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ABSTRACT
We study property testing algorithms in directed graphs
(digraphs) with maximum indegree and maximum outdegree
upper bounded by d. For directed graphs with bounded
degree, there are two different models in property testing
introduced by Bender and Ron (2002). In the bidirectional
model, one can access both incoming and outgoing edges while
in the unidirectional model one can only access outgoing
edges. In our paper we provide a new relation between
the two models: we prove that if a property can be tested
with constant query complexity in the bidirectional model,
then it can be tested with sublinear query complexity in the
unidirectional model.

A corollary of this result is that in the unidirectional
model (the model allowing only queries to the outgoing
neighbors), every property in hyperfinite digraphs is testable
with sublinear query complexity.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Theory
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1. INTRODUCTION
A fundamental task in the study of large networks such

as the web graph, social networks, etc., is to analyze their
structural properties. For example, we may want to know if
a network is well-connected or has many copies (instances) of
some specific sub-structures. Since many modern networks
are massive and of quickly growing size, the problem of per-
forming the structural analysis efficiently has been becoming
increasingly important and even linear time algorithms are
often too slow for this task. In such a scenario, one of the
most viable approaches is (random) sampling. However,
sampling involves many challenges. First of all, there are
different sampling methods and some may be better or worse
for the task at hand. Secondly, there is the question how to
interpret the sample, i.e., what can we learn about the struc-
ture of the graph from our random sample. These questions
require a systematic treatment, which is done in the area
of property testing, a formal framework to study sampling
algorithms for the analysis of structural properties of large
graphs. Property testing is a relaxation of classical decision
problems that aims to distinguish between objects having a
predetermined property (e.g., graphs being well-connected)
and objects being far from any object having the property
(e.g., graphs being poorly-connected). The notion of being
“far” is problem dependent; one typically assumes that the
algorithm rejects objects that are ε-far from having Π, where
an object is ε-far from property Π if one has to modify more
than an ε fraction of its representation to obtain an object
with property Π. For example, if the input graph G = (V,E)
is represented by adjacency lists, then G is called ε-far from
property Π (say, planarity) if one has to modify more than
ε|E| edges in G to obtain a graph with property Π.

The notion of property testing was first formulated by
Rubinfeld and Sudan [26], as it arises naturally in the context
of program verification and learning theory. Goldreich et al.
[14] initiated the study of property testing for graphs and
combinatorial objects, and in the recent years we have seen
numerous property testing algorithms to test various graph
properties (see, e.g., [13, 25] and the references therein).

The area of graph property testing has been extensively
studied in the last two decades, with many beautiful results
combining graph algorithms, extremal graph theory, theory
of random graphs, and complexity theory. While there has
been comprehensive research of graph property testing in
the context of undirected graphs (see, e.g., surveys [13, 25]
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and references in Section 1.2 on related work), surprisingly
little successful efforts have been devoted to the study of
directed graphs. The main goal of this work is to advance
our understanding of testing properties of bounded degree
directed graphs (digraphs).

There are two most natural models of accessing (bounded
degree) digraphs, as introduced by Bender and Ron [5]: the
bidirectional model that allows to query outgoing and in-
coming edges of a vertex, and the unidirectional model that
allows to query only the outgoing edges (see, e.g., [5, 12,
20])1. Depending on the context, either model can be more
appropriate in any given situation. These two models are
quite different though. The former model resembles the
model of undirected graphs (see, e.g., [12]), is at least as
strong as the second model, and has some non-trivial testers
with constant query complexity, cf. [5, 23, 27]. The latter
model is on one hand more natural in applications and for
graph exploration, and on the other hand it is algorithmi-
cally more challenging, and achieving even sublinear query
complexity for testing is highly nontrivial. A representative
scenario where one can see a big difference between these
two models is when one processes web graphs, in which each
vertex u corresponds to a webpage and a directed edge (u, v)
corresponds to a hyperlink from the webpage corresponding
to u to the webpage corresponding to v. Such graphs are
relatively easy to be explored in the model allowing to query
outgoing and incoming edges of a vertex, but in many ap-
plications the queries for incoming edges are not allowed or
are too expensive. The unidirectional model is more natural,
but it is significantly more complicated to analyze the input
network in this model, since, for example, it is impossible to
quickly learn about any incoming edge of any vertex.

The main goal of this paper is to study the relation between
these two models and provide a generic transformation that
converts testers in the bidirectional model, to testers with
sublinear query complexity in the unidirectional model that
allows only queries to the outgoing edges.

1.1 Description of New Results
A d-bounded digraph is a digraph with both maximum

outdegree and indegree upper bounded by d. A digraph
property Π is defined by a set of digraphs closed under digraph
isomorphism (renaming of vertices). A d-bounded digraph G
is called ε-far from satisfying property Π if one has to modify
more than εdn edges of G to obtain a d-bounded degree
directed graph G′ satisfying Π. Given a digraph property Π,
our goal is to design a randomized algorithm, called tester,
that for every ε > 0 can distinguish, with probability at least
2
3
, between digraphs satisfying Π and digraphs that are ε-far

from satisfying Π, while making as few queries as possible.
Testers may have one-sided or two-sided error. A tester has
one-sided error if it accepts every digraph satisfying Π, and
so it can err (with probability at most 1

3
) only for digraphs

that are ε-far from satisfying Π. A tester that can err (with
probability at most 1

3
) for digraphs satisfying Π and also for

digraphs that are ε-far from satisfying Π, is said to be with
two-sided error.

