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A B S T R A C T

Previous research has combined model-free reinforcement learning with model-based tree search methods
to solve the unit commitment problem with stochastic demand and renewables generation. This approach
was limited to shallow search depths and suffered from significant variability in run time across problem
instances with varying complexity. To mitigate these issues, we extend this methodology to more advanced
search algorithms based on A* search. First, we develop a problem-specific heuristic based on priority list unit
commitment methods and apply this in Guided A* search, reducing run time by up to 94% with negligible
impact on operating costs. In addition, we address the run time variability issue by employing a novel anytime
algorithm, Guided IDA*, replacing the fixed search depth parameter with a time budget constraint. We show
that Guided IDA* mitigates the run time variability of previous guided tree search algorithms and enables
further operating cost reductions of up to 1%.
1. Introduction

The unit commitment (UC) problem is one of the fundamental
decision-making problems faced by power system operators and gen-
erating companies. The task is to determine the on/off schedules of
thermal generating units to meet demand at minimum cost, while
respecting generator operating constraints and allocating sufficient re-
serve capacity to manage contingencies [1]. To participate in forward
or day-ahead power markets and allow sufficient time for system opera-
tors to conduct system security analysis, this optimisation problem must
be solved hours or days in advance of delivery [2]. As a result, solutions
to the UC problem must take into account uncertainties arising from
demand, renewables generation and outages of generation or transmis-
sion assets. With rising penetrations of wind and solar PV generation,
the variability of generation is becoming an increasingly important
consideration for system operators, requiring new methodologies for
producing economic and reliable UC solutions [3]. In this paper, we
describe and test two new algorithms for solving the UC problem,
based on model-free reinforcement learning (RL) and model-based tree
search.

1.1. Motivation

The industry standard in UC solution methods is mixed-integer
linear programming (MILP) [2]. However, MILP is not a natural frame-
work for accounting for uncertainties and requires the use of re-
serve constraints based on expert heuristics and rules of thumb. RL
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is a promising methodological framework for solving the UC problem
which can be used to learn optimal control strategies in stochastic
environments [4]. An additional benefit of RL is the ability to shift
the majority of the computational burden offline to a training phase.
Combining RL with tree search has emerged in the artificial intelligence
(AI) literature as a powerful methodology, and is the state of the art in
widely-studied games-playing domains [5,6].

In previous work, an RL-aided tree search approach combining
model-free and model-based methods was used to solve the UC problem
with stochastic demand and renewables generation [7]. This guided
tree search algorithm used a policy trained with model-free RL to
intelligently reduce the branching factor of a search tree. The reduced
search tree was solved with the general-purpose algorithm uniform-
cost search (UCS), a variant of Dijkstra’s algorithm [8]. Guided UCS
outperformed conventional deterministic UC approaches using MILP on
20 problem instances, reducing total operating costs by 0.3–0.9% [9].

The search depth 𝐻 of Guided UCS was limited to 4 timesteps or a
2-hour lookahead horizon. Increasing the search depth results in greater
foresight and lower operating costs; deeper search was not possible due
to exponential time complexity in 𝐻 [7]. In addition, when applied to
problem instances of differing complexity, the run time of Guided UCS
was found to vary by an order of magnitude. Shallow search depth and
run time variability are significant limitations of Guided UCS which are
addressed in this research.

The results of [7] indicate that combining RL with tree search
methods is an effective methodology for solving the UC problem that
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is competitive with conventional mathematical optimisation methods.
Motivated by these promising results, this paper makes significant im-
provements on Guided UCS by adopting more advanced search methods
based on A* search.

1.2. Contributions

To mitigate the issues of limited search depth and run time variabil-
ity in Guided UCS [7], in this paper we extend the guided tree search
methodology to problem-specific search methods: A* search [10] and
iterative-deepening A* search [11].

Both methods employ a problem-specific heuristic based on priority
list (PL) UC methods [12], which approximates the value of nodes in
the search tree. The novel PL algorithm developed in this research
orders generators by their marginal fuel costs, and commits them while
relaxing constraints to rapidly produce a ‘best-case’ schedule which is
used to identify promising branches of the search tree. In experiments
considering power systems of up to 30 generators, we show that the
heuristic improves search efficiency when applied in Guided A*; total
run times are reduced by up 94% as compared with the heuristic-free
Guided UCS algorithm, with negligible impact on operating costs.

The second algorithm, Guided IDA* search, exhibits practical advan-
tages in power system contexts as it is anytime, with the search depth
parameter 𝐻 replaced by a time budget constraint 𝑏. This mitigates the
large run time variability of existing UC solution methods across prob-
lems instances of varying complexity and enables greater search depths
to be reached without risk of prohibitively long computing times. For
similar computational budgets, Guided IDA* results in operating cost
savings of up to 1% as compared with Guided UCS. Guided IDA* is
capable of solving diverse problem instances reliably within limited
computation times, an essential and under-researched property of RL
solution methods for the UC problem.

This paper provides further evidence that RL-aided (guided) tree
search is a powerful methodology for solving the UC problem and
shows that performance improvements can be achieved through ex-
ploiting knowledge of power systems, motivating further collaboration
between domain experts and RL practitioners.

In summary, this paper makes the following contributions:

• We introduce two new guided tree search algorithms for the UC
problem, Guided A* search and Guided IDA* search, applying the
principle of guided expansion introduced in [7]. Both algorithms
are informed, using a problem-specific heuristic to improve search
efficiency.

• A heuristic based on a PL algorithm is introduced for applica-
tion in Guided A* and Guided IDA*. The heuristic is analysed
in terms of average run time, accuracy and admissibility and
applied in Guided A* search to solve UC problem instances of up
to 30 generators with stochastic demand and wind generation.
We evaluate improvements to search efficiency improvements
as compared with previous work [7], finding mean run time is
reduced by between 64%–94% as compared with Guided UCS,
without significant changes in operating costs.

