be a
C1 function which is positive semi-definite at x∗, that is,

V (x∗) = 0, V (x) ≥ 0 (3.46)

Furthermore, suppose that V̇ (x) := Vx (x) f (x) ≤ 0, for all x ∈ X .

(i) Define V0 := {x ∈ X | V (x) = 0}. If x∗ is asymptotically stable conditionally
to V0, that is (3.39) and (3.40) hold for x0 ∈ V0, then x∗ is a stable equilibrium
of ẋ = f (x).

(ii) Define V := {x ∈ X | V̇ (x) = 0}, and let V∗ be the largest positively invariant
(with respect to ẋ = f (x)) set contained inV . Then x∗ is an asymptotically stable
equilibrium of ẋ = f (x) if and only if x∗ is an asymptotically stable equilibrium
conditionally to V∗, that is, (3.39) and (3.40) hold for x0 ∈ V∗.

Remark 3.2.18 By replacing the condition V̇ (x) = Vx (x) f (x) ≤ 0 by the condition
that the function V is nonincreasing along solution trajectories, the above theorem
also holds for functions V which are not C1.

With the aid of Theorem3.2.17 we obtain the following stability result extending
Proposition3.2.9.
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Proposition 3.2.19 Let S ≥ 0 with S(x∗) = 0 be a solution to the dissipation
inequality, where the supply rate s(u, y) is such that

s(0, y) ≤ 0 for all y, s(0, y) = 0 if and only if y = 0

LetH∗ be the largest positively invariant set contained in the setH:={x | h(x, 0)=0}.
If x∗ is asymptotically stable conditionally to H∗, then x∗ is an asymptotically stable
equilibrium.

Proof In view of the dissipation inequality Ṡ(x) ≤ s(0, h(x, 0)) ≤ 0. Since
s(0, y) = 0 if and only if y = 0, it follows that the largest positively invariant
set where Ṡ(x) = 0 is contained in H∗. Application of Theorem3.2.17 yields the
claim. �

Remark 3.2.20 Note that the L2-gain and output strict passivity supply rates satisfy
the conditions of Proposition3.2.19.

Remark 3.2.21 The property of x∗ = 0 being asymptotically stable conditionally
to the largest positively invariant set contained in the set {x | h(x, 0) = 0} is very
close to zero-state detectability. In fact, this latter property implies that lim

t→∞ x(t) = 0

whenever y(t) = 0, t ≥ 0, for all initial conditions x0 close to 0.

For later use we state the following closely related result.

Proposition 3.2.22 Consider the C1 system

ẋ = f (x) + g(x)k(x), f (x∗) = 0, k(x∗) = 0, (3.47)

and assume that x∗ is an asymptotically stable equilibrium of ẋ = f (x), and that
there exists a C1 function S ≥ 0 which is positive semi-definite at x∗ and satisfies

Sx (x) [ f (x) + g(x)k(x)] ≤ −ε||k(x)||2 , (3.48)

for some ε > 0. Then x∗ is an asymptotically stable equilibrium of (3.47).

Proof Similarly to the proof of Proposition3.2.19, let K∗ be the largest positively
invariant set contained in K := {x | k(x) = 0}. Since x∗ is an asymptotically stable
equilibrium of ẋ = f (x) it follows that x∗ is asymptotically stable conditionally to
K∗. Since Sx (x)[ f (x) + g(x)k(x)] = 0 implies k(x) = 0, the rest of the proof is the
same as that of Proposition3.2.19. �

Remark 3.2.23 Note that the condition of x∗ being an asymptotically stable equi-
librium of ẋ = f (x) can be regarded as a zero detectability assumption on ẋ =
f (x) + g(x)k(x), y = k(x).
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3.3 Interconnections of Dissipative Systems

Dissipative systems theory can be viewed as an extension of Lyapunov function the-
ory to systems with external variables (inputs and outputs). Furthermore, it provides
a systematic way to construct Lyapunov functions for large-scale interconnected sys-
tems by starting from the storage functions of the component systems, and requiring
a compatibility between the interconnection equations and the supply rates of the
component systems. In fact, this will be a leading theme in the state space versions of
the passivity theorems in Chap.4 and the small-gain theorems in Chap.8. Also this
is a continuing thread in the theory of port-Hamiltonian systems in Chap.6. While
in these subsequent chapters the attention will be confined to the passivity supply
rate (in the case of passive and port-Hamiltonian systems) and the L2-gain supply
rate (in the case of the small-gain theorems) the current section will be devoted to a
general theory of interconnections of dissipative systems.

