16 research outputs found

    Mining multi-dimensional data for decision support

    Full text link

    State-Dependent Computation Using Coupled Recurrent Networks

    Get PDF
    Although conditional branching between possible behavioral states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem, we demonstrate by theoretical analysis and simulation how networks of richly interconnected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable, robust finite state machines. We show how a multistable neuronal network containing a number of states can be created very simply by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogeneous, locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicited that state iswithdrawn. In addition, a small number of transition neurons implement the necessary input-driven transitions between the embedded states. We provide simple rules to systematically design and construct neuronal state machines of this kind. The significance of our finding is that it offers a method whereby the cortex could construct networks supporting a broad range of sophisticated processing by applying only small specializations to the same generic neuronal circuit

    Provably Stable Interpretable Encodings of Context Free Grammars in RNNs with a Differentiable Stack

    Full text link
    Given a collection of strings belonging to a context free grammar (CFG) and another collection of strings not belonging to the CFG, how might one infer the grammar? This is the problem of grammatical inference. Since CFGs are the languages recognized by pushdown automata (PDA), it suffices to determine the state transition rules and stack action rules of the corresponding PDA. An approach would be to train a recurrent neural network (RNN) to classify the sample data and attempt to extract these PDA rules. But neural networks are not a priori aware of the structure of a PDA and would likely require many samples to infer this structure. Furthermore, extracting the PDA rules from the RNN is nontrivial. We build a RNN specifically structured like a PDA, where weights correspond directly to the PDA rules. This requires a stack architecture that is somehow differentiable (to enable gradient-based learning) and stable (an unstable stack will show deteriorating performance with longer strings). We propose a stack architecture that is differentiable and that provably exhibits orbital stability. Using this stack, we construct a neural network that provably approximates a PDA for strings of arbitrary length. Moreover, our model and method of proof can easily be generalized to other state machines, such as a Turing Machine.Comment: 20 pages, 2 figure

    Critical issues in state-of-the-art brain-computer interface signal processing

    Get PDF
    Abstract This paper reviews several critical issues facing signal processing for brain-computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation

    Time Scale Hierarchies in the Functional Organization of Complex Behaviors

    Get PDF
    Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time)

    Classification of time series patterns from complex dynamic systems

    Full text link

    Reconhecimento de gestos de maestro utilizando redes neurais artificiais parcialmente recorrentes /

    Get PDF
    Orientador : Marcus Vinicius LamarCo-orientador : Marcelo Wanderley MortensenDissertaçăo (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduaçao em Engenharia Elétrica. Defesa: Curitiba, 2005Inclui bibliografi
    corecore