Definition 1. Let Π = (Πn)n∈N be a d-bounded digraph
property Π = (Πn)n∈N, where Πn is a property of d-bounded

1There is nothing special to restrict to outgoing neighbor
queries, and the model that permits only incoming neighbor
queries can be considered similarly.

digraphs with n vertices. We call Π to be q-query testable
with error probability δ (for some function q = q(n, ε, d)), if for
every n, ε and d there exists a tester that makes q = q(n, ε, d)
queries and with probability at least 1 − δ, accepts any n-
vertex d-bounded digraph G satisfying Π and rejects any
n-vertex d-bounded digraph G that is ε-far from satisfying
Π 2. If δ = 1

3
, then we simply say that Π is q-query testable,

or that Π can be tested with query complexity q.

Following the main line of research in graph property test-
ing, we will assume that both ε and d are constant, even
though we will parameterize our analysis with respect to
these two parameters. With this in mind, we will say that a
tester has constant query complexity if its query complexity
is a function of ε and d only, and is independent of n. Fur-
thermore, throughout the paper we use the notation Ωε,d()
to describe a function in the Big-Omega notation assum-
ing that ε and d are constant. And so, as the result, the
query complexity n1−Ωε,d(1) will imply that the complexity
is sublinear in n, assuming that ε and d are constant.

Main result.
We provide a generic transformation between the two main

models of access to digraphs.

Theorem 1.1. A graph property that can be tested with
two-sided error and query complexity Oε,d(1) in the bounded

degree digraph bidirectional model can be tested with n1−Ωε,d(1)

queries and two-sided error in the bounded degree digraph
unidirectional model.

We remark that the two-sided error feature of the tester
in the unidirectional model is necessary to ensure our result.
Indeed, for example, it is known that strong connectivity
can be tested with one-sided error with constant number
of queries in the bidirectional model [5], whereas there is
no one-sided error tester for strong connectivity with query
complexity o(n) in the unidirectional model [12, 20].

Let us also note that the bound n1−Ωε,d(1) for the query
complexity cannot be improved much and we would not be
surprised if this bound was tight. Indeed, it is known that
one can test 3-star-freeness with a constant number queries in
the model allowing outgoing and incoming neighbor queries,
while any tester with two-sided error in the model that only
allows outgoing neighbor queries requires Ω(n2/3) queries [20],
which directly implies the same lower bound for our result:
there are graph properties with constant query complexity in
the bounded degree digraph bidirectional model that require
Ω(n2/3) queries in the bounded degree digraph unidirectional
model.

Testing hyperfinite properties.
As a corollary of our main theorem, we show that a large

class of digraph properties, called hyperfinite digraph prop-
erties, can be tested with sublinear query complexity in
the unidirectional model that allows only outgoing neighbor
queries.

Definition 2. An undirected graph G is called (ε, k)-hyper-
finite if it can be partitioned into connected components of
size at most k each, after removing at most εn edges. For

2Notice that the tester may depend on n, ε and d, similarly
to previous works, see, e.g., [15, 16, 21]
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a function ρ : R+ → R+, G is called ρ-hyperfinite if G is
(ε, ρ(ε))-hyperfinite for any ε > 0. A class of undirected
graphs is called ρ-hyperfinite if all the graphs in the class
are ρ-hyperfinite. A class of undirected graphs is called
hyperfinite if there exists a function ρ : R+ → R+ such that
it is ρ-hyperfinite.

These definitions can be applied to directed graphs by a
natural extension. For this purpose let us define the under-
lying undirected graph of a directed graph to be the graph
obtained by replacing all directed edges by undirected edges
(if edges are present in both direction we replace them by a
single edge).

Definition 3. A directed graph G is called a (ε, k)-hyper-
finite digraph if the underlying undirected graph of G is
(ε, k)-hyperfinite. For a function ρ : R+ → R+, G is called
ρ-hyperfinite if G is (ε, ρ(ε))-hyperfinite for any ε > 0. A
class of digraphs is called ρ-hyperfinite if all the digraphs
in the class are ρ-hyperfinite. A class of digraphs is called
hyperfinite if there exists a function ρ : R+ → R+ such that
it is ρ-hyperfinite.

Note that the class of hyperfinite graphs contains many nat-
ural classes of graphs, e.g., all planar bounded degree graphs,
all bounded degree graphs defined by a finite collection of
forbidden minors, etc (cf. [19, 21]).

Newman and Sohler [21] showed that every graph property
of a hyperfinite undirected graph is testable with constant
query complexity in the bounded degree (undirected) graph
model, where the testing algorithm in the bounded degree
graph model is allowed to query the neighbors of any given
vertex. This together with Theorem 1.1 implies the following
theorem.

Theorem 1.2. Every graph property of a hyperfinite di-
graph is testable with query complexity Oε,d(1) in the bounded

degree bidirectional model and with query complexity n1−Ωε,d(1)

in the bounded degree unidirectional model.

Proof Sketch. We only have to prove that every graph
property of a hyperfinite digraph is testable with query com-
plexity Oε,d(1) in the bidirectional model. Then the theorem
follows from Theorem 1.1.

It is known that every graph property of hyperfinite graphs
is testable with query complexity Oε,d(1) [21] and the result
here follows by an easy modification of the proofs, which we
only sketch here.

The proof in [21] uses the concept of local partitioning
oracles introduced by [19]. A local partitioning oracle OG
of G provides access to a partition of V (G) such that for
any query about v, it computes the partition class of V (G)
containing v by making only a constant number of queries to
G; the partition depends only on the graph G and random
bits of the oracle (see [19, 22] for details).