Consider k systems �i of the form (3.1) with input, state, and output spaces
Ui ,Xi , Yi , i = 1, . . . , k. Suppose �i are dissipative with respect to the supply rates

si (ui , yi ), ui ∈ Ui , yi ∈ Yi , i = 1, . . . , k, (3.49)

and storage functions Si (xi ), i = 1, . . . , k.
Now consider an interconnection of �i , i = 1, . . . , k, defined through an inter-

connection subset

I ⊂ U1 × Y1 × · · · × Uk × Yk × U e × Y e (3.50)

where U e, Y e are spaces of external input and output variables ue, ye. This defines
an interconnected system �I with state space X1 × · · · × Xk and inputs and outputs
ue, ye, by imposing the interconnection equations

(
(u1, y1), . . . , (uk, yk), (u

e, ye)
) ∈ I (3.51)

Note that in general the interconnected system �I is of the DAE form (3.9). The
following result is immediate.

Proposition 3.3.1 Suppose the supply rates s1, . . . , sk and the interconnection sub-
set I are such that there exists a supply rate se : U e × Y e → R for which

s1(u1, y1) + · · · + sk(uk, yk) ≤ se(ue, ye),

for all ((u1, y1), . . . , (uk, yk), (ue, ye)) ∈ I
(3.52)

Then the interconnected system �I is dissipative with respect to the supply rate se,
with storage function

S(x1, . . . , xk) := S1(x1) + · · · + Sk(xk) (3.53)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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Proof Just add the k dissipation inequalities

Si (xi (t1)) ≤ Si (xi (t0)) +
∫ t1

t0

si (ui (t), yi (t))dt, i = 1, . . . , k

and invoke the inequality (3.52). �

Note that for the purpose of stability analysis of the interconnected system �I the
external inputs and outputs ue, ye and the supply rate se can be left out, in which
case (3.52) reduces to

s1(u1, y1) + · · · + sk(uk, yk) ≤ 0 ,

for all ((u1, y1), . . . , (uk, yk)) ∈ I
(3.54)

Example 3.3.2 Consider a system having inputs and outputs (uc, yc) accessible to
control interaction, and another set of inputs and outputs (ue, ye) via which the
system interacts with its environment. Suppose the system is passive, with respect
to the combined set of variables (uc, yc) and (ue, ye); that is, there exists a storage
function S such that

d S

dt
≤ uT

c yc + (ue)T ye

An example is a robotic mechanism interacting with its environment via generalized
forces ue and generalized velocities ye, and controlled by collocated sensors (gen-
eralized velocities yc) and actuators (generalized forces uc). Closing the loop with a
passive controller with storage function Sc, that is,

d Sc

dt
≤ −yT

c uc,

results in a system which is passive with respect to (ue, ye), since

d

dt
(S + Sc) ≤ (ue)T ye

Note that the storage function of the interconnected system �I in Proposition3.3.1
is simply the sum of the storage functions of the component systems �i . A useful
extension of Proposition3.3.1 is obtained by allowing instead for weighted combi-
nations of the storage functions of the component systems. For simplicity we will
only consider the case without external inputs and outputs ue, ye.

Proposition 3.3.3 Suppose the supply rates s1, . . . , sk and the interconnection sub-
set I are such that there exist positive constants α1, . . . ,αk for which

α1s1(u1, y1) + · · · + αksk(uk, yk) ≤ 0,

for all ((u1, y1), . . . , (uk, yk)) ∈ I
(3.55)
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Then the nonnegative function

Sα(x1, . . . , xk) := α1S1(x1) + · · · + αk Sk(xk) (3.56)

satisfies d
dt Sα ≤ 0 along all solutions of the interconnected system �I .

