614 research outputs found

    A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

    Full text link
    Let P\mathcal{P} be a property of function Fpn→{0,1}\mathbb{F}_p^n \to \{0,1\} for a fixed prime pp. An algorithm is called a tester for P\mathcal{P} if, given a query access to the input function ff, with high probability, it accepts when ff satisfies P\mathcal{P} and rejects when ff is "far" from satisfying P\mathcal{P}. In this paper, we give a characterization of affine-invariant properties that are (two-sided error) testable with a constant number of queries. The characterization is stated in terms of decomposition theorems, which roughly claim that any function can be decomposed into a structured part that is a function of a constant number of polynomials, and a pseudo-random part whose Gowers norm is small. We first give an algorithm that tests whether the structured part of the input function has a specific form. Then we show that an affine-invariant property is testable with a constant number of queries if and only if it can be reduced to the problem of testing whether the structured part of the input function is close to one of a constant number of candidates.Comment: 27 pages, appearing in STOC 2014. arXiv admin note: text overlap with arXiv:1306.0649, arXiv:1212.3849 by other author

    Maximum flow is approximable by deterministic constant-time algorithm in sparse networks

    Full text link
    We show a deterministic constant-time parallel algorithm for finding an almost maximum flow in multisource-multitarget networks with bounded degrees and bounded edge capacities. As a consequence, we show that the value of the maximum flow over the number of nodes is a testable parameter on these networks.Comment: 8 page

    Testing Low Complexity Affine-Invariant Properties

    Full text link
    Invariance with respect to linear or affine transformations of the domain is arguably the most common symmetry exhibited by natural algebraic properties. In this work, we show that any low complexity affine-invariant property of multivariate functions over finite fields is testable with a constant number of queries. This immediately reproves, for instance, that the Reed-Muller code over F_p of degree d < p is testable, with an argument that uses no detailed algebraic information about polynomials except that low degree is preserved by composition with affine maps. The complexity of an affine-invariant property P refers to the maximum complexity, as defined by Green and Tao (Ann. Math. 2008), of the sets of linear forms used to characterize P. A more precise statement of our main result is that for any fixed prime p >=2 and fixed integer R >= 2, any affine-invariant property P of functions f: F_p^n -> [R] is testable, assuming the complexity of the property is less than p. Our proof involves developing analogs of graph-theoretic techniques in an algebraic setting, using tools from higher-order Fourier analysis.Comment: 38 pages, appears in SODA '1

    A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing

    Get PDF
    Fox, Gromov, Lafforgue, Naor, and Pach proved a regularity lemma for semi-algebraic kk-uniform hypergraphs of bounded complexity, showing that for each ϵ>0\epsilon>0 the vertex set can be equitably partitioned into a bounded number of parts (in terms of ϵ\epsilon and the complexity) so that all but an ϵ\epsilon-fraction of the kk-tuples of parts are homogeneous. We prove that the number of parts can be taken to be polynomial in 1/ϵ1/\epsilon. Our improved regularity lemma can be applied to geometric problems and to the following general question on property testing: is it possible to decide, with query complexity polynomial in the reciprocal of the approximation parameter, whether a hypergraph has a given hereditary property? We give an affirmative answer for testing typical hereditary properties for semi-algebraic hypergraphs of bounded complexity

    Relating two property testing models for bounded degree directed graphs

    Get PDF
    We study property testing algorithms in directed graphs (digraphs) with maximum indegree and maximum outdegree upper bounded by d. For directed graphs with bounded degree, there are two different models in property testing introduced by Bender and Ron (2002). In the bidirectional model, one can access both incoming and outgoing edges while in the unidirectional model one can only access outgoing edges. In our paper we provide a new relation between the two models: we prove that if a property can be tested with constant query complexity in the bidirectional model, then it can be tested with sublinear query complexity in the unidirectional model. A corollary of this result is that in the unidirectional model (the model allowing only queries to the outgoing neighbors), every property in hyperfinite digraphs is testable with sublinear query complexity

    Random local algorithms

    Full text link
    Consider the problem when we want to construct some structure on a bounded degree graph, e.g. an almost maximum matching, and we want to decide about each edge depending only on its constant radius neighbourhood. We show that the information about the local statistics of the graph does not help here. Namely, if there exists a random local algorithm which can use any local statistics about the graph, and produces an almost optimal structure, then the same can be achieved by a random local algorithm using no statistics.Comment: 9 page

    An Optimal Separation Between Two Property Testing Models for Bounded Degree Directed Graphs

    Get PDF
    We revisit the relation between two fundamental property testing models for bounded-degree directed graphs: the bidirectional model in which the algorithms are allowed to query both the outgoing edges and incoming edges of a vertex, and the unidirectional model in which only queries to the outgoing edges are allowed. Czumaj, Peng and Sohler [STOC 2016] showed that for directed graphs with both maximum indegree and maximum outdegree upper bounded by d, any property that can be tested with query complexity O_{?,d}(1) in the bidirectional model can be tested with n^{1-?_{?,d}(1)} queries in the unidirectional model. In particular, {if the proximity parameter ? approaches 0, then the query complexity of the transformed tester in the unidirectional model approaches n}. It was left open if this transformation can be further improved or there exists any property that exhibits such an extreme separation. We prove that testing subgraph-freeness in which the subgraph contains k source components, requires ?(n^{1-1/k}) queries in the unidirectional model. This directly gives the first explicit properties that exhibit an O_{?,d}(1) vs ?(n^{1-f(?,d)}) separation of the query complexities between the bidirectional model and unidirectional model, where f(?,d) is a function that approaches 0 as ? approaches 0. Furthermore, our lower bound also resolves a conjecture by Hellweg and Sohler [ESA 2012] on the query complexity of testing k-star-freeness
    • …
    corecore