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 In this paper, an adaptive PID-type iterative learning control scheme is 
proposed for tracking problem in repetitive systems with unknown 
parameters. In this scheme, we use a combination of an optimal PID-type 
iterative learning controller and projection like adjusting algorithm that is 
based on tracking error which decreases by iterations increment. Layapunov 
method is used to convergence analysis of the presented scheme, and 
convergence condition is obtained in term of algorithm step size range. The 
effectiveness of proposed technique is illustrated by simulation results. Keyword: 

Adaptive control 
Iterative learning control 
Monotonic convergence 
PID type ILC 

Copyright © 2014 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

Sara Zamiri 
Department of Control Engineering, Science and Research Branch  
Islamic Azad University, Boroujerd, Iran. 
Email: s.zamiri1365@yahoo.com 

 
 
1. INTRODUCTION 

There are many industrial applications, that the system must periodically do a certain task over a 
finite trial length, such as in machine assembly by robot manipulators, chemical batch processes, and many 
other similar examples. Now, if human operators perform such this task repeatedly, they will learn to do their 
job better and better. This is because of human's learning and adaptive ability. this kind of learning is called 
iterative learning control (ILC) [1-3], which was first introduced by Arimoto et al. in 1984 [1]. The important 
characteristic of ILC is using information that are recorded at each iteration to adjust the control signal in an 
attempt to reduce the tracking error obtained during the next iteration, where by increasing the numbers 
iterations the tracking error will convergence to zero [4]. The operation of ILC in controlling repetitive 
systems with unknown parameters creates adaptive ILC algorithms. In [5], some adaptive some iterative 
learning control schemes for trajectory tracking of robot manipulators, with unknown parameters, is 
proposed. Note that many of the proposed adaptive ILC algorithms are combination of adaptive controllers 
and non-adaptive ILC algorithms. Accordingly in [6], by ILC algorithm a standard model reference scheme 
is expanded to continuous-time SISO linear time-invariant systems which perform repetitive tasks. In [7], a 
new adaptive switching learning control approach, which is called adaptive switching learning PD control 
law, was proposed that it has the ability of both learning and adaptive. A self-tuning iterative learning control 
approach in [8] was proposed for linear time-varying unknown systems. In [9], an adaptive PID learning 
controller was presented which composed of an adaptive PID feedback control scheme and a feed forward 
input learning scheme. Combines both concept of model reference adaptive control and ILC was proposed in 
[10] for unknown linear repeatable systems. An adaptive PI-type ILC scheme was presented in [11], without 
any prior knowledge of system parameters. Based on an estimation procedure using a Kalman filter and an 
optimization of a quadratic criterion is presented in [12], an adaptive Iterative Learning Control (ILC). A 
recent research [13] studied the optimal design of PID-type ILC for a discrete-time linear repetitive system. 
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By expanding the results of [13] to unknown system, a new control algorithm called adaptive PID-type 
iterative learning control that is the main debate of this paper.  

The outline of the paper is as follows. In Section 2, some necessary definitions of the problem are 
given. A summary of the structure of PID type ILC and its parameter optimal design is presented in section 3. 
In section 4, an adaptive PID-Type ILC and its convergence operation is given. In section5, simulation 
results are presented to illustrate the effectiveness of the proposed method. The last section concludes the 
paper. 
 
 
2. PROBLEM FORMULATION AN PRELIMINARIES 

Let us intriduce subscript ‘j’ and ‘i’ as repetition (or operation/or iteration) and time during a given 
repetition of the system respectively where both j and i are integers, and ∈ 0, . In this paper, we consider 
that the plant to be controlled is a discrete-time, linear, time-invariant, single-input single-output systems and 
described as follow: 

 
1 ,

,

0 ,

0,1, … , ,    0,1, …

 (1) 

 

Where ∈  is the state vector, ∈  and ∈  are input and output of the system respectively. A, B, 
and C are real-valued coefficients with appropriate dimensions. Also x0 is the system initial condition. In this 
part, consider (1) and make the following reasonable assumptions: 
(A1) The matrixes A, B and C are known. 
(A2) The scalar CB is nonzero. 
(A3) The system initial condition x0 is unknown. 
Under iterative learning control strategy, the error between the given desired output trajectory yd(i) and the 
system actual output yj(i) become smaller by increasing the numbers of repetition, so that following tracking 
can be establish: 
 

lim
→

 for 1  i  M (2) 

