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T H E EDMONDS—GALLAI DECOMPOSITION FOR 
MATCHINGS IN L O C A L L Y FINITE GRAPHS 

Francois BRY and Michel LAS VERGNAS* 

Dedicated to Tibor Gallai on his seventieth birthday 

Received 8 February 1982 

We show that the Edmonds—Gallai decomposition theorem for matchings in finite 
graphs generalizes to all locally finite graphs. 

1. Introduction 

For a finite graph G with vertex set V the Edmonds—Gallai decomposition 
theorem for matchings is the following statement: 

Let Ρ be set of vertices of G not covered by all maximal matchings of G, Q the 
set of vertices in V\P adjacent to P, and R= V\(PUQ). 

Then (i) Every connected component of the subgraph G[P] of G induced by Ρ 
is factor-critical, and G[R] is factorizable, (ii) every maximal matching of G is a union 
of a near-Ufactor of each component of G[P], a matching from Q into Ρ and a l-factor 
ofG[R]. 

The properties (i) and (ii) immediately imply that the maximal cardinality 

of a matching of G is y (\V\ — Ci(P)-Hßl)> where cx(P) is the number of odd com

ponents of G[P]. 
This theorem, implicit in [4] and [6], is quoted explicitly in [8]. 
Our purpose in the present paper is to show that the Edmonds—Gallai decom

position generalizes to locally finite graphs. Our proof yields a short derivation of the 
Edmonds—Gallai theorem from Tutte's 1-Factor Theorem [13] in the finite case. 
The results of this paper are announced in [3]. 

2. Terminology and notations 

Loops, multiple edges and edge directions being irrelevant here, we may con

sider that the edges of a graph G=(V,E) are unordered pairs of vertices: EQ 

AMS subject classification (1980): 05 C 99. 
* C.N.R.S. 
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The graph G is finite i f V (hence also E) is finite; G is locally finite i f every vertex is 
contained in a finite number of edges. A connected locally finite graph is demimerable. 

A matching of G is a set of pairwise disjoint edges. A perfect matching or l-fac-
tor of G is a matching covering all vertices of G (i.e. every vertex of G belongs to some 
edge of the matching). A graph having a 1-factor is said \-factorizable, or more 
briefly factorizable. A graph is factor-critical i f it is not factorizable but all induced 
subgraphs obtained by deleting one vertex are factorizable. A factor-critical graph 
is necessarily connected. We say that a matching covering all vertices of a graph except 
one is a near-\-factor. 

Given a subset X of V9 we denote by G[X] the subgraph of G induced by 

Χ; Ε Π Ι - I I . We say that a set C Q V is an odd (even, infinite) component X: G[X] = 

of G i f G[C] is a connected component of G and |C| is odd (even, infinite). We denote 
by Ci(G) resp. cfcT(G) the (finite or infinite) number of odd resp. factor-critical com
ponents of G. We usually abbreviate c^GlX]) by cx(X) resp. c{ cr (G[X]) by cf c r (X) 
for ι ς κ . 

We recall Tutte's 1-Factor Theorem for locally finite graphs [14]: 
A locally finite graph G with vertex-set V is factorizable if and only if cx ( V\X) ^ 

^ \X\ for all finite subsets X of V. 
This theorem implies in particular that a locally finite factor-critical graph 

is finite (with an odd number of vertices). 
We denote by V(M) the set of vertices covered by a matching M9 V(M) is 

the support of M. Edmonds and Fulkerson have shown in [5] that the subsets of 
matching supports of a finite graph G are the independent sets of a matroid on V — 
the matching matroid of G ([15]). This property generalizes to locally finite graphs [2]. 
I t follows from Rado's Selection Principle that in this case the matching matroid 
is finitary [2] (i.e. a set X is independent i f and only i f every finite subset of X is 
independent). We say that a matching Μ of a locally finite graph G is maximal if 
V(M) is maximal with respect to inclusion among matching supports of G (i. e. V(M) 
is a basis of the matching matroid of G). I f G is finite it follows from the 
Edmonds—Fulkerson theorem that all maximal matchings of G have the same 
cardinality (which is the maximal cardinality of a matching of G). I f G is locally fi
nite, every set X covered by a matching of G is contained in a basis of the matching 
matroid. 