Proof Multiply each i-th dissipation inequality

Si (xi (t1)) ≤ Si (xi (t0)) +
∫ t1

t0

si (ui (t), yi (t))dt

by αi , i = 1, . . . , k, add them, and use the inequality (3.55). �

In Sect. 8.2 we will see how this proposition underlies the small-gain theorem and
extensions of it. Furthermore, it will appear naturally in the network interconnection
of passive systems in Sect. 4.4.

3.4 Scattering of State Space Systems

The generalization (3.10) of the definition of dissipativity to DAE systems without a
priori splitting of the external variables into inputs u and y is also useful in discussing
the extension of the notion of scattering, as treated in Sect. 2.4 for input–output maps,
to the state space system context.

Consider a state space system � given in standard input–state-output form (3.1),
which is assumed to be passive, i.e.,

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

uT (t)y(t)dt (3.57)

for some storage function S ≥ 0. Consider the scattering representation (v, z) of
(u, y) defined as, see (2.41),

v = 1√
2
(u + y) , z = 1√

2
(−u + y) (3.58)

The inverse transformation of (3.58) is u = 1√
2
(v − z), y = 1√

2
(v + z), and substi-

tution of these expressions in (3.57) yields

S(x(t1)) − S(x(t0)) ≤ 1

2

∫ t1

t0

(||v(t)||2 − ||z(t)||2)dt (3.59)

This shows that� is passive with respect to u and y if and only if� with transformed
external variables v and z has L2-gain ≤ 1 from v to z, while the storage function

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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remains the same. Similarly, it follows that � is lossless with respect to u and y if
and only if it is inner with respect to v and z.

Note that in general the transformed system � with external variables w = (v, z)
is in the format (3.9). In case the original � is an affine system without feedthrough
term, i.e., of the form

�a : ẋ = f (x) + g(x)u

y = h(x)
(3.60)

the substitution u = 1√
2
(v − z), y = 1√

2
(v + z), leads to an input–state–output rep-

resentation in the wave vectors v, z, namely

�s : ẋ = f (x) − g(x)h(x) + √
2g(x)v

z = √
2h(x) − v

(3.61)

Summarizing

Proposition 3.4.1 �a is passive (lossless) with storage function S if and only if �s

has L2-gain ≤ 1 (is inner) with storage function S.

3.5 Dissipativity and the Return Difference Inequality

Dissipative systems theory turns out to provide an insightful framework for the study
of the Inverse problem of optimal control, as originally introduced in [155] for the
linear quadratic optimal control problem.

Consider the nonlinear optimal control problem (see Sects. 9.4 and 11.2 for further
information)

min
u

∫ ∞

0
(||u(t)||2 + �(x(t)))dt , (3.62)

for the system
ẋ = f (x) + g(x)u, f (0) = 0, (3.63)

where � ≥ 0 is a cost function with �(0) = 0.
Denote the minimal cost (value) defined by (3.62) for initial condition x(0) = x0

by V (x0). The function V : X → R+ is called the value function. Suppose that the
value function V is well defined for all initial conditions and is C1. Then it is known
from optimal control theory that V is a nonnegative solution to the Hamilton–Jacobi–
Bellman equation

Vx (x) f (x) − 1

2
Vx (x)g(x)gT (x)V T

x (x) + 1

2
�(x) = 0, V (0) = 0 (3.64)

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Fig. 3.1 Feedback system
ẋ = f(x) + g(x)u

α(x)

v +

−
u x

û

Furthermore the optimal control is given in feedback form as

u = −α(x) := −gT (x)V T
x (x) (3.65)

If additionally V (x) > 0 for x �= 0 and the system ẋ = f (x), y = �(x) is zero-state
detectable (cf. Definition3.2.15), it follows from LaSalle’s Invariance principle that
this optimal feedback is actually stabilizing, since (3.64) can be rewritten as

Vx (x)[ f (x) − g(x)α(x)] = −1

2
αT (x)α(x) − �(x) , (3.66)

and thus asymptotic stability of x = 0 follows as in Proposition3.2.16.
Aswewill now show, the optimal control feedback u = −α(x) := −gT (x)V T

x (x)

has a direct dissipativity interpretation. Indeed, (3.64) and (3.65) can be rewritten as