• The anytime algorithm Guided IDA* search is applied to solve
UC problem instances and found to allow for deeper search on
average while minimising run time variability. Operating costs
are found to be between 0.4–1.0% lower than Guided UCS while
completing in similar run time.

1.3. Article structure

In the following section, we conduct a literature review of UC solu-
tion methods with focus on RL-based approaches. Section 3 describes
the problem setup and RL environment adopted in our experiments. In
Section 4 we describe Guided A* and Guided IDA* algorithms. Section 5
describes experiments applying Guided A* and Guided IDA* to solve
UC problem instances with up to 30 generators. We discuss the results
2

in Section 6 and Section 7 concludes the paper.
2. Literature review

In this section we briefly present key results of research using
mathematical optimisation techniques to solve the UC problem before
reviewing the state of the art in RL for UC. For more complete reviews
of the broader UC literature, see [2,13].

2.1. Mathematical optimisation for unit commitment

A large body of research has been dedicated to solving the UC
problem with optimisation methods including MILP [2,14], Lagrangian
relaxation [15,16] and metaheuristic methods such as genetic algo-
rithms [17], particle swarm optimisation [18] and simulated anneal-
ing [19]. The UC problem is usually framed as a deterministic opti-
misation problem with uncertainties managed by enforcing a reserve
constraint, requiring that excess capacity is committed to manage
deviations in demand and renewables generation from their forecasts
and other contingencies such as outages [14]. Reserve constraints are
typically determined using heuristic methods, such as the widely used
𝑁 − 1 criterion protecting against the single largest loss of infeed [20]
or criteria based on the distribution of forecast errors [21]. MILP is
the dominant methodology for solving the UC problem in practical
contexts [2], and its adoption is estimated to have resulted in annual
operating cost savings of $150 million per year in the PJM inter-
connection alone as compared with previous Lagrangian relaxation
methods [22].

Scenario-based stochastic optimisation methods have been widely-
studied and shown to achieve lower expected operating costs than
deterministic UC [23–25]. The magnitude of cost improvements are
0.25–0.9% in a study of the 2020 Irish power system [25], and 1.3%
lower in experiments on the IEEE RTS system of 32 generators [23].
However, a significant drawback of stochastic optimisation methods is
their much larger computational expense [26]; run times of stochastic
UC with 12 scenarios and reserve requirements are found to be between
1 and 3 orders of magnitude larger than deterministic UC in [23]. This
has motivated further research into new solution methods which more
rigorously account for uncertainty while remaining computationally
tractable in short computing times.

2.2. Reinforcement learning for unit commitment

RL has been recognised as a promising framework for solving the
UC problem [33–35] but makes up only a small fraction of the existing
UC literature. RL has previously been used to solve the UC problem
in [7,27–32,36], which are summarised in Table 1. Most studies have
used model-free RL, notably Q-learning [27–30,32], which has been
applied to solve UC problems of up to 10 generators. All of these studies
except [32] considered training and testing on a single episode; as a
result, they do not demonstrate the ability of the trained policy to
generalise to unseen problems – an important advantage of RL over
other optimisation methods – or the variation in solution time and
quality for days of varying complexity. Only two of the Q-learning
studies include uncertainty in the problem setup through stochastic
renewables generation [28,29]. Fuzzy Q-learning is used in [30] to
solve the widely-studied Kazarlis et al. benchmark problem with 10
generators, and is shown to outperform several existing deterministic
UC solution methods. An adapted multi-step deep Q-learning algorithm
is used to solve UC problems with deterministic load and 5 genera-
tors, with comparable results to mixed-integer quadratic programming
in [32]. This is the only study reviewed which trained on multiple
days and evaluated final performance on a held-out set. The Q-learning
methods studied suffer from curses of dimensionality in the state and
action spaces for the UC problem, which has limited applications to
systems of up to 10 generators.

A larger study of 99 generators is studied in [36], where the

UC problem and real-time dispatch are represented in an interleaved
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Table 1
Summary of research applying RL to the UC problem. We show the method used; the maximum problem size by number of generators; if
experiments involved stochastic demand or generation; if multiple days were used in training; if performance was evaluated on unseen test days.
Study Method Gens. Stochastic setup Multiple training days Unseen test days

Jasmin et al. 2009 [27] Q-learning 4 No No No
Jasmin et al. 2016 [28] Q-learning 10 Yes No No
Li et al. 2019 [29] Q-learning 10 Yes No No
Navin & Sharma [30] Multi-agent Q-learning 10 No No No
Dalal & Mannor, 2015 [31] SARSA 8 No No No
Dalal & Mannor, 2015 [31] Tree search 12 No No No
Qin et al. 2021 [32] Q-learning 5 No Yes Yes
de Mars & O’Sullivan, 2021 [7] Guided tree search 30 Yes Yes Yes
Markov decision process (MDP) and solved with the cross entropy
method. However, the UC component of this problem is simplified
significantly to selecting a single commitment decision for each 24-hour
period, with no intra-day commitment changes, and the action space is
significantly reduced to 20 actions. As a result, this study cannot be
compared directly with other UC research including our own.

