108 research outputs found

    On random k-out sub-graphs of large graphs

    Full text link
    We consider random sub-graphs of a fixed graph G=(V,E)G=(V,E) with large minimum degree. We fix a positive integer kk and let GkG_k be the random sub-graph where each vVv\in V independently chooses kk random neighbors, making knkn edges in all. When the minimum degree δ(G)(12+ϵ)n,n=V\delta(G)\geq (\frac12+\epsilon)n,\,n=|V| then GkG_k is kk-connected w.h.p. for k=O(1)k=O(1); Hamiltonian for kk sufficiently large. When δ(G)m\delta(G) \geq m, then GkG_k has a cycle of length (1ϵ)m(1-\epsilon)m for kkϵk\geq k_\epsilon. By w.h.p. we mean that the probability of non-occurrence can be bounded by a function ϕ(n)\phi(n) (or ϕ(m)\phi(m)) where limnϕ(n)=0\lim_{n\to\infty}\phi(n)=0

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application
    corecore