We can extend the construction of local graph partition-
ing oracle for hyperfinite graphs to hyperfinite digraphs by
applying the same construction as in [19], with a constant
number of queries to incoming and outgoing neighbors. This
follows from the fact that the underlying undirected graph
is hyperfinite and only vertices within constant distance to
the query vertex v will be explored by a local partitioning
oracle.

This implies that the oracle provides access to a digraph G′

that has connected components of constant size and is, say,

ε/4-close to G, i.e., it differs from an isomorphic copy of G
in at most εdn/4 edges. As observed in [21] using a constant
number of samples one can approximate the distribution of
these small components and in this way obtain a constant
size description of a digraph G′′ that is ε/2-close to G (see
also [22] for a related approach in a learning setting). We
can then accept, if G′′ is ε/2-close to the tested property and
reject otherwise.

Furthermore, other characterization results from [21] can
be obtained similarly for hyperfinite digraphs. Let us call a
graph (or digraph) property hyperfinite if it contains only
hyperfinite graphs (or digraphs, respectively). We have the
following theorem.

Theorem 1.3. Every hyperfinite digraph property is testable
with constant query complexity in the bounded degree bidirec-
tional model and query complexity n1−Ωε,d(1) in the bounded
degree unidirectional model.

Proof. Let Π be the considered property of digraphs. We
first define an undirected property Π′ that contains every
graph G for which at least one orientation of its edges is in
Π. Clearly, Π′ is hyperfinite and so it follows from [21] that
we can test with constant query time whether G is in Π′. If
the tester rejects, then we can reject. Otherwise the graph
is hyperfinite and we can apply Theorem 1.2 to conclude the
claim.

1.1.1 Our Techniques
We prove our main theorem, Theorem 1.1, by first showing

that in the bidirectional model, any tester for some property
Πn on n-vertex digraphs with constant query complexity can
be transformed into a so-called canonical tester. A canonical
tester first samples a small number of vertices (the roots),
then for each root explores the subgraph induced by all
vertices at distance at most k for some appropriate chosen
constant k, where the distance between two vertices u, v in
a digraph is defined to be the distance between u, v in the
underlying undirected graph. Such a rooted subgraph is also
called k-disc. Based on the union of the explored k-discs, the
tester makes a deterministic decision whether to accept the
input digraph or not. This reduction closely follows a similar
reduction in undirected graphs by Goldreich and Ron [15].

Given that the in- and outdegree is bounded by a constant,
any canonical tester having constant query complexity can
observe only the union of a constant number of k-discs for
some constant k. Furthermore, for sufficiently large n these
discs are disjoint with high probability. Thus, the decision
made by any canonical tester can be fully characterized by a
set Fn of a constant number of small (rooted) graphs, each
of which is a union of a constant number of k-discs, such
that the tester accepts if and only if the explored subgraph is
not isomorphic to any digraph in Fn. Since, with probability
at least 2

3
, the tester distinguishes digraphs satisfying a

property Πn from digraphs that are ε-far from satisfying
Πn, we conclude that the frequency of occurrences of sets
of graphs from Fn in graphs satisfying Πn is small and it is
large in digraphs that are ε-far from satisfying Πn. Therefore,
to simulate the tester in the model that allows only queries to
outgoing neighbors, it suffices to approximate the frequencies
of all k-discs in G and then calculate for any graph from Fn
its probability to occur as a sample of the canonical tester.
The technical difficulty is that there is no way to identify if

1035



a k-disc around a vertex v in the graph G′ induced by the
sampled edges contains all edges of the corresponding k-disc
around v in G. As an illustration consider a star with three
incoming edges as a forbidden 1-disc. If the input graph has
many stars with, say, d incoming edges but no stars with
exactly three incoming edges, it is likely that a sufficiently
big sample contains many stars with exactly three incoming
edges, although there is no such k-disc in G. This may lead
to the wrong decision to assume that the graph does not have
the considered property. One can resolve this by estimating
the number of occurrences of stars with more incoming edges
(this is, in fact, used in [20]). In our case, the situation is
more complicated since we do not only want to estimate
the indegree but the frequency of k-discs. Our approach to
resolve this issue is to define a partial ordering among k-discs
that allows us to compute an estimate knowing the estimates
of all prior k-discs in this order. This way, we obtain an
approximation of the frequencies of all k-discs. Finally, we
conclude our analysis by noting that the edge sampling can
be easily simulated in our model.

Testers in digraphs with arbitrary maximum degree.
It may be tempting to claim that actually the approach

presented in this paper could be applied to digraphs with
arbitrary maximum degrees. Indeed, assuming that one has
appropriate access to the input digraph, one can come up
with a useful characterization of digraph properties testable
in the bidirectional model with query complexity Oε(1) in
the framework of canonical testers (similar to that in Lemma
3.2). However, this result on its own does not suffice: it is
impossible to estimate the frequencies of appropriated discs.
In fact, we can prove that there are some properties in general
digraphs that are constant-query testable in the bidirectional
model (assuming that one has appropriate access to the
digraph, for example, by querying the ith neighbor of any
vertex or by querying vertex degrees; one could also allow
only access to a random incident edge) and that require an
almost linear number of queries in the unidirectional model
(that may allow outgoing neighbor queries and outdegree
queries).

Claim 1.4. In general digraphs, there exists a digraph
property that is constant-query testable in the bidirectional

model and requires n1−O(
√

log logn/ logn) queries in the unidi-
rectional model.