 
Because only finite time intervals (M < samples) are comsidered output trajectory yd(i) form by building 
super vectors1 U(j) and Y(j) form uj(i) and yj(i) as follows: 
 

U(j)=[uj(0) uj(1) uj(2) … uj(M – 1)]T (3) 
Y(j)=[yj(1) yj(2) yj(3) … yj(M)]T 

 
Where T denotes the transpose. 
From (1) the following relation obtained easily: 
 

Y(j) = HpU(j) + Hxx0 (4) 
 
Where Hp and Hx are the following matrixes: 
 

 
⋮

,    

0 0
0 ⋯

0
0
0

⋮ ⋱ ⋮
⋯

 (5) 

 
Where hk denotes the standard Markov parameters of the system (1), that is: 
 

hk = CAk-1B for k = 1, 2, …, M (6) 

                                                           
1 The super-vectors are marked by the elimination of the argument time. 
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Let us the operator T to map the vector h to a lower triangular Toeplitz matrix Hp, Hp = T(h) that vector h is 
as follow: 
 

h = [h1   h2   h3   …   hM]T (7) 
 
Comment 1. We consider assumption (A2) is a standard assumption in ILC design which guarantees the 
existence of the learning gains. That is h1 = CB  0. This is not really a restriction because it can be satisfied 
by choosing a proper sampling period in discretizing the continuous-time systems. 
Using (4) one can write: 
 

Y(j+1) =y(j) + HpY(j)      j = 0, 1, … (8) 
 
Where: 
 

V(j)=U(j+1) – U(j) (9) 
 
From (8) we can get: 
 

Yd – Y(j+1) = Yd – Y(j) – HpV(j) (10) 
 
The desired output trajectory yd and the error ej(i) = yd(i) – yj(i) can be also written as below vectors: 
 

Y(d)=[yd(1) yd(2) yd(3) … yd(M)]T (11) 
E(j)=[ej(1) ej(2) ej(3) … ej(M)]T 

 
Therefore relation (10) can be rewritten as follows: 
 

E(j+1) = E(j) – HpV(j)      j = 0, 1, … (12) 
 
The above relation is the dynamics of the error vector in the repetition domain. 
 
 
3. PID TYPE ILC AND ITS PARAMETER OPTIMAL DESIGN 
 
3.1. PID Type Iterative Learning Control 
According to the [13] PID-type ILC is defined as follow: 
 

1 1 , 

i = 0, 1, …, M-1,     j = 0, 1, … 

(13) 

 
Where, kp, ki and kd are PID learning gains (parameter/coefficient), which are called proportional, integration 
and derivative learning gains respectively. 
Using vectors representation (9) and (11), we can rewrite the above relation like compact form of the 
following formula: 
 

V(j) = kpE(j) + k iTiE(j) + kdTdE(j) (14) 
 
Where: 
 

1  1   1 …   1 ,   

1 0 0
1 1 0
1 1 1

    

… 0
0
0

⋮   ⋮
1 1 1      … 1

 (15) 
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1 1   0 …   0 ,   

1 0 0
1 1 0

0 1 ⋱
     

… 0 0
… 0 0

⋮
⋮ ⋱
0 0
0 0 …

     
1 0 0
1 1 0

0 1 1

 

 
 
3.2. Convergence Analysis 

The proposed ILCS is said to be convergent if the learning error approaches an infinitesimal value 
after sufficient learning iterations. Mathematically the following two definitions and theorems are given. 
Definition 1. For proposed ILCS can be shown to converge in the sense that as j we have yj(i)yd(i) for 
all i [0,M], for arbitrary initial conditions, such that (2) holds, meaning: 
 

lim
→

0 (16) 

 
Theorem 1.  ILCS is convergent if and only if learning gains kp, ki and kd satisfy the inequality as follows: 
 

1 1 (17) 
 
Proof: see [13] 
Comment 2. According to comment 1, since scalar ≜  is nonzero it can be find numerous real numbers 
for learning gains which they satisfy inequality (17). 
 
Definition 2.  The proposed ILCS is called monotonically convergent, if for any E(0) the following condition 
hold: 
 

‖ 1 ‖ ‖ ‖  (18) 
for =1, 2,     and    j = 0,1, 2,.... 