Vx (x) f (x) − 1
2α

T (x)α(x) = −�(x) ≤ 0 V (0) = 0

Vx (x)g(x) = αT (x)
(3.67)

implying that the following system (the “loop transfer” from u to minus the optimal
feedback −α(x))

ẋ = f (x) + g(x)u

û = α(x)
(3.68)

is dissipative with respect to the supply rate

s(u, û) := 1

2
||û||2 + ûT u (3.69)

This leads to the following interesting consequence. By further rewriting the supply
rate s(u, û) = 1

2 ||û||2 + ûT u as

1

2
||û||2 + ûT u = 1

2
||u + û||2 − 1

2
||u||2 = 1

2
||v||2 − 1

2
||u||2 , (3.70)

it means that the feedback system in Fig. 3.1 with external inputs v satisfies the
property
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1

2

∫ T

0
||u(t)||2dt ≤ 1

2

∫ T

0
||v(t)||2dt + V (x(0)) − V (x(T ))

≤ 1

2

∫ T

0
||v(t)||2dt + V (x(0)) , (3.71)

for all initial conditions x(0), and for all external input signals v. Thus the L2-gain
from the external inputs v to the internal inputs u is less than or equal to one.

In the linear case the frequency domain version of the inequality (3.71) is called
the return difference inequality. The inequality expresses the favorable property that
in the closed-loop systemof Fig. 3.1 the L2-normof the optimal feedback u = −α(x)

is attenuated with regard to the L2-norm of any external control signal v(·).
Conversely, it can be shown that any stabilizing feedback u = −α(x) for which

(3.71) holds is actually optimal with respect to some cost function � ≥ 0 with
�(0) = 0. Indeed, consider u = −α(x) such that (3.71) is satisfied for some function
V ≥ 0, with V (0) = 0. Equivalently, the system (3.68) is dissipative with respect
to the supply rate s(u, û) = 1

2 ||û||2 + ûT u, with storage function V ≥ 0, V (0) = 0.
Then it follows that (assuming V is C1)

Vx (x) f (x) − 1
2α

T (x)α(x) ≤ 0

Vx (x)g(x) = αT (x)
(3.72)

Hence we may define the cost function � ≥ 0 as

�(x) := −Vx (x) f (x) + 1

2
αT (x)α(x), (3.73)

satisfying �(0) = 0. It follows that V is actually a nonnegative solution of the
Hamilton–Jacobi–Bellman equation (3.64) of the optimal control problem (3.62)
for this cost function �. As will be shown in Sect. 11.2, it follows that V is the value
function of this optimal control problem and that u = −α(x) is the optimal feedback
control.

Summarizing, we have obtained the following theorem.

Theorem 3.5.1 Consider the system (3.63). Let � ≥ 0 be a cost function with
�(0) = 0 such that ẋ = f (x), y = �(x), is zero-state detectable, and that the value
function V of the optimal control problem is well defined, C1, and satisfies V (x) >

0, x �= 0. Then the feedback u = −α(x) := −gT (x)V T
x (x) is stabilizing, and the

resulting feedback system in Fig.3.1 satisfies property (3.71).
Conversely, u = −α(x) is a stabilizing feedback such that the feedback system in

Fig.3.1 satisfies property (3.71) for a C1 function V ≥ 0 with V (0) = 0, then u =
−α(x) is the optimal control for (3.62) with the cost function �(x) := −Vx (x) f (x) +
1
2α

T (x)α(x).

Thus, loosely speaking, a feedbacku = −α(x) is optimalwith regard to someoptimal
control problem of the form (3.62) if and only if the return difference inequality (3.71)
holds.

http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Remark 3.5.2 In view of Proposition3.1.14, we additionally note that if the system
ẋ = f (x) + g(x)u is reachable from x = 0, then property (3.74) holds for a feedback
u = −α(x) and a V ≥ 0 with V (0) = 0, if and only if

∫ T

0
||u(t)||2dt ≤

∫ T

0
||v(t)||2dt , x(0) = 0, (3.74)

for all external inputs v, and all T ≥ 0.

Remark 3.5.3 Notice that the optimal regulator in Fig. 3.1, that is the system

ẋ = [ f (x) − g(x)α(x)] + g(x)v

û = α(x) = gT (x)V T
x (x)

(3.75)

is output strictly passive, as follows directly from (3.66).