The defect δ(Μ) of a matching Μ of a graph G is the number of vertices not 
covered by M. I t follows from properties of finitary matroids that 
Lemma 2.1. If some maximal matching Μ of a locally finite graph G has a finite defect, 
then a matching M' of G is maximal if and only if δ{Μ/) — δ{Μ). 

A direct proof of this property is by alternating chain methods. Let M9 M' be 
two matchings of G. We define an {Μ, Μ )-component of G as a connected component 
of the graph (V, (Μ\Μ') U (M'\M)) with at least one edge. An (Μ, M')-component 
of G is an alternating cycle or an alternating chain (finite, 1-way infinite or 2-way 
infinite). I f Μ and M' are both maximal then the (M, M')-components are alternating 
cycles or 2-way infinite chains contained in G[V(M)D V(M')] or finite alternating 
chains whose ends establish a bijection between V(M)\V(M') and V(M')\V{M). 

The matching defect 8(G) of a locally finite graph G is the defect of any maxi
mal matching of G. 

file:///-factorizable
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3. The matching defect of a locally finite graph 

We derive in this section an expression for the matching defect <5(G) of a lo
cally finite graph G. 

Lemma 3.1. Let G be a graph with vertex-set V, and S be a finite subset of V such 
that c1(V\S) is finite. Then there is a finite subset of V such that S^T^Vand 
c^xvw-iTi^iv^-isi 
Proof. Let Cl9 C 2 , C p be the odd components of G [ F \ S ] . Let Τ be maximal 
with respect to inclusion with the properties SQTQSUCxU^U... UCP and 
^ ( F X I O - i r i ^ C x i F X Ä ) - ! « ] . We prove that every odd component of G[V\T] 
is factor-critical. 

Suppose there is an odd component C of G [ F \ T ] which is not factor-critical. 
Then by Tutte's theorem (finite case) there are x£C and ^£=C\{.x} such that 
^ ( C X ^ X ^ D ^ j Z I + l . Since \C\ is odd has the parity of \X\, hence 
c 1 ( C \ X \ { 4 ) ^ | * | + 2 . W e h a v e c 1 ( K \ ( r U X U { x } ) = c 1 ( F \ r ) - l + ^ i ( C \ X \ { x } ) . 
I t follows c 1 ( r \ ( r U A ^ U { x } ) - | r U J r U { x } | > c 1 ( F \ I O - - | r | > contradicting the 
choice of Τ. | 

Proposition 3.2. Let G be a locally finite graph with vertex-Set V. The matching defect 
of G is given by 

0(G) = max ( q ^ - I S I ) = max ( F \ S ) - | S | ) . 
S finite S finite 

In the finite case the first formula is given by Berge in [1] (see also [11]). A stan
dard proof as a corollary of Tutte's theorem follows from the observation that δ (G) is 
the least number of new vertices adjacent to all vertices of G one has to add so that 
the resulting graph has a 1-factor. This idea cannot be used here, since the auxiliary 
graph would not be locally finite. 
Proof. Clearly öity^c^l^S)-^] for any finite SQV, since at most |5 | odd 
components of G [ V\S] can be covered by any matching of G. Hence if c1 ( V\S) — \ S\ 
is not bounded, <5(G) is infinite. 

Suppose c1(V\S) — \S\ is bounded and consider a finite SQ V achieving its 
maximum. By Lemma 3.1. we may suppose that every odd component of 
is factor-critical. Let TQS. By the choice of S we have c1(V\(s\7))-\S\T)\^ 
Ci(V\S)-\S\. Hence c1(V\S)-c1(V\(S\T))^\T\, implying that Τ is adjacent 
to at least |Γ | odd components of G [ K \ 5 ] . I t follows then from the König—Hall 
theorem that there is a matching M0 from S into V\S meeting \S | odd components of 
G [ F \ 5 ] . Each odd component C of G[K\*S] being factor-critical contains a near-1-
factor Mc which does not meet Μ0. 