Model-based methods based on tree search have been applied to
solve the UC problem in [7,31]. Model-based methods offer advantages
over model-free methods in contexts of critical infrastructure such
as power systems operation as lookahead strategies are employed to
improve robustness of solutions [37]. Tree-based methods without RL
are used to solve a deterministic UC problem instance of 12 generators
in [31], and found to outperform a metaheuristic solution by 27%
in terms of operating costs. The problem setup used did not consider
stochastic demand or wind generation or evaluate performance and
run time in generalising across multiple problem instances. Guided tree
search, which combines model-free RL with tree search and is the basis
of this research, was developed in [7] and applied to stochastic problem
instances with up to 30 generators. We describe guided tree search in
more detail in Section 4. Proximal policy optimisation (PPO) was used
for training and uniform-cost search (UCS) used to solve 20 unseen
profiles. Compared with a deterministic UC benchmark solved with
MILP, operating costs were reduced by between 0.3–0.9%. The run time
of UCS without RL enhancement was shown to grow exponentially in
the number of generators, while using Guided UCS the computational
cost remained roughly constant [7]. However, run times were highly
variable across problem instances of the same number of generators
using both UCS and Guided UCS, which raises practical challenges in
time-constrained contexts. An ideal RL method for the UC problem
should reliably produce high quality solutions in practical run times
across problem instances with different characteristics. Furthermore,
UCS is a simple, general-purpose search algorithms, and performance
can be improved by developing problem-specific methodologies for the
UC problem. The two algorithms developed in Section 4, Guided A* and
Guided IDA*, address these shortcomings of Guided UCS, exhibiting
improved search efficiency and reduced operating costs. The following
section describes the problem setup adopted in our experiments.

3. Problem setup

In this section we describe the problem setup used in Section 5 to
evaluate the performance of guided tree search algorithms across UC
problem instances with uncertain demand and renewables generation.
The problem setup employed is identical to [7], allowing for direct
comparison of our results. We briefly describe the RL environment used
to train and evaluate the novel guided tree search algorithms and the
formalisation of the problem as an MDP.

3.1. Power system environment

In order to apply RL to the UC problem, a power system simulation
environment is required to enable training of RL agents by trial-and-
error. Previous work described a power system environment for the UC
problem1 which is designed to emulate day-ahead UC decision-making

1 https://github.com/pwdemars/rl4uc.
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given forecasts for demand and wind generation [7]. We adopt the
environment in this research and provide a brief description here; the
problem is then formalised as an MDP in Section 3.2. The environment
models a power system of 𝑁 generators with 48 30-minute settlement
periods per day, reflecting the GB power market structure. The genera-
tors are specified using data from a widely-used benchmark [17], which
gives quadratic fuel cost curves, start costs, and minimum up/down
time constraints for 10 generators. For each day, forecasts for demand
and wind generation are specified based on historical data from the GB
power system and the environment follows the routine shown in Fig. 1.
The environment processes each commitment decision (action in the
MDP) sequentially and samples forecast errors, which are represented
by auto-regressive moving average (ARMA) processes. The operating
costs are calculated by solving the economic dispatch (ED) problem
with the lambda-iteration method [1] to determine the real-valued
power outputs of generators required to meet the demand net of wind
generation. If the net demand cannot be met, then the volume of lost
load (MWh) is penalised at the value of lost load, which is set to
$10,000/MWh. Publicly available demand data from the system oper-
ator for National Grid [38] and wind generation data from Whitelee
wind farm [39] are used to create forecasts for 806 unique episodes,
with 20 episodes held back for testing. To create power systems of
different sizes (we study problems of 10–30 generators in this paper),
the generators can be duplicated, an approach which has been widely
adopted [14,17,40]. In this case, the demand and wind forecasts are
scaled proportionally to the capacity of the generation mix.

3.2. MDP and search tree formulations

The UC problem represented in the power system environment is
formalised as an episodic MDP, suitable for RL methods [4]. At each
timestep, the agent receives an observation 𝑜𝑡 consisting of the follow-
ing components: (1) current generator up/down times 𝒖𝑡; (2) demand
forecast 𝒅𝑡; (3) wind forecast 𝒘𝑡. Demand and wind forecast errors
𝑥𝑡 and 𝑦𝑡, generated by ARMA processes as described in Section 3.1,
are included in the state 𝑠𝑡 but unobserved by the agent. An action
𝑎𝑡 ∈ {0, 1}𝑁 is chosen by the agent, determining the on/off status
for each of 𝑁 generators (subject to generator constraints) at the next
timestep. The environment processes 𝑎𝑡 by evaluating the transition
function 𝐹 (𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡), updating the generator up/down times, sampling
forecast errors, and solving the ED problem as described in Section 3.1.
The reward 𝑟𝑡 is the negative operating cost (sum of fuel costs, startup
costs and lost load costs).

The MDP can be represented as a search tree, where each node
represents an observation 𝑜𝑡 and each edge is an action 𝑎𝑡. Each edge
has an associated cost, which is the expected cost of taking action 𝑎𝑡
given observation 𝑜𝑡. The expected cost is estimated by calculating the
mean operating cost over 𝑁𝑠 = 100 scenarios of demand and wind
generation, sampled from the simulation environment. Solving the UC
problem amounts to finding the lowest cost path through the search
tree from an initial node at 𝑡 = 1 to any node at 𝑡 = 48. The branching
factor of the search tree is up to 2𝑁 for 𝑁 generators, intractably large
for conventional tree search methods and realistic problem sizes. Using
guided expansion, the branching factor can be intelligently reduced
based on a policy trained with RL [7]. In the following section, this

methodology is applied in two novel guided tree search algorithms.

https://github.com/pwdemars/rl4uc
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Fig. 1. Flowchart of the simulation environment. The agent inputs forecasts and generator data, and unit commitment decisions at each timestep of a 48-period day. The
environment samples demand and wind scenarios and simulates dispatch by solving the economic dispatch problem. The environment outputs total operating costs at the end of
the day.
4. Methodology

The guided tree search algorithm Guided UCS described in [7] uses
an RL-trained policy to reduce the branching factor of a search tree. The
run time of Guided UCS is highly variable across problem instances and
grows exponentially with the depth parameter 𝐻 . As a result, the search
depth was limited to 𝐻 = 4, or 2 hours [7]. To improve the search effi-
ciency and reduce the run time variability, we extend this methodology
to informed and anytime tree search methods with two new algorithms:
Guided A* and Guided IDA*. Informed methods offer efficiency im-
provements by employing domain-specific knowledge, while anytime
methods offer practical benefits in time-constrained contexts by being
interruptible, allowing computational resources to be fully exploited
for a given time budget. Before describing Guided A* and Guided
IDA* search algorithms, we briefly describe guided expansion, the key
innovation of guided tree search enabling the integration of RL and tree
search.