3.6 Notes for Chapter3

1. The main part of the theory exposed in Sect. 3.1 is based on Willems’ seminal
and groundbreaking paper [350]. The developments around Propositions3.1.19,
3.1.20 and Corollary3.1.21 are relatively new, although inspired by similar argu-
ments in Willems [349, 351].

2. Other expositions of (parts of) the theory of dissipative systems can be found
in Hill & Moylan [126], Moylan [225], Brogliato, Lozano, Maschke & Egeland
[52], as well as Isidori [139], Arcak, Meissen & Packard [11].

3. We refer to e.g., Weiland & Willems [346], and Trentelman & Willems [338,
339], Willems & Trentelman [353] for developments on dissipative systems
theory within a (linear) behavioral systems theory framework; generalizing the
concept of quadratic supply rates to quadratic differential forms that may also
involve derivatives of the inputs and outputs. Note that in these papers “dissipa-
tivity” is often used in the meaning of “cyclo-dissipativity”.

4. The first part of Sect. 3.2 is also mainly based on Willems’ paper [350], together
with important contributions due to Hill & Moylan [123–126]. The exposition
on stability in Sect. 3.2 was influenced by Sepulchre, Jankovich & Kokotovic
[312].

5. The theory of dissipative systems is closely related to the theory of Integral
Quadratic Constraints (IQCs); see e.g., Megretski & Rantzer [215], Jönsson
[152] and the references quoted therein.
Basically, in the theory of Integral Quadratic Constraints (IQCs) the system �1

denotes the given linear “nominal” part of the system to be studied, specified
by a transfer matrix G, while � := �2 denotes the “troublemaking” (nonlinear,



56 3 Dissipative Systems Theory

time-delay, time-varying, uncertain) components. In order to assess stability of
the overall system one searches for IQCs for �. These are given by a Hermitian
matrix valued function �( jω),ω ∈ R, such that

∫ ∞

−∞

[
û2( jω)

ŷ2( jω)

]∗
�( jω)

[
û2( jω)

ŷ2( jω)

]
dω ≥ 0

for all L2 signals u2, y2 compatible with �. Here ̂ denotes Fourier transform,
and ∗ is complex conjugate and transpose. For rational � that are bounded on
the imaginary axis, the time domain version of the IQC is

∫ ∞

0
σ(xπ(t), y2(t), u2(t))dt ≥ 0

for a certain quadratic form σ, where xπ is solution of an auxiliary system

ẋπ = Aπxπ + By2 y2 + Bu2u2, xπ(0) = 0.

The main theorem (Theorem1 in Megretski & Rantzer [215]) states that if we
can find a � such that for every τ ∈ [0, 1] the interconnection of G and τ� is
well posed and � is an IQC for τ�, while there exists a ε > 0 such that

[
G( jω)

I

]∗
�( jω)

[
G( jω)

I

]
≤ −εI, ∀ω ∈ R

then the closed-loop system is stable. Compared with the setup of dissipative
systems theory there are twomajor differences. One is that� is not necessarily a
constantmatrix, and that therefore in the time domain formulation the functionσ,
which replaces the supply rate s of dissipative systems theory, also depends on an
auxiliary dynamical system (acting as an additional filter for the signals u2, y2).
Secondly, the IQC should only hold for all L2 signals u2, y2, and therefore in the
time domain version the integral is from 0 to ∞, instead of from 0 to any T ≥ 0,
as in dissipative systems theory formulation. The first aspect constitutes a major
extension with respect to dissipative systems theory. The second difference is
more of a technical nature, closely related to an extension of dissipativity to
cyclo-dissipativity. The L2-stability problems caused by the second difference
are taken care of by an ingenious homotopy argument based on the variation of τ
from 0 to 1 (nominal value). In Veenman & Scherer [341] it has been shown how
in most situations IOC stability analysis can be proved by dissipative systems
theory.
On a methodological level, the philosophy of the theory of IQCs is somewhat
different from dissipative systems theory in the sense that in IQC theory the
emphasis is on stability analysis by splitting between nominal linear dynamics
and “troublemaking” nonlinearities or time delays, whose disturbing properties
are sought to be bounded by a suitable IQC. Dissipative systems theory, on the
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other hand, is primarily a compositional theory of complex systems (rooted in
network dynamics), where nonlinear dynamical components are not necessarily
considered to be detrimental. The theory of IQCs is especially useful for stability
analysis of systems with “small-scale” nonlinearities or time delays. It yields
sharp results on the classical cases of “noncausal multipliers” and the Popov
criterion.