Consider now an even or infinite component C of G [ F \ 5 ] . Let TQC. By 
the choice of S we have c 1 ( r \ S ) + c 1 ( C \ I O - | S U r | = c 1 ( r \ ( S U r ) ) - | S U r | ^ 

hence ^ ( Γ \ Γ ) ^ | Γ | . By Tutte's theorem G[C] is factorizable: let 
i if c bea 1-factor. 

Then M = M 0 U {JMC, where the union is over all components C of G [ F \ S ] , 
is a matching of G with defect ^ ( Κ \ 5 ) — \S|, proving the proposition. | 

In the finite case parts of the above proofs appear in several places of the 
literature: see for instance [10] proof of Satz 2.1, [12]. 

3 
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Remark 3.3. An alternative proof of Proposition 3.2 can be derived from an expression 
for the rank function of the matching matroid of a locally finite graph due to Brualdi 
[2] (see also [7], [9] for the finite case): Given a finite XQ V, let r(X) be the maximal 
number of vertices of X which can be covered by a matching of G (r(X) is the rank 
of X in the matching matroid of G). We have 

r{X)= mgin (\X\ + \S\-Cl(V\S; X)) 
S finite 

where c1(V\S; X) denotes the number of odd components of GfKXS] contained 
inX. 

The graph G being locally finite it follows from Rado's Selection Principle 
that S(G)= mzKcy(\X\-r(X)). This statement generalizes [2] Theorem 4. The 
proof is similar and left to the reader. Hence, by Brualdi's theorem we have 

5{G) = max. max ( c x ( V \ S ; X)- \S\). 
V J X finite C K S finite QV V 1 V 

I f c1(V\S) is infinite for some finite S then <5(G) is infinite. I f c1(V\S) 
is finite then for a finite X containing the odd components of G[V\S) we have 
cx(V\S; X) = Cl(V\S). Hence *W= 8}^v(ci(V\S)-\S\). 

The second formula follows from Lemma 3.1. 

Remark 3.4. It follows from Lemma 3.1 that odd components may be replaced by 
factor-critical components in several statements relative to matchings. 

For instance from Tutte's 1-Factor Theorem for locally finite graphs we get 
that a locally finite graph G with vertex-set Vhas a 1-factor if and only if cL cr (V\S) ^ 
\S\ for all finite SQV (also an immediate corollary from Proposition 3.2). In the 
finite case this theorem is well-known, as an immediate consequence of the Edmonds 
— Gallai theorem. 

Similarly Brualdi's theorem can be stated: for any finite XQ V 

r(X)= njjn (\X\ + | S | - c f . c r . (K \S ; X)) 
S finite 

where cftCTXV\S; X) is the number of factor-critical components of ^ [ Ρ χ ^ ] 
contained in X (for a proof use the immediate extension of Lemma 3.2 with 
Ct.«XV\S; X) instead of c f . c , (K \S ) ) . 

4. The Edmonds—Gallai decomposition for locally finite graphs 

We first prove the decomposition theorem in the finite defect case. 

Theorem 4.1. Let G be a locally finite graph with finite matching defect. Let V be the 
vertex-set of G, Ρ be the set of vertices not covered by all maximal matchings of G, and 
Q be the set of vertices in V\P adjacent to P. We set R= V\(PUQ). 

Then (i) Ρ is finite (hence also Q), all the connected components of G[P] are 
factor-critical, G[R] is factorizable, (ii) every maximal matching of G is a union of a 
near-l-factor of each connected component of G[P], a matching from Q into Ρ and 
a \-factor of G[R]. 
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Clearly it follows from properties (i) and (ii) that the matching defect of G is 
ci(P)-\Q\. 
Proof. Let S be a finite subset of Fsuch that S(G)=cfmGtXV\S)-\S\ (cf. Propo
sition 3.2). Note that necessarily c1(V\S) = cLcrXV\S).' Let Γ be a subset of S 
suchthat Tis adjacent to at most \T\ odd components of G[7\,S] and Tis maximal 
with respect to inclusion with this property (such a Γ exists since 0 has the considered 
property and S is finite). 