4.1. Guided expansion

Guided tree search [7] uses an RL-trained policy to reduce the
branching factor of a search tree. A schematic of guided tree search
is shown in Fig. 2. The policy 𝜋(𝑎|𝑠) = Pr(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) maps states
to a probability distribution over actions. The mechanism by which the
branching factor is reduced is guided expansion. Using a pre-determined
branching threshold 𝜌 controlling the breadth of the search tree, guided
expansion is used to reduce the full action space 𝐴(𝑠) to a subset 𝐴𝜋 (𝑠):

𝐴𝜋 (𝑠) = {𝑎 ∈ 𝐴(𝑠)|𝜋(𝑎|𝑠) ≥ 𝜌} (1)

In addition, the ‘do nothing’ action keeping all generator commit-
ments the same (no startups or shutdowns) is always added to the
search tree. The branching factor of the search tree can be controlled
by the parameter 𝜌 and is limited to |𝐴𝜋 (𝑠)| ≤

1
𝜌 + 1. In this paper we

use policies from [7], trained using the policy gradient algorithm PPO.

Given a policy 𝜋(𝑎|𝑠), guided expansion can be combined in a
modular fashion with any tree search algorithm, creating a broader
class of guided tree search algorithms. Guided expansion was applied
to UCS in [7], a simple, heuristic-free algorithm that can be applied
to search trees with non-uniform costs [41]. However, exploiting do-
main knowledge through informed search algorithms can significantly
improve the efficiency of tree search [41]. In the following sections
we apply guided expansion to A* search [10] (Guided A* search) and
iterative-deepening A* search (Guided IDA* search) [11]. Guided A* is
an informed search algorithm, while Guided IDA* is both informed and
anytime.
4

4.2. Guided A* search

First, we present Guided A* search, in which guided expansion is
applied to A* search [10]. Like Guided UCS, guided expansion (Eq. (1))
is used in Guided A* to reduce the branching factor of the search tree
using a policy trained with RL. A* search is then used to find the lowest
cost path through the reduced search tree. A* is a well-known informed
search algorithm that is similar to uniform-cost search (UCS) [10].
Unlike UCS, a problem-specific heuristic function ℎ(𝑛) estimating the
optimal path cost from 𝑛 to a goal node (cost-to-go) is used in A* search
to determine the order in which nodes are visited and expanded. As in
UCS, unexpanded nodes are stored in a priority queue data structure.
However, whereas in UCS, nodes are ordered by their path costs 𝑔(𝑛),
A* orders nodes by:

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) (2)

Nodes with high estimated cost-to-go ℎ(𝑛) are therefore less
favourable and are relegated in the priority queue as compared with
UCS. A* search is optimal if the heuristic ℎ(𝑛) is admissible, meaning it
underestimates the optimal cost-to-go ℎ∗(𝑛) [42]:

ℎ(𝑛) ≤ ℎ∗(𝑛) (3)

Using an admissible heuristic, A* search is at least as efficient
as UCS as measured by the number of node evaluations required to
reach an optimal solution [10]. While admissibility is necessary to
guarantee the optimality of A* search, in some contexts an inadmissible
heuristic may still be effective in practice if optimal solutions are not
required [43]. There are no established heuristics for the UC problem;
in Section 4.4 we propose a near-admissible heuristic algorithm for UC
based on priority list UC methods.

Even after applying guided expansion to reduce the branching fac-
tor, solving the entire search tree from the root node up to a depth of 48
periods is intractably expensive due to exponential run time complexity
in the number of decision periods. As a result, we adopt a real-time
strategy [44] as employed in [7]. In the real-time case, Guided A* is
used to solve 48 sub-problems in a sequential manner. For each sub-
problem, Guided A* search is used to find the least cost path from the
root node corresponding to state 𝑠 up to a search depth 𝐻 . After the
sub-problem has been solved, the first action 𝑎𝑡 in the solution path
is taken, and a new sub-problem is solved, this time rooted at 𝑠𝑡+1,
the node following branch 𝑎𝑡 from 𝑠𝑡. Combining the real-time strategy
and guided expansion, Guided A* search has a run time complexity of
(𝑇 ( 1𝜌 )

𝐻 ). Like Guided UCS, run time is sensitive to the breadth and
depth parameters 𝜌 and 𝐻 which can adjusted to trade-off run time
and solution quality but typically results in high run time variability
across problem instances. Guided IDA*, described in the next section,
improves on Guided A* by replacing the depth parameter 𝐻 with a
time budget 𝑏, making the algorithm anytime.
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Fig. 2. Comparison of conventional tree search and guided tree search. Nodes represents states and edges represent actions. Numeric values indicate the edge costs (negative
reward in the MDP formulation). Using guided expansion (Eq. (1)), a policy 𝜋(𝑎|𝑠) is used to intelligently remove low probability actions from the search tree. The least cost path
through the reduced search tree can be found using conventional search methods such as uniform-cost search (UCS) [8] or A* search [10].
Algorithm 1 Anytime IDA* search algorithm for the UC problem from
initial state 𝑟. A* search is run with progressively increasing search
horizon 𝐻 until the time budget 𝑏 is spent.
function IDAStar(𝑟, 𝑏)