Proof. Let δ > 0. We call a digraph (with arbitrary
degrees) δ-incoming if the fraction of vertices with non-zero
indegree is at least δ. A digraph G = (V,E) is ε-far from
being δ-incoming if one has to add at least ε|E| edges to
make it δ-incoming.

First, let us note that in the bidirectional model it is easy
to test the property of being δ-incoming with O(1/δ) queries
(for any δ > ε and |E| = Ω(n)), just by sampling at random
O(1/δ) vertices and then estimating the fraction of sampled
vertices with non-zero incoming edges.

Next, we consider the problem in the unidirectional model.
We will reduce the problem of approximating the number of
distinct elements in a sequence of length n (called Distinct-
Elements, cf. [24]) to the problem of testing if a graph is 2ε-
incoming for any constant ε > 0. The problem of Distinct-
Elements [24] is to establish the number of queries (for balls
colors) from a sequence of n balls, each of a single color, to
approximate the number of distinct colors. Raskhodnikova

et al. [24] proved that one needs to query the colors of at

least n1−O(
√

log logn/ logn) balls to distinguish inputs with at
least n

11
colors from inputs with at most n

40
colors.

Given an instance of Distinct-Elements of n balls, we
define a digraph G on 2n vertices {1, . . . , 2n} as follows. The
first n vertices correspond to n balls and the remaining n
vertices correspond to n different colors (that contain all
ball-colors and possibly redundant colors). If the ith ball has
color corresponding to the jth color, then add edge 〈i, n+ j〉.
Note that the number of vertices with non-zero indegree is
exactly the number of distinct colors.

Let A be any algorithm in the unidirectional model that
tests if a digraph is 2ε-incoming or is ε-far from being 2ε-
incoming (for any constant ε with 0 < ε ≤ 1

40
). By invok-

ing A on the digraph G that corresponds to the Distinct-
Elements instance, we can distinguish inputs with at least
2εn colors from inputs with less than εn colors. Furthermore,
note that G can be constructed on-the-fly as follows: when
A queries the (only) outgoing neighbor of some vertex i for
some i ≤ n, if the color ci of the ith ball has already been
assigned to the jth vertex for some n+ 1 ≤ j ≤ 2n, then add
edge 〈i, j〉 to G; otherwise, assign ci to an arbitrary vertex
j with n+ 1 ≤ j ≤ 2n that has no assigned color yet, and
then add edge 〈i, j〉 to G. The lower bound on the query
complexity of Distinct-Elements implies the same lower
bound for the query complexity of A in the unidirectional
model. This completes the proof.

Notice that the construction above uses only digraphs with
the bounded outdegrees. A similar construction can be also
shown for digraphs with bounded indegrees (e.g., of testing
directed star K1,n−1).

1.2 Related Work
Given the importance of directed graphs in a variety of ap-

plications, it is rather surprising that we have seen only a lim-
ited amount of research on property testing in directed graphs.
The study of directed graphs in the context of property test-
ing has been initiated by Bender and Ron [5], who introduced
the main computational models and demonstrated that there
is a large complexity gap in the testing of the two main
models of bounded degree digraphs: The bidirectional model
that allows to query vertices for their incoming and outgoing
edges, and the unidirectional model that permits queries
only for the outgoing edges. Bender and Ron [5] showed that
while strong connectivity can be tested in the former model

with Õ(1/ε) queries, in the latter model one needs Ω(
√
n)

queries, even when allowing two-sided error. Goldreich [12,
Appendix A.3] and independently, Hellweg and Sohler [20],
noted that the arguments in the lower bound of Ω(

√
n) can

be extended to obtain a lower bound of Ω(n) in the one-
sided error model. Further, for two-sided error, Goldreich
[12, Appendix A.3], and independently Hellweg and Sohler

[20], designed testers for strong connectivity with n1−Ωε,d(1)

queries to the outgoing edges. We remark that while the
techniques used in [20] for testing strong connectivity share
similarity to our analysis for approximating the histogram
of small subgraphs (cf. Section 4), in that birthday-problem
arguments for estimating collisions are used, in [20] only a
degree distribution is approximated, and here we consider
the distribution of all rooted subgraphs of constant radius. In
[20], the authors also presented a tester for subgraph-freeness

with O(n1− 1
k ) queries to outgoing neighbors, where k is the
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number of connected components in the subgraph that have
no incoming edges. In particular, if a digraph H is strongly
connected, then one can test if a given digraph is H-free with
a constant number of queries, with one-sided error. Hellweg
and Sohler [20] gave also a lower bound of Ω(n2/3) for testing
3-star freeness. The model allowing querying vertices for the
incoming and outgoing edges has been also investigated for
some specific graph properties, and besides strong connec-
tivity [5], there has been a study of testing Eulerianity [23],
k-edge connectivity [23, 27], k-vertex connectivity [23]; all
these testers heavily rely on the access to both incoming and
outgoing edges and achieve constant query complexity. It is
known though that in this model acyclicity can not be tested
with o(n1/3) queries [5].

We also note that directed graphs have been also studied
in the model of dense directed graphs (not considered in our
paper), where Alon and Shapira [2] investigated the property
of testing subgraph freeness.