Let P' be the union of all odd components of not adjacent to Γ, 
0' = £ · \ Γ and K=V\(P'U&). We show that P=P' and Q = Q'. 

Since all the vertices adjacent to P' are in Q we have S(G)^c1(P/) — \Q\\ 
Now c1(P') = c1(V\S)—k, where k is the number of odd components of G [ F \ S ] 
adjacent to Τ Hence S(G)^c1(P')-\Q'\ = c1(V\S)-k-\Q'\^c1(V\S)-\T\-
\S\T\ = o(G). This implies S(G)=c1(P/)-\Q/\ and Τ is adjacent to exactly \T\ 
odd components of G [ K \ S ] . By Lemma 2.1 any maximal matching Μ of G has 
defect S(M)=S(G) = c1(P')-\Q'\. Therefore, all vertices adjacent to P' being in 
Q\ Μ necessarily contains a near-l-factor of each component of G[P'], a matching 
from Q' into P' (meeting Q' components of G[P']) and a 1-factor of G[R']. It follows 
that PQP' and Q! is exactly the set of vertices adjacent to P'. 

On the other hand any non-empty subset X of Q' is adjacent to at least 
1^1+ 1 components of G[P'] (otherwise Γ would not be maximal). It follows from 
the König—Hall theorem that for any given component C of G [Ρ'] there is a matching 
Μ2 from Q into Ρ' meeting |g'| components of G[P'] different from C. Since the 
components of G[P'] are factor-critical, given any x£C there is a matching Mx of 
G[P'] not meeting M2 and not containing χ which is a union of near-1-factors of each 
components of G[P']. Set M = M 1 U M 2 U M 3 , where M 3 is a 1-factor of G[R']. 
Then Μ is a matching of G with defect cx(P') — |Q'| = <5(G) which does not contain 

Hence P'QP. It follows that P=P' and Q=Q\ proving both (i) and (ii). | 
We now prove the general decomposition theorem. 

Theorem 4.2. Let G be a locally finite graph with vertex-set V. Let Ρ be the set of 
vertices of G not covered by all maximal matchings of G, Q be the set of vertices in 
V\P adjacent to Ρ and R= V\(PUQ). 

Then (i) every connected component of G[P] is factor-critical and G[R] is 
factorizable, (ii) every maximal matching of G is a union of a near-\-factor of each 
component of G[P], a matching from Q into Ρ and a \-factor of G[R]. 

Proof. Let M0 be a maximal matching of G with support V0. We may suppose 
S(G) = \V\V0\ infinite since the finite case is given by Theorem 4.1. It suffices to 
con°ider the case when G is connected. Then V is denumerable. We set V\V0= 
{xl9x2> ...}> Vi=V0U{xl9x2, . a n d G ^ G t F J , i=0, 1, . . . . 

(1) Let Pi be the set of vertices of Vt not covered by all maximal matchings 
of G f. We observe that M{ is maximal in Gt with defect /. Hence by Lemma 2.1 a 
matching is maximal in Gt i f and only i f its defect is /. It follows that a matching 
maximal in G{ is maximal in G i + 1 , hence PtQPi+1. We set P^— (J P f. We show 
that Ρ « = Ρ . 