𝐻 ← 1
repeat

solution ← AStar(𝑟,𝐻)
𝐻 ← 𝐻 + 1

until time budget 𝑏 is spent
return solution

end function

4.3. Guided IDA* search

In this section we describe an anytime algorithm, based on iterative-
deepening A* (IDA*) search. Anytime (or interruptible) algorithms can
be terminated at any point and return a solution [41]. In Section 5.2, we
show that Guided A* and Guided UCS exhibit high run time variability
across problem instances, with over an order of magnitude separat-
ing the shortest and longest episode run times. Run time is highly
unpredictable and depends on characteristics of the episode (such as
demand variation) and the settings of depth and breadth parameters
𝐻 and 𝜌. This limits the value of these methods, as optimisation
problems in power systems are typically time-constrained; UC solutions
are generally required within minutes [2].

Iterative deepening [11], is a general strategy that has been applied
to a wide range of tree search algorithms and can be used to create
anytime algorithms. The principle of iterative deepening is to gradually
increase the search depth until a stopping criterion is met, such as a run
time limit. A sub-optimal first action is found immediately by searching
to a depth of 𝐻 = 1. Thereafter, 𝐻 is increased at each iteration and
the search is conducted again. In general, solution quality improves the
longer the algorithm is run due to the greater search depth. We apply
iterative-deepening to the A* search algorithm described in Section 4.2;
pseudocode is shown in Algorithm 1. Our implementation of IDA* re-
places the fixed depth parameter 𝐻 in A* with a time budget parameter
𝑏. A* search is used to iteratively solve the sub-problem rooted at 𝑟,
incrementing 𝐻 at each iteration. When the time budget 𝑏 has elapsed,
the last solution is returned. In the context of UC, the time budget 𝑏
can be determined by market constraints, such as the time to market
settlement. Using an anytime algorithm like Guided IDA* ensures that
computational resources are fully exploited within a time constraint.

Both Guided A* and Guided IDA* require a problem-specific heuris-
tic ℎ(𝑛) to be applied to the UC problem. In the next section we present a
heuristics based on a PL algorithm for estimating the optimal cost-to-go
ℎ∗(𝑛) in Guided A* and Guided IDA*.
5

4.4. Priority list heuristic

The key contribution of this work is the use of advanced search
methods Guided A* and Guided IDA* which incorporate a heuristic to
improve search efficiency. The heuristic ℎ(𝑛) is problem-specific and
estimates ℎ∗(𝑛), the cost of the optimal path from node 𝑛 to a goal node.
The heuristic can be used to identify promising branches or prune sub-
optimal ones. There is no all-purpose approach to designing effective
heuristics for a particular problem domain. Some widely-studied prob-
lems have well-established heuristics. In path-finding problems, where
A* search is widely applied [45,46], a common admissible heuristic is
the straight-line distance from the root node to the destination node.
The straight-line distance is used to calculate ℎ(𝑛) in an application of
A* search for electricity network planning in [47]. Alternatively, expert
pattern databases may be used in some problems, such as the Rubik’s
cube puzzle [48]. Supervised learning has also been used to learn ℎ(𝑛)
for route planning problems [49]. The choice of heuristic has a signif-
icant impact on the efficiency of informed search algorithms [41]. To
the best of our knowledge, no existing literature has applied informed
search methods to solve the UC problem, and a new heuristic approach
is required in order to apply Guided A* and Guided IDA* algorithms.

The heuristic presented in this paper is based on priority list (PL)
methods, which were employed for practical UC applications in early
power systems [50–52] and have also been the subject of more recent
research due to their fast run times [12,53]. Improvements in MILP
have made PL methods largely obsolete for practical UC problems due
to their lack of optimality guarantees and reliance on complex rules
to fix constraints. However, as a method for operating cost estimation
where adherence to generator constraints is not strictly required, PL
algorithms are a useful framework due to their low computational cost.

4.4.1. Heuristic algorithm
The heuristic proposed for the UC problem is based on a PL ordering

of generators by their minimum marginal fuel cost (MMFC). The MMFC,
denoted 𝑞𝑖 is the marginal fuel cost ($/MWh) of generator 𝑖 when
operating at maximum rated capacity, 𝑝max

𝑖 :

𝑞𝑖 =
𝐶𝑓 (𝑝max

𝑖 )
𝑝max
𝑖 𝑡𝑝

(4)

where 𝐶𝑓
𝑖 (𝑝) is the fuel cost function for generator 𝑖 (represented as

a quadratic curve in our case) evaluated for power 𝑝 and 𝑡𝑝 is the
settlement period length (in hours).

To estimate optimal cost-to-go up to 𝐻 timesteps ahead, the PL
heuristic commits generation in PL order (i.e. in increasing order of 𝑞𝑖)
until forecast demand is met, with no reserve constraints. Generators
which are unavailable at the first scheduling period due to mini-
mum up/down time constraints must remain online/offline until these
constraints are satisfied, but thereafter these constraints are ignored.
Partially relaxing inter-temporal constraints reduces the complexity of
the problem and reduces the total run time of the PL algorithm. Using
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Fig. 3. Predicted cost-to-go ℎ(𝑛) calculated with the PL heuristic and optimal cost-to-
go ℎ∗(𝑛) calculated using UCS with 𝐻 = 2 for nodes sampled from 20 UC problem
instances. The black line shows ℎ(𝑛) = ℎ∗(𝑛): points below the line are admissible
estimates where ℎ(𝑛) ≤ ℎ∗(𝑛).

this simple algorithm, a commitment schedule for the next 𝐻 timesteps
can be rapidly produced. To estimate the fuel costs of this schedule,
the ED problem is solved with the lambda-iteration method [1] for
each period based on the forecasts for demand and wind generation.
The heuristic ℎ(𝑛) is equal to the sum of fuel costs over 𝐻 periods.
By omitting startup costs, lost load costs, reserve constraints and some
inter-temporal constraints, the PL cost is an optimistic estimate of
future costs and hence more likely to produce admissible estimates
where ℎ(𝑛) ≤ ℎ∗(𝑛). The proposed heuristic is evaluated experimentally
in the following section in terms of admissibility and accuracy.