 
In particular, ‖ 1 ‖ ‖ ‖  if and only if either E ( j ) = 0 , that ‖ ‖  denotes the -norm. 
In theorem 1 give us a sufficient and necessary condition for the presented learning process.  Note that, this 
condition does not guarantee the convergence to monotonic. Thus, theorem 2 is presented for monotonic 
convergence. In this theorem, an optimal method is used for choosing kp, ki and kd. 
 
Theorem 2. The presented ILCS has monotonic convergence, with maximum desired convergence rate, if 
the learning gains kp, ki and kd  are chosen as follows: 
 

1
1
1

 (19) 

 
That, ∈    and also ∈  is defined as follow: 
 

⋮
∑

,

⋮

,        (20) 

 
Proof: see [13]. 
 
4. ADAPTIVE PID TYPE ILC 

In this part, we need to consider these conditions: 
(B1) All the system parameters, namely the matrix A, B and C, are unknown. 
(B2) The scalar CB is nonzero. 
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Here, according to (B1), Markov parameters of the system (1), that is h = [h1 h2 h3 hM]T  are unknown and the 
relation (19) is useless. So, in this case at first vector h should be estimated and then in order to determine 
learning gains, we use the relation as follow: 
 

1
1
1

 (21) 

 
Hence, the control law (13), change to: 
 

1 1 , 

i = 0, 1, …, M-1,     j = 0, 1, … 

(22) 

 
Or: 
 

V(j) = kp(j)E(j) + ki(j)TiE(j) + kd(j)TdE(j) 
 
Where ,  and  are, respectively, the estimations of h , hi, and hd in the j th iteration, that is: 
 

     …    (23) 
 
And: 
 

,        
 

The  is determined by a suitable method so that according to the assumption B2, following condition 
holds for all ∈ 0,1, …  
 

0 (24) 
 
Until the learning gains kp(j), ki(j) and kd(j) always exist. 
The next step is to establish an online adaptive algorithm for estimating h so that (24) hold. For this purpose 
let consider: 
 

1 ∆   (25) 
 
Where ∆  is a modifier term, which must be determined in a suitable method. 
In order to determination of the modifier term, (12) is rewritten as following form: 
 

E(j+1) = E(j) – W(j)h (26) 
 
Where: 

 

0    1   2   … 1   (27) 

        0 1 
 
By using  estimated E(j+1) as the follow: 
 

(j+1) = E(j) – W( j) (j) (28) 
 
From the difference of relation (26) and (28), we have: 
 

(j)=W(j)( (j) – h) (29) 
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Where (j) ≜E(j+1) – (j+1). 
 
Now, the purpose is determination of modifier term ∆  in (25), so that value of vector (j) decrease when 
the number of iteration increase, therefore, we define a quadratic cost function on  (j) as follow: 
 

1

2
 (30) 

 
Where ∈  is a symmetric positive definite matrix. 
Therefore, we rewrite the (25) as the following: 
 

1   (31) 

 

Where (j) is a positive scalar called algorithm step size,   demonstrates the gradient of the g(j) with 

respect to . 
Using (26) and (28) it is easy to derive that: 
 

j   (32) 

 
So, from the (31) and (32) we can write the modifier term Δ  as follows: 
 

Δ   (33) 
 
Where: 
 

Q(j)=WT(j)P (j) (34) 
 
Finally, with considering the previous relations the adjusting algorithm (25) will become as follows: 
 

1   (35) 
 
In order to convergence analysis of the presented adaptive scheme, at first we examine the establishment of 
important condition (24), then, for this purpose the following steps are considered: 
 
S1. In the choosing of the initial conditions for adjusting algorithm (35), we select (0)  0. 
S2. We provide some conditions so that from the following assumption 

(j)  0 
The following result could be obtained: 

 (j1)  0 
In order to provide the necessary conditions for step S2, we choose the step size of algorithm (35) that is (j) 
with considering the following constraint: 
 

 
(36) 

 
Where q1(j) is the first element of vector Q(j) . 
Therefore by using the both previous steps and mathematical induction, condition (24) will be guaranteed for 
all j  {0,1,...}. 
The algebraic equations (21), control law (22), and the adjusting algorithm (35) are the main parts of the 
presented adaptive PID type ILC. 
The convergence condition of the proposed adaptive PID type ILC is introduced in the theorem follows: 
Theorem 3. The presented adaptive PID type ILC is convergent if the step size (j) in the algorithm (35) is 
chosen in the following interval: 
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0
2

 (37) 

 
Where max denotes the largest eigenvalue. 
 
