117,481 research outputs found

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    Application of iterative nonlinear model predictive control to a batch pilot reactor

    Get PDF
    IFAC WORLD CONGRESS (16) (16.2005.PRAGA, REPÚBLICA CHECA)The aim of this article is to present the Iterative Model Predictive Controller, inmpc, as a good candidate to control chemical batch reactors. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (mpc) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. The controller is tested on a batch pilot reactor, and a comparison with an Iterative Learning Controller (ilc) is made. Under input constraints and for this nonlinear plant, a fast convergence rate is obtained with the proposed controller, showing good operational results. Although the controller is designed for discrete-time systems, it is a necessary condition that the continuous-time model does not present blow-up characteristics. The batch pilot reactor emulates an exothermal chemical reaction by means of electrical heating

    Adaptive PID Type Iterative Learning Control

    Get PDF
    In this paper, an adaptive PID-type iterative learning control scheme is proposed for tracking problem in repetitive systems with unknown parameters. In this scheme, we use a combination of an optimal PID-type iterative learning controller and progection like adgusting algorithm that is based on tracking error which decreases by iterations increment. Layapunov method is used for convergence analysis of the presented scheme, and convergence condition is obtained in term of algorithm step size range. the effectiveness of proposed technique is illustrated by simulation results.DOI:http://dx.doi.org/10.11591/ijece.v4i6.643

    A robust iterative learning control for continuous-time nonlinear systems with disturbances

    Get PDF
    In this paper, we study the trajectory tracking problem using iterative learning control for continuous-time nonlinear systems with a generic fixed relative degree in the presence of disturbances. This class of controllers iteratively refine the control input relying on the tracking error of the previous trials and some properly tuned learning gains. Sufficient conditions on these gains guarantee the monotonic convergence of the iterative process. However, the choice of the gains is heuristically hand-tuned given an approximated system model and no information on the disturbances. Thus, in the cases of inaccurate knowledge of the model or iteration-varying measurement errors, external disturbances, and delays, the convergence condition is unlikely to be verified at every iteration. To overcome this issue, we propose a robust convergence condition, which ensures the applicability of the pure feedforward control even if other classical conditions are not fulfilled for some trials due to the presence of disturbances. Furthermore, we quantify the upper bound of the nonrepetitive disturbance that the iterative algorithm is able to handle. Finally, we validate the convergence condition simulating the dynamics of a two degrees of freedom underactuated arm with elastic joints, where one is active, and the other is passive, and a Franka Emika Panda manipulator

    Robust gradient-based discrete-time iterative learning control algorithms

    Get PDF
    This paper considers the use of matrix models and the robustness of a gradient-based Iterative Learning Control (ILC) algorithm using both fixed learning gains and gains derived from parameter optimization. The philosophy of the paper is to ensure monotonic convergence with respect to the mean square value of the error time series. The paper provides a complete and rigorous analysis for the systematic use of matrix models in ILC. Matrix models make analysis clearer and provide necessary and sufficient conditions for robust monotonic convergence. They also permit the construction of sufficient frequency domain conditions for robust monotonic convergence on finite time intervals for both causal and non-causal controller dynamics. The results are compared with recent results for robust inverse-model based ILC algorithms and it is seen that the algorithm has the potential to improve robustness to high frequency modelling errors provided that resonances within the plant bandwidth have been suppressed by feedback or series compensation
    corecore