Significantly more efforts have been put in the study of
undirected graphs (see, e.g., [1, 3, 4, 6, 7, 8, 9, 10, 13, 14,
18, 21, 25]). In a work most closely related to ours, there
is a related study on characterization of property testers in
bounded degree undirected graphs, in which the testing algo-
rithm is allowed to perform neighbor queries. Newman and
Sohler [21] proved that every hyperfinite property is testable
with a constant number of queries, which improves upon the
result by Benjamini et al. [6], who showed that every minor-
closed property of bounded degree graphs is testable with
a constant number of queries. As we mentioned above (cf.
Theorem 1.2), the corresponding digraph properties can also
be tested in bounded degree digraph models. Goldreich and
Ron gave a full characterization of constant-query proximity-
oblivious testers with one-sided error in the bounded degree
graph model [15] and in particular, they provide canonical
testers for constant-query testable properties in bounded
degree graphs with one sided error. Further discussions on
proximity-oblivious testers have been given in [12, 17].

Goldreich and Ron studied sample-based testers that only
sample elements independently from some distribution over
the tested object (e.g., graphs, functions) [16]. For exam-
ple, they proved that any property that can be tested by a
proximity-oblivious tester with constant detection probability
that makes q uniformly distributed queries can be tested by a
sample-based testers of sample complexity O(n1−1/q). This
result and its proof do not generalize to ours and in particu-
lar, in the bounded degree graph model, the class of graph
properties that can be tested by proximity-oblivious testers
with constant query complexity is rather restricted when
compared to the class of constant-query testable properties
by standard testers (see [15]). Fischer et al. [11] proved re-
cently that non-adaptive testers making a constant number of
queries, over a fixed alphabet, can be tested by sample-based
testers with query complexity sublinear in n; the results
from [11] do not apply to our setting, since one needs a
non-constant alphabet size in order to represent bounded
degree digraphs.

2. PRELIMINARIES
For a directed graph G = (V,E), V = {1, . . . , n} and a

vertex v ∈ V , let dout(v) denote the outdegree of v and din(v)
denote the indegree of v. We assume that there is a degree
bound d such that dout(v) ≤ d and din(v) ≤ d and that d is
known to the algorithm. We consider two models describing

query access to the input digraph G, in one model (called the
bidirectional model) we assume the access through an oracle
that allows queries to outgoing and incoming edges/neighbors
and in the other model (called the unidirectional model), we
assume the access through an oracle that allows queries only
to outgoing edges/neighbors. For an outgoing neighbor query
(v, i, out), the oracle returns the endpoint of the ith outgoing
edge of v if i ≤ dout(v) and a special symbol “⊥” otherwise;
for an incoming neighbor query (v, i, in), the oracle returns
the endpoint of the ith incoming edge of v if i ≤ din(v) and
“⊥” otherwise.

For a directed graph G, we will use V (G) and E(G) to
denote its vertex set and edge set, respectively.

We define the distance between two vertices u, v in a digraph
to be the distance between u, v in the underlying undirected
graph (the length of the shortest path between u, v in the
underlying undirected graph).

A (weakly) connected digraph G is called a digraph with r
roots if it has exactly r vertices in G, say v1, . . . , vr, marked
as roots. In this case, we also say that G is a digraph rooted
at v1, . . . , vr. Given a parameter k ≥ 1 and a d-bounded
digraph G = (V,E), a k-disc rooted at a vertex v ∈ V ,
denoted by disck(v), is the subgraph (with v marked as root)
of G induced by the vertices that are distance at most k
from v. The k-discs of G are all possible disck(v), for any
v ∈ V (G). Finally, let sd,k denote the maximum number of
vertices in any k-disc, sd,k ≤ 1 + 2d+ · · ·+ (2d)k.

3. CANONICAL TESTERS IN THE BIDIREC-
TIONAL MODEL

In this section, we study testers in the model that allows
both incoming and outgoing neighbor queries. A central
feature of this model is that one can quickly explore the
k-disc rooted at any vertex v. Indeed, since we consider
d-bounded digraphs, every vertex is incident to at most 2d
edges (at most d incoming edges and at most d outgoing
edges), and since we have direct access to these edges, a
simple run of breadth first search (BFS) of depth k + 1
starting at v on the underlying undirected graph will explore
all edges of disck(v) using at most (2d)k+1 queries. Using
this observation, we can prove that in this model, every tester
with constant query complexity can be transformed into a
canonical tester that works as follows:

• uniformly samples a constant number of vertices, then

• explores the union of bounded discs rooted at the sam-
pled vertices, and then

• makes deterministic decision whether to accept, based
on an isomorphic copy of the explored subgraph.

The proof of the correctness of this transformation (Lem-
mas 3.1 and 3.2) follows similar arguments used earlier for
transforming testers in dense graph into nonadaptive testers
(cf. [18, Section 4]) and transforming testers with one-sided
error in bounded degree graph model into canonical testers
(cf. [15, Claim 5.5.2]). For the sake of completeness, we
prove these claims below.

We call two digraphs H1,H2 with multiple distinguished
vertices (roots) isomorphic to each other if and only if there
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is a roots-preserving isomorphism function3 from the vertex
set of H1 to the vertex set of H2.

We begin with the following lemma.

Lemma 3.1. (Canonical tester) Let Π = (Πn)n∈N be a
digraph property that can be tested in the bidirectional model
with query complexity q = q(ε, d) and error probability at
most 1

6
. Then for every ε and d, there exists an infinite

sequence F ′ = (F ′n)n∈N such that for any n,

• F ′n is a set of digraphs with q roots that are the union
of q (not necessarily disjoint) q-discs, and

• the property Πn on n-vertex digraphs can be tested (with
the error probability at most 1

3
) as follows:

� first uniformly sample q vertices (without replace-
ment),

� then explore the q-discs rooted at the sample vertices,
and

� then accept the input graph if and only if the explored
subgraph (with q sampled vertices as its roots) is not
isomorphic to any F ∈ F ′n.