Proof of Theorem: let us consider the following Lyapunov function candidate: 
 

F(j) = (j)h(j) (38) 
 
Where: 
 

 (39) 
 
Now, the difference of the Lyapunov function (38) is given by 
 

∆F(j) = F(j+1) – F(j) = - T(j)R(j)(j) (40) 
 
Where R ( j ) is the following symmetric matrix: 
 

R(j) = 2(j)P - 2(j)PW(j)WT(j)P (41) 
 
It is easy to show that if (j) is in the interval (37), then the matrix R(j) will be positive definite, it can be 
ensured that: 
 

∆F(j)0 (42) 
 
That is F(j) is a non-increasing function along j direction and hence  will be bounded. Also since F(j) is a 
nonnegative sequence, then from (42), we can obtain: 
 

lim ∆ 0  (43) 

 
Since R(j) is a symmetric and positive definite matrix, equation ∆F(j) = 0 implies (j) = 0 , then, from (43) 
we can show that: 
 

lim 0  (44) 

 
For sufficient large iteration, from (44), we have: 
 

(j) = 0 (45) 
 
So, from algorithm (35) the constant values relative to iteration are obtained for  like h*, that is: 
 

∗for sufficiently large  j (46) 
 
In the basis of relation (21) the constant values are calculated for elements of vector K(j), like kp

* , ki
* and kd

*, 
as follows: 
 

∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 

∗ ∗ ∗
1
1
1

 

for sufficiently large  j (47) 

 
Where: 
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∗ ∗

∗

∗ ∗

∗ ∗ ∗

⋮

∗

, ∗ ∗

∗

∗ ∗

∗ ∗

⋮
∗ ∗

, ∗ ∗ ∗ ∗  (48) 

 
From (29), (45) and (46) we have: 
 

∗ 0  (49) 
 
Where: 
 

∗ ∗ ∗     ∗    …     ∗   (50) 

We consider two different cases: 
Case 1. The scalar ∗ ∗  is nonzero 
In this case from (27) and (49) the following conclusions hold: 
 

vj(i) = 0 for i = 0,1,..., M -1 and sufficiently large  j (51) 
 
By substituting for kp(j), ki(j) and kd(j) from (47) and for vj(i) = uj+1(i) – uj(i) from (51) into (22), we can 
obtain: 

 
∗ ∗ ∗ 1 ∗ 0 0

∗ ∗ ∗ 2 ∗ 1 ∗ 1 0

⋮

∗ ∗ ∗ ∗ ∗ 1 0

0 ≜ 0

  (52) 

 
Which can be written in view of (47) as follows: 

 

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

det ∗ ∗
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

det ∗ ∗
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

det ∗ ∗
 

(53) 

 
Where: 

 
det ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  

 
Since ∗ is the final value of  and according to condition (24) the amounts of  are nonzero for all      
j {0,1,...} , one can conclude that: 

∗ 0 
Also, from (48) we have: 

 
∗ ∗

∗ ∗ ⟹ ∗ ∗   (55) 
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Then, from (53), (54) and (55) we can result that: 
 

∗ ∗ ∗ 0  (56) 
 
From (56), based on (52), it can be ensured that ej(i) = 0. Therefore, 
 

lim
→

0 (57) 

 
Then, we can say that in this part the proposed adaptive is convergence. 
Case 2. The scalar ∗ ∗  is zero. 
From (22) and (47) we will have: 
 

∗ ∗ ∗      for sufficiently large  j (58) 
 
By substituting for V(j) from (58) into (12), we can get: 
 

∗ ∗ ∗      for sufficiently large  j (59) 
 
Where ∈  is identity matrix. 
Where ∗ ∗ ∗ . 
That He is a lower triangular Toeplitz matrix, then, we have He =T(he). 
By considering the vector K(j) and matrix H* from (47) and (48) respectively and also by definition of 
vector =[1   0    0   …   0]T ∈ we can write: 
 

∗ ∗ ∗ ∗ ∗ ∗  (60) 
 
Where: 
 

1 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

2,3, … ,

 (61) 

 
Considering the low triangular form of He, leads to the following characteristic polynomial for it: 
 

∆ det   (62) 
 
By using (53), and considering in this case ∗  after some manipulation, we obtain: 
 

| | 1 ∗ ∗ ∗ 1  (63) 
 
Clearly, all eigenvalues of He are absolutely less than one, so we can say that He is stable matrix and the 
learning process will converge, that means: 
 

lim
→

0 (64) 

 
Here the proof of the theorem is completed. 