4.4.2. Heuristic accuracy and admissibility
We estimated the accuracy and admissibility of the PL heuristic by

comparing estimates ℎ(𝑛) with the optimal cost-to-go ℎ∗(𝑛) for nodes
sampled from 20 problem instances of a 5 generator power system. For
each node 𝑛, we used the search algorithm UCS [8] to determine ℎ∗(𝑛),
optimally solving the least cost path problem from node up to a horizon
of 𝐻 = 2. We then used the PL heuristic to calculate ℎ(𝑛) with the
same search horizon of 2 timesteps. Evaluating the heuristic on larger
power systems or with longer time horizons was not possible due to the
(2𝑁𝐻 ) run time complexity of UCS for 𝑁 generators and search depth
𝐻 , making the exact calculation of ℎ∗(𝑛) intractable.

The results are plotted in Fig. 3, comparing the heuristic cost-to-
go ℎ(𝑛) and optimal ℎ∗(𝑛). The mean absolute percentage error of
ℎ(𝑛)−ℎ∗(𝑛) is 3.78%. 98% of estimates ℎ(𝑛) are admissible, indicated by
points in the region below the line ℎ(𝑛) = ℎ∗(𝑛). While the PL heuristic
is not strictly admissible, it generally produces accurate estimates of
ℎ∗(𝑛) and in practice the operating cost differences between Guided A*
and Guided UCS are negligible, as shown in Section 5.2. In addition,
we show that large run time reductions are achieved by employing the
PL heuristic in Guided A*.

5. Results

In this section we use Guided A* and Guided IDA* to solve UC
problem instances for power systems of 10–30 generators. UC solutions
are compared in terms of run time, total operating costs, and loss of
load probability (LOLP). While lost load events are penalised as part of
the operating cost at the value of lost load, as described Section 3.1,
LOLP is an important metric to evaluate in isolation as a measure of
security of supply, which may be valued over generator operating costs
by system operators. We compare performance with Guided UCS from
prior research, which was shown to outperform conventional MILP
methods by 0.3–0.9% in terms of operating costs [7].
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Table 2
Comparison of mean run time and operating cost using Guided A* search
with the PL heuristic and Guided UCS [7]. Guided A* achieves signif-
icant run time reductions, with only very small changes in operating
costs.

Generators Time (% of UCS) Cost (% of UCS)

10 6.41 100.00
20 35.62 100.03
30 17.74 100.08

5.1. Experimental setup

To allow for direct comparison between the tree search methods
developed in this paper with prior work using guided tree search, our
experiments use the previously trained policies [7]. To solve the 20
held-out test problems with Guided A*, we set the branching factor
𝜌 = 0.05 and the search depth 𝐻 = 4, the same parameters used for
Guided UCS in [7]. For Guided IDA*, we set 𝜌 = 0.05 and varied the
time budget 𝑏 ∈ {1, 2, 5, 10, 30, 60} seconds per period to investigate
the impact of run time on operating costs. Each problem instance was
solved using a single Intel Xeon Gold 6140 2.30 GHz core.

To estimate the expected operating cost of solutions to the 20 UC
problem instances, we applied the following Monte Carlo approach [3,
23]:

1. Calculate the UC schedule using solution method (e.g. Guided
A*, Guided IDA*) based on forecasts for demand and wind.

2. Use the power system environment to calculate operating costs
for 𝑁sim = 1000 scenarios of demand and wind.

Step 2 involves calculating the real-time dispatch costs under multi-
ple realisations of uncertainty by repeated evaluation of the UC solution
using the environment described in Section 3.1. At each iteration,
different demand and wind forecast errors are sampled. This method re-
turns a distribution of operating costs over the 𝑁sim scenarios, enabling
solutions to be compared in terms of expected operating costs.

5.2. Heuristic evaluation

To evaluate the impact of the PL heuristic on search efficiency, we
compared Guided A* search (informed) with Guided UCS (uninformed)
used in previous research [7]. Total operating costs over the 20 problem
instances as well as run times are compared in Table 2 for each
power system size. Guided A* achieves significant run time reductions
of between 64%–94%. There are small differences in operating costs
of up to 0.08% between Guided UCS and Guided A*, deriving from
inadmissible estimates using the PL heuristic. Overall, the deterioration
in solution quality is negligible in comparison to the large run time
reduction.

