206 research outputs found

    The Chromatic Number of the Disjointness Graph of the Double Chain

    Full text link
    Let PP be a set of n≥4n\geq 4 points in general position in the plane. Consider all the closed straight line segments with both endpoints in PP. Suppose that these segments are colored with the rule that disjoint segments receive different colors. In this paper we show that if PP is the point configuration known as the double chain, with kk points in the upper convex chain and l≥kl \ge k points in the lower convex chain, then k+l−⌊2l+14−12⌋k+l- \left\lfloor \sqrt{2l+\frac{1}{4}} - \frac{1}{2}\right\rfloor colors are needed and that this number is sufficient

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n−2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    Colouring quadrangulations of projective spaces

    Full text link
    A graph embedded in a surface with all faces of size 4 is known as a quadrangulation. We extend the definition of quadrangulation to higher dimensions, and prove that any graph G which embeds as a quadrangulation in the real projective space P^n has chromatic number n+2 or higher, unless G is bipartite. For n=2 this was proved by Youngs [J. Graph Theory 21 (1996), 219-227]. The family of quadrangulations of projective spaces includes all complete graphs, all Mycielski graphs, and certain graphs homomorphic to Schrijver graphs. As a corollary, we obtain a new proof of the Lovasz-Kneser theorem

    Topological obstructions for vertex numbers of Minkowski sums

    Full text link
    We show that for polytopes P_1, P_2, ..., P_r \subset \R^d, each having n_i \ge d+1 vertices, the Minkowski sum P_1 + P_2 + ... + P_r cannot achieve the maximum of \prod_i n_i vertices if r \ge d. This complements a recent result of Fukuda & Weibel (2006), who show that this is possible for up to d-1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen--type obstructions) as developed in R\"{o}rig, Sanyal, and Ziegler (2007).Comment: 13 pages, 2 figures; Improved exposition and less typos. Construction/example and remarks adde

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number
    • …
    corecore