6. In Sect. 3.2 we have assumed throughout that there exist storage functions which
are continuously differentiable (C1), in order to make the link with Lyapunov
stability theory, and, very importantly, in order to be able to rewrite the dissi-
pation inequality (3.3) as the differential dissipation inequality (3.36). Now, for
Lyapunov stability theory the Lyapunov functions do not necessarily have to
be C1, see e.g., Sontag [317]. Moreover, often storage functions for nonlinear
systems are not everywhere differentiable (in particular this may happen for the
available storage Sa and the required supply Sr , being solutions to an optimal
control problem). Since it is much easier to work with differential dissipation
inequalities than with dissipation inequalities in integral form, it would thus
be desirable to have a generalized solution concept for differential dissipation
inequalities (3.36), admitting solutions S that are not everywhere differentiable.
In fact, this is possible using the concept of a viscosity solution (see e.g., Fleming
& Soner [99], for a clear exposé), as shown in James [144] (see also James &
Baras [145], Ball & Helton [22]). We also like to refer to Clarke, Ledyaev, Stern
& Wolenski [67, 68] for a broader discussion of generalized solution concepts
for Hamilton–Jacobi inequalities or equalities, showing equivalence between
apparently different solution concepts.

7. See e.g., Khalil [159] for a coverage of Lyapunov stability theory and LaSalle’s
Invariance principle.

8. Theorem3.2.17 is due to Iggidr, Kalitine & Outbib [134]. I thank Laurent Praly
for pointing out an error in the presentation of the consequences of this theorem
in the second edition of this book.

9. Proposition3.2.22 is due to Imura, Sugie & Yoshikawa [132], Imura, Maeda,
Sugie & Yoshikawa [131], where an alternative proof is given.

10. Section3.3 is largely based on Willems [350], Moylan & Hill [227], see also
Moylan [225].

11. The stability analysis of an interconnected system the approach taken in Sect. 3.3
can be turned around as well. Given the component systems �1, . . . , �k and the
interconnection subset I , one may search for (suitably defined) supply rates
s1, . . . , sk, for which the systems are dissipative and (3.54) holds. This point
of view is already (implicitly) present in classical papers on dissipative systems
such as Moylan & Hill [227], see also Moylan [225], and was recently empha-
sized and explored inMeissen, Lessard, Arcak&Packard [217], Arcak,Meissen,
Packard [11].
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Furthermore, in Jokic&Nakic [151] the converse result is obtained stating that if
an interconnected linear system has an additive quadratic Lyapunov function (a
sum of terms only depending on the state variables of the subsystems) then there
exist interconnection neutral supply rates with respect to which the subsystems
are dissipative.

12. Section3.5 is an extended and simplified exposition of basic ideas developed
in Moylan & Anderson [226]. For related work on the inverse optimal control
problem and its applications to robust control design we refer to Sepulchre,
Jankovic & Kokotovic [312], and Freeman & Kokotovic [106].

13. The differential dissipation inequality (3.36) admits the following factorization
perspective. For concreteness, assume that f (0, 0) = 0, h(0, 0) = 0 as well as
s(0, 0) = 0. Then, under technical assumptions (see Chap.9), satisfaction of
(3.36) will imply that there exists a map h̄ : X × Rm → R p̄ such that

Sx (x) f (x, u) − s(u, h(x, u)) = −‖h̄(x, u)‖2 (3.76)

Equivalently, the system is conservative with respect to the new supply rate

s̄(u, y, ȳ) := s(u, y) − ‖ȳ‖2, (3.77)

involving, next to y, the new output ȳ = h̄(x, u). This factorization perspective
will be further discussed in the context of the passivity supply rate in Sect. 4.1,
and will be key in the developments on the L2-gain supply rate in Sect. 9.4.

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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