Fig. 4 shows the distribution of run times across problem instances
for Guided A* search and Guided UCS. Both methods exhibit run time
variations of roughly an order of magnitude; the 20 generator case
exhibits the most extreme variation, with a factor of 36 separating
the shortest and longest episode run times. The significant run time
variability is caused by the differing complexity of problem instances,
as illustrated in Fig. 5 comparing the 10-generator problems solved by
Guided A* with shortest and longest run times. The solution for Sunday
25th June 2017 is shown in the left-hand plot, a simple problem in-
stance with little demand variation and low wind penetration, requiring
only 3 changes in commitment. The right-hand plot shows the solution
for Monday 21st November 2016, a more complex problem instance
with greater wind penetration and higher and more variable demand.
Increasing wind penetration at the end of the day causes a sharp decline
in net demand that necessitates the decommitment of several genera-
tors to avoid encountering the generation floor — the sum of minimum
operating levels of online generators. Using guided tree search methods,
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Table 3
Comparison of Guided IDA* (𝑏 = 30s), Guided A* (𝐻 = 4) and Guided UCS (𝐻 = 4) [7] for 10, 20 and 30 generator problems. Mean cost indicates the mean total operating
costs over 𝑁sim = 1000 realisations of demand and wind generation. 𝑡 represents the mean run time across the 20 problem instances. The variability of run time is represented by
𝑡max∕𝑡min, the ratio of maximum to minimum run time. Loss of load probability is the proportion of periods during which lost load was experienced during 1000 simulations of
the 20 problem instances.

Num. gens Method Heuristic Cost ($M) 𝑡 (s) 𝑡min (s) 𝑡max (s) 𝑡max/𝑡min LOLP (%)

10
IDA* PL 9.33 1086.3 892.0 1294.1 1.5 0.12
A* PL 9.37 51.8 5.7 195.8 34.4 0.13
UCS None 9.37 807.3 76.9 1992.1 25.9 0.13

20
IDA* PL 18.67 1099.6 797.0 1267.6 1.6 0.12
A* PL 18.74 41.8 7.7 159.3 20.7 0.11
UCS None 18.73 117.3 10.4 374.5 36.0 0.11

30
IDA* PL 28.14 1210.0 986.0 1359.7 1.4 0.11
A* PL 28.43 69.4 14.5 164.4 11.3 0.14
UCS None 28.41 391.3 129.4 976.8 7.5 0.14
Fig. 4. Comparison of run time (log-axis) between Guided A* search and Guided UCS.
The PL heuristic achieves mean run time reductions of between 64%–94%. In both
cases, there is large variability in run time between UC problem instances.

more complex problems typically result in broader search as the policy
𝜋(𝑎|𝑠) recommends more actions to explore, resulting in longer run
times.

The run time of guided tree search algorithms Guided A* and
Guided UCS is difficult to predict and is sensitive to the complexity
of the problem instance as well as the search depth 𝐻 and branching
threshold 𝜌. As discussed in Section 4.3, this motivated the develop-
ment of the anytime algorithm Guided IDA*. In the following section,
we apply this algorithm to solve the same problem instances and
compare its performance with Guided A* and Guided UCS.

5.3. Comparison of tree search methods

Table 3 compares the performance of Guided IDA*, Guided A* and
Guided UCS [7] for 20 problem instances with 10, 20 and 30 generator
systems. For Guided IDA*, results are shown for 𝑏 = 30s (maximum
1440s per episode), comparable to the maximum run time of Guided
UCS. Guided IDA* achieves lower operating costs than both other
guided tree search methods, with a maximum run time that is similar to
that of Guided UCS. The LOLP remains similar across all three guided
tree search methods. The run time variability is measured as the ratio of
maximum to minimum run time 𝑡max∕𝑡min. Using non-anytime methods
Guided UCS and Guided A*, run time variability is between 7.5–34;
using Guided IDA* search, variability is reduced to between 1.4–1.6.

Improvements in operating costs can be attributed to greater aver-
age search depths using Guided IDA* compared with Guided UCS and
Guided A*, where search depth was fixed at 𝐻 = 4. Fig. 6 shows the
median search depth 𝐻 using Guided IDA* with varying time budget
𝑏. Even with the lowest time budget of 𝑏 = 1 second per period, the
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median search depth is 𝐻 ≥ 5 and at larger time budgets is significantly
higher than 𝐻 = 4 used for UCS and A*. Median search depth increases
logarithmically with respect to the budget 𝑏, increasing by one for
approximately each doubling of 𝑏. This means that relatively deep
search is achieved on average, even for small time budgets.

Fig. 7 shows the impact of the time budget 𝑏 on operating costs
for Guided IDA*, with comparison to Guided UCS. While costs were
generally found to decrease with increasing time budget, there is a
notably non-uniform decrease for the 30 generator problem for 𝑏 ≤ 10s.
Guided IDA* outperforms Guided UCS for budgets 𝑏 ≥ 10s for all three
problem sizes. The largest savings compared with UCS were achieved
in the 30 generator case, where costs were 1.1% lower with 𝑏 = 60.

The lower run time variability of Guided IDA* is a practical ad-
vantage over Guided UCS and Guided A*, and enables more reliable
performance characteristics by maximising use of computational re-
sources. Our results show that for comparable time budgets, Guided
IDA* achieves significant cost savings as compared with Guided UCS.

6. Discussion

This paper built on the methodology of previous research combining
model-free RL with model-based planning [7], addressing limitations of
run time variability and limited search depth. Our results showed that
the choice of tree search algorithm (UCS, A* or IDA*) is an important
design decision in this broader class of guided tree search methods,
and has a significant impact on solution quality and run times. Using
informed and anytime search methods yielded substantial performance
improvements and practical benefits as compared with the uninformed,
non-anytime algorithm Guided UCS.

A key contribution of this research is a heuristic for the UC problem,
which achieved substantial run time reductions of up to an order of
magnitude when applied in Guided A* search. The development of the
heuristic demanded domain knowledge of power systems to balance
accuracy with run time. While problem-agnostic blackbox methods
have been used in other contexts to develop heuristics for informed
search [49], problem-specific deterministic methods can incorporate
human knowledge of the problem and may be more reliable in practice.
Complementing RL expertise with problem-specific knowledge is an
effective and valuable means of improving solution quality in applied
contexts which can help accelerate the adoption of machine learning
methods for practical benefit.

