322,298 research outputs found

    Reinforcement learning and A* search for the unit commitment problem

    Get PDF
    Previous research has combined model-free reinforcement learning with model-based tree search methods to solve the unit commitment problem with stochastic demand and renewables generation. This approach was limited to shallow search depths and suffered from significant variability in run time across problem instances with varying complexity. To mitigate these issues, we extend this methodology to more advanced search algorithms based on A* search. First, we develop a problem-specific heuristic based on priority list unit commitment methods and apply this in Guided A* search, reducing run time by up to 94% with negligible impact on operating costs. In addition, we address the run time variability issue by employing a novel anytime algorithm, Guided IDA*, replacing the fixed search depth parameter with a time budget constraint. We show that Guided IDA* mitigates the run time variability of previous guided tree search algorithms and enables further operating cost reductions of up to 1%

    A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles

    Get PDF
    Conventional unit commitment is a mixed integer optimization problem and has long been a key issue for power system operators. The complexity of this problem has increased in recent years given the emergence of new participants such as large penetration of plug-in electric vehicles. In this paper, a new model is established for simultaneously considering the day-ahead hourly based power system scheduling and a significant number of plug-in electric vehicles charging and discharging behaviours. For solving the problem, a novel hybrid mixed coding meta-heuristic algorithm is proposed, where V-shape symmetric transfer functions based binary particle swarm optimization are employed. The impact of transfer functions utilised in binary optimization on solving unit commitment and plug-in electric vehicle integration are investigated in a 10 unit power system with 50,000 plug-in electric vehicles. In addition, two unidirectional modes including grid to vehicle and vehicle to grid, as well as a bi-directional mode combining plug-in electric vehicle charging and discharging are comparatively examined. The numerical results show that the novel symmetric transfer function based optimization algorithm demonstrates competitive performance in reducing the fossil fuel cost and increasing the scheduling flexibility of plug-in electric vehicles in three intelligent scheduling modes

    Mathematical Programming bounds for Large-Scale Unit Commitment Problems in Medium-Term Energy System Simulations

    Get PDF
    We consider a large-scale unit commitment problem arising in medium-term simulation of energy networks, stemming from a joint project between the University of Milan and a major energy research centre in Italy. Optimal plans must be computed for a set of thermal and hydroelectric power plants, located in one or more countries, over a time horizon spanning from a few months to one year, with a hour-by-hour resolution. We propose a mixed-integer linear programming model for the problem. Since the complexity of this unit commitment problem and the size of real-world instances make it impractical to directly optimise this model using general purpose solvers, we devise ad-hoc heuristics and relaxations to obtain approximated solutions and quality estimations. We exploit an incremental approach: at first, a linear relaxation of an aggregated model is solved. Then, the model is disaggregated and the full linear relaxation is computed. Finally, a tighter linear relaxation of an extended formulation is obtained using column generation. At each stage, metaheuristics are run to obtain good integer solutions. Experimental tests on real-world data reveal that accurate results can be obtained by our framework in affordable time, making it suitable for efficient scenario simulations

    Compressed Air Energy Storage-Part II: Application to Power System Unit Commitment

    Full text link
    Unit commitment (UC) is one of the most important power system operation problems. To integrate higher penetration of wind power into power systems, more compressed air energy storage (CAES) plants are being built. Existing cavern models for the CAES used in power system optimization problems are not accurate, which may lead to infeasible solutions, e.g., the air pressure in the cavern is outside its operating range. In this regard, an accurate CAES model is proposed for the UC problem based on the accurate bi-linear cavern model proposed in the first paper of this two-part series. The minimum switch time between the charging and discharging processes of CAES is considered. The whole model, i.e., the UC model with an accurate CAES model, is a large-scale mixed integer bi-linear programming problem. To reduce the complexity of the whole model, three strategies are proposed to reduce the number of bi-linear terms without sacrificing accuracy. McCormick relaxation and piecewise linearization are then used to linearize the whole model. To decrease the solution time, a method to obtain an initial solution of the linearized model is proposed. A modified RTS-79 system is used to verify the effectiveness of the whole model and the solution methodology.Comment: 8 page

    Distributed Economic Dispatch of Embedded Generation in Smart Grids

    Get PDF
    In a Smart Grid context, the increasing penetration of embedded generation units leads to a greater complexity in the management of production units. In this arti- cle, we focus on the impact of the introduction of decentralized generation for the unit commitment problem (UC). Unit Commitment Problems consist in finding the optimal schedules and amounts of power to be generated by a set of gen- erating units in response to an electricity demand forecast. While this problem have received a significant amount of attention, classical approaches assume these problems are centralized and deterministic. However, these two assumptions are not realistic in a smart grid context. Indeed, finding the optimal schedules and amounts of power to be generated by multiple distributed generator units is not trivial since it requires to deal with distributed computation, privacy, stochastic planning, ... In this paper, we focus on smart grid scenarios where the main source of complexity comes from the proliferation of distributed generating units. In solving this issue, we consider distributed stochastic unit commitment prob- lems. We introduce a novel distributed gradient descent algorithm which allow us to circumvent classical assumptions. This algorithm is evaluated through a set of experiments on real-time power grid simulator.Programme ADEME - RĂ©seaux Ă©lectrique intelligent - Projet AgentVP

    Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

    Get PDF
    We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount of operating reserves as a predefined fraction of the wind power forecast level. Unit commitment (UC) decisions and constraints for thermal units are incorporated into the expansion model to better capture the impact of wind variability on the operation of the system. To reduce computational complexity, we also consider a simplified economic dispatch (ED) based model with ramping constraints as an alternative to the UC formulation. We find that the differences in optimal expansion decisions between the UC and ED formulations are relatively small. We also conclude that the reduced set of scenarios can adequately represent the long-term wind power uncertainty in the expansion problem. The case studies are based on load and wind power data from the state of Illinois
    • …
    corecore