A matching Μ maximal in Gf is also maximal in G. Suppose for a contradic
tion that there is a matching NofG such that V(M) c V(N). Let AT be the matching 
obtained from Μ by exchanging M-edges and JV-edges in the (M, 7V)-component of 

3 ' 
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some χζ V(N)\V(M). For j^i large enough Vj contains the ends of this (Μ, N). 
component. Then M' is a matching of Gj with V(M) U {x}^ V{M')9 a contradiction-
since Μ is maximal in Gj by the above remark. It follows that P^P for all /, hence 

To prove the reverse inclusion we show that V\V(M) P«, for any maximal 
matching Μ of G. We have xl9 x29 ...£Poo. Consider ζζ V0\V(M). Since M0 and 
Μ are both maximal matchings of G9 there is a bijection between V0\V(M) and 
V(M)\V0 by ( M 0 , M)-alternating (finite) chains. Let x£V{M)\VQ be the vertex 
associated with ζ by this bijection. Exchanging M0-edges and M-edges on the cor
responding chain we obtain from M0 a maximal matching of G, with support 
( n \ M ) U { x f } . Hence z^Px. 

(2) Let Qi be the set of vertices of Vi\Pt adjacent to P f . We show that 

Since PiQPi+1 we have Qi^Pi+1UQi+1. Suppose there is yeQif)Pi+1. 
Let Μ be a maximal matching of G l + 1 such that y£ V(M). We observe that xi+1 is not 
adjacent to P f . Otherwise by extending in the obvious way a maximal matching of 
Gi not covering some vertex of P, adjacent to xi+1 we get a matching of defect 

in Gi+1. Thus the set of neighbours of P, in Gi+1 is β,. Since Μ covers at 
most löil — 1 vertices of Qt it covers at most | ß i | — 1 odd components of G[PJ. 
Hence the defect of Μ in Gi+1 is ^^(Ρ,·) — (|β/| —1)+1=/+2, a contradiction. 

We set ß o o = U ß i - We show that ß 0 0 = ß . Let x € ß , . . Since ß £ g ß i + 1 g . . . 

Λ: is not in any Pj hence x$ P. It follows that x£Q showing that β«>ξΞ β. Conver
sely let x£ β. Since χ is adjacent to Ρ, χ is adjacent to P f for some /. Now x€ F \ P = 
F \ U Pi9 hence ^ € ß f . 

(3) Since x6ßf implies x$P the connected components of G[PJ are com

ponents of G[P], Since P = | J P f it follows that any component of G[P] is a compo-

nent of G[PJ for some large enough. L Hence the connected components of G[P] are 
factor-critical by Theorem 4.1. 

(4) Let Μ be a maximal matching of G. 
(4a) There is at most one vertex not covered by Μ in any connected component 

ofG[P]. 
Suppose there are x9 y£C\V(M)9 where Cis a component of G[P]. Consider 

the (M09 M)-components containing χ and y. These components are two distinct 
chains otherwise Μ would not be maximal; they are contained in V{ for some / large 
enough, since all their inner vertices are in V0. Then the matching obtained from M0 

by exchanging M0 -edges and Λί-edges on these chains is a maximal matching of Gf 

which does not cover χ and y, contradicting Theorem 4.1. 
(4b) There is at most one edge of Μ meeting a connected component C of 

G[P] and not contained in this component. 
Suppose for a contradiction that there are two edges el9 e2 in Μ joining C to β. 

As above, the matching obtained from M0 by exchanging M0 -edges and ikf-edges in 
the ( M 0 , M)-components of ex and e2 is a maximal matching of Gf for a large 
enough /. This matching contains ex and e2 contradicting Theorem 4.1. 

(4c) Every edge of Μ incident to β has its other end in P. The proof along the 
lines of (4a), (4b) is left to the reader. 
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In the case of finite defect, we get back Theorem 4.1 from Theorem 4.2. I t 
suffices to show that i f <5(G) is finite then Ρ is also finite. This follows from a lemma on 
finitary matroids (Q U R is the set of isthmuses of the matching matroid). 

Lemma 4.3. Let Μ be a finitary matroid on a set E. If there is a basis Β of Μ such that 
E\B is finite then the set of non-isthmuses of Μ is finite. 

Proof. The set of non-isthmuses of Μ is the set P = (J Ce, where Ce denotes the 
e£E\B 

unique circuit of Μ contained in BU {e} ([15]). Since Μ is finitary each Ce is finite, 
hence Ρ is finite i f E\B is finite for some basis Β (and then E\B is finite for every 
basis Β). | 
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