The complexity of UC problem instances varies significantly de-
pending on the characteristics of demand and renewables generation
forecasts which can result in substantial variation in computational
expense for RL methods. Fig. 5 contrasted the problem complexities
of a weekend summer day and a winter weekday, whose run times
using Guided A* were separated by a factor of 34. A successful solution
method must be one that is capable of solving diverse problem instances
without significant loss of solution quality or increase in run time.
In the anytime algorithm Guided IDA*, a fixed time budget ensures

that run times do not become impractically large in complex problem
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Fig. 5. Comparison of two 10 generator UC problem instances solved with Guided A* search. The left-hand problem Sunday 25th June 2017 was solved in the shortest time
(𝑡 = 5.7 s) and is characterised by low wind penetration and flat demand. The right-hand plot shows the solution for Monday 21st November 2016 (𝑡 = 195.8 s) and is characterised
by more variable demand and increasing wind penetration that coincides with falling demand after the evening peak. This varying complexity across problem instances is the
cause of large run time variability using Guided A* search.
Fig. 6. Search depth of Guided IDA* for 10, 20 and 30 generator problem instances. Solid line and points show the median search depth; shaded area indicates inter-quartile
range. Dotted line shows 𝐻 = 4, the search depth used in Guided UCS [7] and Guided A* search. For all time budgets, the average search depth of Guided IDA* is significantly
greater than other guided tree search methods.
Fig. 7. Cost saving of Guided IDA* with PL heuristic compared to Guided UCS. Operating costs generally decrease with increasing time budget. The largest improvements are
found in 30 generator case, where IDA* is 1.1% cheaper than Guided UCS when 𝑏 = 60 s.
instances, compensating with an adaptive search depth. In practice,
Guided IDA* reaches greater search depths on average, as shown in
Fig. 6, resulting in lower operating costs for similar computational
budgets. By contrast, the high sensitivity of Guided UCS and Guided
A* run times to the fixed search depth 𝐻 means that increasing the
8

depth of search risks an explosion in computational expense for some
problem instances. The anytime property of Guided IDA* is a significant
practical advantage over UCS and A* for the UC problem, reducing run
time variability and allowing for schedules to be reliably produced in
time-constrained contexts. The time budget of Guided IDA* can be set
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using knowledge of market constraints, such as the time to gate closure
when bids and offers must be submitted.

Increasing the time budget in Guided IDA* generally resulted in
operating cost reductions as shown in Fig. 7. In all three problems,
Guided IDA* with a budget of 𝑏 ≥ 10 seconds per period outperformed
Guided UCS. Our results did not find a deterioration in performance
with increasing number of generators and the greatest operating cost
reductions relative to Guided UCS were found for the largest problem
instances with 30 generators. The potential for scaling to power systems
with more generators is therefore promising, although challenges may
be encountered in policy training as the number of actions meeting
the branching threshold 𝜌 becomes increasingly sensitive to the policy
entropy. Further work on entropy regularisation for guided tree search
may therefore be required for successful applications to larger power
systems. Furthermore, Fig. 7 showed that for the 30 generator system,
performance was more variable for lower budgets of 𝑏 ≤ 5s, indicating
that greater time budgets may be required to ensure stable performance
for larger systems.

7. Conclusion

Compared with previous research combining model-based and
model-free RL [7], the two novel algorithms developed in this paper,
Guided A* and Guided IDA*, are more effective solution methods for
the UC problem and represent a significant advance in the field of
RL for UC. Using Guided A* search and a novel heuristic function
based on priority list solution methods [12], run times are reduced by
up to 94% as compared with Guided UCS, with negligible (< 0.1%)
impact on operating costs. These results demonstrate the value of
domain expertise in designing solution methods for UC and other real-
world problems. While a large proportion of RL literature has studied
games-playing domains, research in real-world contexts has progressed
more slowly [54]. Our results show that combining domain expertise
with state of the art RL can improve solution methods for specific
applications, accelerating the adoption of RL methods for practical
benefit.

The UC problem is typically highly time-constrained, and must
usually be solved within minutes [2]. The variable and unpredictable
run times of fixed-depth tree search methods such as UCS and A*
across problem instances of varying complexity therefore pose practical
problems for UC. We developed an anytime algorithm, Guided IDA*,
to mitigate run time variability, constraining the run time to a fixed
computational budget. Guided IDA* achieved operating cost reductions
of up to 1% for similar computational budgets as compared with Guided
UCS, similar to the cost savings shown by stochastic optimisation
over deterministic methods using MILP [3,23,25]. Anytime methods
were shown to be particularly well-suited to the UC problem, enabling
more reliable generation of high-quality solutions as compared with
fixed-depth tree search.

Previous research showed that the exponential time complexity of
tree search algorithms can be overcome by employing an RL policy to
reduce the branching factor of the search tree [7]. This paper has shown
that this methodology can be further improved for UC by modifying the
algorithm to exploit properties of the problem in Guided A* and Guided
IDA*. While conventional tree search methods are impractical for UC
applications, this paper has shown that problem-specific modifications
using RL and advanced search methods can enable tree search to be
successfully applied, producing high quality solutions.

RL offers several advantages over mathematical optimisation tech-
niques for UC including principled accounting of uncertainty, absence
of heuristic reserve requirements and offline training which reduces
the computational burden at decision time. However, in order for RL
to become a viable method for practical use, further work is required
to verify its superiority over existing methods and build trust among
power system operators and generating companies. As topics for fur-
ther research, studies of problem instances with transmission network
constraints, generator outages and profit-based agents would show the
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generality of RL across diverse real world contexts.
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