Proof. Our proof follows closely the arguments from the
proof of Claim 5.5.2 from [15].

Let T be a tester for Πn on n-vertex digraphs with error
probability at most 1

6
. We will first convert T into a tester T1

that samples q vertices (marked as roots) and then returns
the output on the basis of the subgraph explored by the union
of q-discs rooted at sampled vertices. The value output by the
tester T1 may depend on the labels (or identities) of explored
vertices and the random coins for sampling vertices. Then
we convert T1 into a tester T2 whose output depends only
on the edges and non-edges in the explored subgraph, the
ordering of all explored vertices and possibly its own coins;
it is independent of the coins used to sample vertices. Next
we convert T2 into a tester T3 whose output is independent
of the ordering of all explored vertices. Finally, we convert
T3 into a tester T4 that returns the output deterministically
according to the unlabeled version of the explored subgraph
and its roots.

T1: Let T1 be the tester that first uniformly samples (without
replacement) a set S of q vertices and then explores the
subgraph that is a union of q-discs of all vertices in S.
We mark all vertices in S as roots. We then use T1 to
emulate the execution of T in the following way. Given
incoming and outgoing neighbor query access to an n-
vertex digraph G = (V,E), the tester T1 will select on-
the-fly and a random, uniformly distributed permutation
π : V → V and provide oracle access to the permuted
digraph π(G) = (V, π(E)), where π(E) := {〈π(u), π(v)〉 :
〈u, v〉 ∈ E}. Initially, all vertices in S are considered
as unused. In the emulation, when T makes a query
(v, i, out/in), if v has not appeared in any prior query
or answer, then the tester T1 allocates to v an unused
vertex u in the sample set S, and we let π(v) = u and
u will then be considered as used; otherwise T1 uses the
allocation π(v) determined before. Now if w is the answer

3By that we mean that if R1 is the set of roots of H1 and R2

is the set of roots of H2, then there is a permutation π over
V (H1) such that (i) π restricted to R1 is a permutation of R2

and (ii) (v, u) ∈ E(H1) if and only if (π(v), π(u)) ∈ E(H2).

of the query (π(v), i, out/in) and w has been selected as
the image of some vertex in the permutation π before, then
T1 returns π−1(w); otherwise, T1 returns a random unused
value (vertex label) x and we let π(x) = w. Now if w ∈ S,
then w will be considered used. The returned values will
then be fed to T . The tester T1 makes the same decision
as the final decision of T after receiving all the necessary
query answers.

Note that all the answers to the queries (v, i, out/in) used
by T1 are vertices in one of the explored q-discs. In addition,
the execution of T1 on G corresponds to an execution of T
on a random isomorphic copy of G, since π is a random
permutation of vertices of G. By the fact that Πn is a
digraph property invariant under digraph isomorphism, we
can use similar arguments as the proof of Lemma 4.1 in
[18] to show that T1 is a tester for Πn that preserves error
probability. Note that T1 makes decisions based on the
explored subgraph, and may depend on the labels and the
internal randomness used by the algorithm.

T2: Let pS be the probability that the vertex set S is sampled,
that is, pS = 1/

(
n
q

)
. Let αS be the sequence of queries and

answers (of the form (v, i, out/in) = u) when exploring the
q-discs of all vertices in S. Note that each αS corresponds
to a sequence α of queries and answers in which vertices
are relabeled according to some canonical order. (For
example, relabel the first queried vertex in αS as 1, and for
each query and answer (v, i, out/in) = u in αS such that
v has been relabeled as j, if u has not been relabeled yet,
then it is relabeled as j + 1 and the corresponding query
and answer in α is (j, i, out/in) = j + 1; otherwise, the
corresponding query and answer in α is (j, i, out/in) = k
where k is the relabeling of u that has been determined
before.) We let T2 be the tester from T1 that decides
only according to the relabeled sequence α it gets. More
precisely, for any fixed (relabeled) answer sequence α, let
qS,α be the probability that T1 accepts the input when
having selected S and seeing a relabeled answer sequence α.
For each such sequence α, let qα :=

∑
S pSqS,α. Then T2 is

obtained from T1 by making T2 to accept with probability
qα for every α. Then, similarly to the proof of Claim 4.2
in [18], we can show that T2 preserves the error probability
of T1. Note that the execution of T2 does not depend on
the identities of explored vertices, but possibly depends on
the ordering of explored vertices.

T3: T3 accepts with probability that is equal to the average of
all acceptance probabilities of T2 that are associated with
each relabelling of vertices of the q-discs. More specifically,
recall that qα is the probability that T2 accepts when seeing
a relabeled sequence α of queries and answers. Let g(α)
denote the set of all digraphs (with multiple roots) that are
isomorphic to the digraph underlying α. For a digraph H,
let qH denote the expected value of qα for α over the set
{α : H ∈ g(α)}. Then, we let T3 accept with probability
qH when seeing an explored subgraph isomorphic to H.
Observe that T3 accepts G with the same probability as
the probability that T2 accepts a random isomorphic copy
of G. This implies that T3 is a tester for Πn that preserves
error probability of tester T2. Note that the decision of
T3 does not depend on the ordering of all the explored
vertices, while it may depend on its own random coins.
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T4: Let T4 be the tester obtained from T3 that accepts the
input digraph if and only if the probability associated with
the explored subgraph H is at least 1

2
. More precisely,

recall that pH is the probability that T3 accepts when
seeing H as the explored subgraph that is a union of q-
discs rooted at q vertices. Then T4 is the tester that accepts
the input digraph if and only if pH′ ≥ 1

2
when seeing an

explored subgraph isomorphic to H ′. Similarly to the proof
of Lemma 4.4 in [18], one can show that T4 is a tester for
Πn with error probability 1

3
.