Comment 3. For choosing the (j), we should consider both (36) and (37) conditions, then if    place in 

the interval of (37), the (j) we should choose it not equal to . 

 
 
5. SIMULATION RESULTS 

In this Section an illustrative numerical example is given to demonstrate the effectiveness of the 
presented ILC algorithm. 



                ISSN: 2088-8708 

IJECE Vol. 4, No. 6, December 2014 :  962 – 973 

971 

Let us consider a DC motor, which rotates a mechanical load as Figure 1, where its field winding current is 
constant, but its armature supply is variable. 
 
 

 
 

Figure 1. DC motor with constant field current 
 
 
In this situation the block-diagram of the motor is as Figure 2 [14]. 
 
 

 
 

Figure 2. The motor block-diagram 
 
 
Where Ra, La are the armature winding resistance and inductance respectively, km is the motor torque 
constant, J and b are the mechanical load inertia momentum and friction ratio respectively, kb is the back 
EMF constant. Also va(t), ia(t) are respectively the armature source voltage and current, (t) and (t ) are the 
motor shaft rotational speed and angle respectively.  Let us define the state variables and the output of the 
motor as follows: 
State variables: x(t) =[(t)   (t)   ia(t)]

T 
Output: y(t) = (t) 
Now, by considering Figure 2 it is easy to obtain the state space equations of the motor as follows: 
 

́
 

 

Where ́ ≜ , and: 

 
0 1 0

0

0

,

0
0
1  

,C = [1  0  0] 
 
It is desired to determinev a (t ) , so that  y (t )   
Periodically tracks a given command signal 
y d (t ) in time interval �0,t f  � , such that as the iterations number 
increases, the error between 
y (t ) and 
y d (t ) vanishes. The state equations of the motor should be discretized 
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in order to be ready for applying the presented ILC method. Let us choose the sampling period Ts   � 0.1 sec 
and the following parameters values: 
 

3.75, 15x10 H, 0.5
Nm

A
 

0.1
Nms

rad
, j 12x10 kg. m , t 10sec 

The 0 0   0   0 ≜  is selected as: 
x0 = 0 

The obtained discrete state equations for the motor are as follows: 
 

1

0,1, … , , 0,1, …

 

 
Where: 
 

100 

1 0.0595 0.07121
0 0.2668 0.699
0 0.05592 0.0128

 

0.02101
0.04747
0.2068

, 1  0  0  

 
The desired output trajectory, which is shown in Figure 3, is chosen as follows: 
 

yd(i) = i sin(0.01i  ) 
 
Motor input voltage at first iteration (say j = 0), that the controller has not any previous experience, is 
selected to be equal to 1. The matrix P is selected as identity matrix. The initial conditions and the step size 
of algorithm (35) are chosen as follows: 
 

0 0.5  0.5  0.5 … 0.5  
 

1.5
 

 
The obtained trajectories for the motor rotational angle are shown in Figures 3 in various iterations. This 
figure shows that convergence speed is high and with increasing of the number of iteration, motor rotational 
angle rapidly convergence to the given desired output trajectory. Figure 4 shows that convergence is 
monotonic. 
 
 

 
 

Figure 3. The desired output trajectory yd(i) and the motor shaft rotational angle 



                ISSN: 2088-8708 

IJECE Vol. 4, No. 6, December 2014 :  962 – 973 

973 

in the iterations j = 0, 2, 5, 15 and 35 
 

 
 

Figure 4. The norm 2 of error vector with respect to the iteration number j 
 
 
6. CONCLUSION 

In this paper an adaptive PID-type ILC is presented. In fact, it can be say that, this paper introduce a 
design method for optimal PID type iterative learning controller with iteration varying learning gains, for the 
repetitive systems with unknown parameters. In order to adjustment of learning gains an adjusting algorithm 
is proposed so that with using input-output data in iteration j, learning gains in the next iteration (iteration j + 
1) modified. Lyapunov method is proposed for convergence analysis and convergence condition is obtained 
in terms of adjusting algorithm step size. Finally, the result of computer simulation has demonstrated the 
effectiveness of the proposed adaptive scheme. 
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