1,892 research outputs found

    NextBestOnce: Achieving Polylog Routing despite Non-greedy Embeddings

    Full text link
    Social Overlays suffer from high message delivery delays due to insufficient routing strategies. Limiting connections to device pairs that are owned by individuals with a mutual trust relationship in real life, they form topologies restricted to a subgraph of the social network of their users. While centralized, highly successful social networking services entail a complete privacy loss of their users, Social Overlays at higher performance represent an ideal private and censorship-resistant communication substrate for the same purpose. Routing in such restricted topologies is facilitated by embedding the social graph into a metric space. Decentralized routing algorithms have up to date mainly been analyzed under the assumption of a perfect lattice structure. However, currently deployed embedding algorithms for privacy-preserving Social Overlays cannot achieve a sufficiently accurate embedding and hence conventional routing algorithms fail. Developing Social Overlays with acceptable performance hence requires better models and enhanced algorithms, which guarantee convergence in the presence of local optima with regard to the distance to the target. We suggest a model for Social Overlays that includes inaccurate embeddings and arbitrary degree distributions. We further propose NextBestOnce, a routing algorithm that can achieve polylog routing length despite local optima. We provide analytical bounds on the performance of NextBestOnce assuming a scale-free degree distribution, and furthermore show that its performance can be improved by more than a constant factor when including Neighbor-of-Neighbor information in the routing decisions.Comment: 23 pages, 2 figure

    Tight Lower Bounds for Greedy Routing in Higher-Dimensional Small-World Grids

    Full text link
    We consider Kleinberg's celebrated small world graph model (Kleinberg, 2000), in which a D-dimensional grid {0,...,n-1}^D is augmented with a constant number of additional unidirectional edges leaving each node. These long range edges are determined at random according to a probability distribution (the augmenting distribution), which is the same for each node. Kleinberg suggested using the inverse D-th power distribution, in which node v is the long range contact of node u with a probability proportional to ||u-v||^(-D). He showed that such an augmenting distribution allows to route a message efficiently in the resulting random graph: The greedy algorithm, where in each intermediate node the message travels over a link that brings the message closest to the target w.r.t. the Manhattan distance, finds a path of expected length O(log^2 n) between any two nodes. In this paper we prove that greedy routing does not perform asymptotically better for any uniform and isotropic augmenting distribution, i.e., the probability that node u has a particular long range contact v is independent of the labels of u and v and only a function of ||u-v||. In order to obtain the result, we introduce a novel proof technique: We define a budget game, in which a token travels over a game board, while the player manages a "probability budget". In each round, the player bets part of her remaining probability budget on step sizes. A step size is chosen at random according to a probability distribution of the player's bet. The token then makes progress as determined by the chosen step size, while some of the player's bet is removed from her probability budget. We prove a tight lower bound for such a budget game, and then obtain a lower bound for greedy routing in the D-dimensional grid by a reduction

    Handling Network Partitions and Mergers in Structured Overlay Networks

    Get PDF
    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. These systems have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this paper, we present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    Optimal Alignments for Designing Urban Transport Systems: Application to Seville

    Get PDF
    The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.Ministerio de Economía y Competitividad MTM2015-67706-
    • …
    corecore