Finally, we note that the decision of the tester T4 is de-
terministic once it sees the explored subgraph spanned by
the union of q-discs rooted at sampled vertices. The lemma
then follows by defining F ′n to be the set of digraphs that is
a union of q q-discs on which the tester rejects.

The tester described in Lemma 3.1 will be called a canoni-
cal tester.

Our next lemma shows that with high probability, the
canonical tester can be made to make decisions according to
a set of small graphs each of which is a union of q′ disjoint
q′-discs, which will facilitate our analysis in that it will be
sufficient to consider the distribution of q′-discs of the digraph
(see Section 4).

Lemma 3.2. Let Π = (Πn)n∈N be a digraph property that
can be tested with query complexity q = q(ε, d) in the bidirec-
tional model. Then there exists a universal constant c > 0
such that for every ε and d, there is an integer n0, and an
infinite sequence F = (Fn)n≥n0 , such that for any n ≥ n0,
Fn is a set of digraphs, each being a union of cq disjoint
(cq)-discs, and for any n-vertex digraph G,

• if G satisfies Πn, then with probability at most 5
12

the
union of (c · q)-discs rooted at c · q uniformly sampled
(without replacement) vertices span a digraph isomor-
phic to one of the members in Fn;

• if G is ε-far from satisfying Πn, then with probability
at least 7

12
the (c · q)-discs rooted at c · q uniformly

sampled (without replacement) vertices span a digraph
isomorphic to one of the members in Fn.

Proof. We first amplify the error probability of the tester
of Π = (Πn)n∈N to be at most 1

6
. This can be done by

repeating the tester c times, for certain constant c, and then
taking the majority. Since the resulting tester for Π has query
complexity q′ := c · q and error probability at most 1

6
, we can

apply the proof of Lemma 3.1 to find the corresponding set
F ′n such that each element of F ′n is a subgraph of a union
of q′ q′-discs. Let Fn be the subset of F ′n that contains all
directed subgraphs with exactly q′ disjoint weakly connected
components; note that each element of Fn is a union of q′

disjoint q′-discs.
If G satisfies Πn, then by Lemma 3.1, with probability

at most 1
3
, if we randomly (without replacement) select q′

vertices from G then the q′ q′-discs rooted at the sampled
vertices span a digraph isomorphic to one of the members in
F ′n. Since Fn ⊆ F ′n, these q′-discs span a digraph isomorphic
to some digraph from Fn with probability at most 1

3
< 5

12
.

Similarly, by Lemma 3.1, if G is ε-far from satisfying Πn,
the subgraph spanned by q′ q′-discs rooted at randomly
(without replacement) sampled vertices of G is isomorphic to
one of the members in F ′n with probability at least 2

3
. Now

let n0 := 12 · sd,q′ · (q′)2 and note that for any n ≥ n0, with

probability at most
sd,q′ ·(q

′)2

n
≤ 1

12
, at least one pair of all

q′ sampled q′-discs intersects. This further implies that the
probability that the corresponding subgraph contains less
than q′ weakly connected components is at most 1

12
. There-

fore, the subgraph spanned by all the sampled q′ vertices
and their q′-discs is isomorphic to one of the members in Fn
with probability at least 1− 1

3
− 1

12
≥ 7

12
.

4. APPROXIMATING HISTOGRAM OF K-
DISCS BY SAMPLING RANDOM EDGES

In this section, we provide foundations to our use of the
framework developed in Lemma 3.2 and consider the problem
of approximating the frequencies of occurrences (histogram)
of all of k-discs (rooted at any possible vertex) in an input
digraph, in the model allowing only sampling of random
edges. We will present an algorithm that approximates, with
arbitrarily small additive error, the histogram of k-discs in a
digraph. Our algorithm invokes the process of sampling edges
of the input digraph independently at random with some
given probability p, and uses the outcome of the sampling to
estimate the histogram. We can implement such a process by
identifying the jth outgoing edge of vertex i with the number
d(i− 1) + j, for 1 ≤ i ≤ n and 1 ≤ j ≤ d. Then we sample
each element from the set {1, . . . , nd} with probability p and
query the edges corresponding to the sampled elements. This
enables us to implement the algorithm in the unidirectional
model with the same query complexity.

Before we present details of our algorithm, let us first intro-
duce some basic notation. The key challenge in our analysis
is to avoid over-counting, and therefore in our analysis we
will have to study the dependencies between subgraphs of
k-discs. We say two rooted digraphs Γ1,Γ2 are of the same
isomorphic type (which we will denote Γ1 ' Γ2) if they are
isomorphic, that is, if there is a bijection f : V (Γ1)→ V (Γ2)
that is root-preserving (if u is the root of Γ1 then f(u) is
the root of Γ2) and such that (u, v) ∈ E(Γ1) if and only if
(f(u), f(v)) ∈ E(Γ2). Let Hd,k denote the set of all isomor-
phic types Γ of d-bounded k-discs. That is, each Γ ∈ Hd,k is
a rooted digraph with exactly one root, maximum indegree
and outdegree at most d, and all vertices of Γ are within
distance at most k to the root. Let md,k = |Hd,k| denote the
number of all possible such types.

4.1 Ordering of K-Disc Isomorphic Types
Let us define a binary relation � on Hd,k such that Γ′ � Γ

if and only if Γ is a rooted subgraph of a rooted digraph
isomorphic to Γ′. That is, Γ′ � Γ if and only if there is an
injection f : V (Γ)→ V (Γ′) that is root-preserving and such
that if (u, v) ∈ E(Γ) then (f(u), f(v)) ∈ E(Γ′). Note that
� defines a partial order on the elements of Hd,k. Let us
fix any linear extension of this partial order and reorder the
elements of Hd,k according to the linear extension, so that
Hd,k = {Γ1,Γ2, . . . ,Γmd,k}, where Γi � Γj implies i ≤ j.

Let Γ and Γ′ be any two k-disc types with Γ′ � Γ. We
will estimate the probability of obtaining a copy of a digraph
isomorphic to Γ by sampling edges of Γ′, where each edge of
Γ′ is sampled randomly with probability p and independently
from all other edges, for some p ∈ [0, 1]. Let λ(Γ|p,Γ′) be the
probability that the sampled edges span a subgraph that is
isomorphic to Γ; λ(Γ|p,Γ) = p|E(Γ)|. We have the following
simple lemma.
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Lemma 4.1. If Γ′ � Γ then λ(Γ|p,Γ′) ≤
(|E(Γ′)|
|E(Γ)|

)
· p|E(Γ)|.

Furthermore, given Γ and Γ′, λ(Γ|p,Γ′) can be calculated
exactly.

Proof. Let GΓ′ be the set of all subgraphs of Γ′ on the
vertex set V (Γ′). For every Γ∗ ∈ GΓ′ , the probability that
the process of sampling independently every edge from Γ′ at
random with probability p will obtain digraph Γ∗ is equal to

p|E(Γ∗)| · (1− p)|E(Γ′)|−|E(Γ∗)| ≤ p|E(Γ∗)|.
Let isom〈Γ,Γ′〉 be the number of digraphs in GΓ′ that are of

the same isomorphic type as Γ, that is, are isomorphic to Γ
and with the same root as Γ. Since every graph isomorphic

to Γ has exactly |E(Γ)| edges, we have isom〈Γ,Γ′〉 ≤
(|E(Γ′)|
|E(Γ)|

)
.

Therefore λ(Γ|p,Γ′), which is the probability that the sam-
pled edges span a subgraph that is isomorphic to Γ, is equal

to isom〈Γ,Γ′〉 · p|E(Γ)| · (1− p)|E(Γ′)|−|E(Γ)| ≤
(|E(Γ′)|
|E(Γ)|

)
· p|E(Γ)|.

Finally, we note that λ(Γ|p,Γ′) can be calculated exactly
by counting isom〈Γ,Γ′〉, which is the number of digraphs in
GΓ′ that are of the same isomorphic type as Γ.

4.2 Sampling Based Approximation for His-
togram of K-Disc Types

We present a sampling based algorithm to approximate
the number of rooted k-discs in the input digraph G that
are isomorphic to every k-disc type Γ ∈ Hd,k. That is, for
every Γ ∈ Hd,k, the algorithm approximates the number of
vertices v in G with disck(v) being of the same isomorphic
type as Γ (the histogram of k-disc types of the digraph).
Our algorithm accesses the input graph only by randomly
sampling its edges.

For any 1 ≤ i ≤ md,k, let G(i) be the set of all indices j
such that Γj � Γi and Γj 6= Γi, that is, G(i) = {j : Γj �
Γi,Γj 6= Γi}. Note that our ordering of the types in Hd,k
ensures that G(i) ⊆ {1, . . . , i− 1}.

Algorithm: ApproxNumofDiscType(G,n, d, k, δ)

1. For i = 1 to md,k do

(a) Sample each edge of G independently at random
with probability pi = αi

(δ2n)1/|E(Γi)| , where αi will

be specified later (and is bounded by a function that

only depends on d, k).

(b) If no more than ti = 6md,k · pi · dn edges are
sampled, then

i. compute Yi to be the number of vertices v in
the resulting sampled graph for which disck(v)
is of the same isomorphic type as Γi;

ii. letXi=
(
Yi −

∑
j∈G(i) Xjλ(Γi|pi,Γj)

)
p
−|E(Γi)|
i

(c) Otherwise, abort and return Fail.

2. Return X1, . . . , Xmd,k .

The following lemma presents key properties of the algo-
rithm above. (Let us recall that sd,k denotes the maximum
number of vertices in any k-disc, sd,k ≤ 1 + 2d+ · · ·+ (2d)k.)

Lemma 4.2. For any d-bounded digraph G with n ver-
tices, parameters δ < 1 and k ≥ 1, with probability at
least 2

3
, the algorithm ApproxNumofDiscType returns esti-

mates X1, . . . , Xmd,k such that |Xi − cnt(Γi)| ≤ δn for every

i ≤ md,k, where cnt(Γ) is the number of vertices v in G for
which disck(v) is isomorphic to Γ. The algorithm samples

Od,k(δ−2/(d·sd,k)n1−1/(d·sd,k)) edges.

Proof. We first bound the number of edges sampled by
the algorithm. (We will assume that if at any iteration i the
algorithm samples more than ti = 6md,k · pi · dn edges, then
it will abort in Step (1c) after sampling ti + 1 edges.)

Since every Γi ∈ Hd,k is a k-disc with maximum degree at
most d, we have |V (Γi)| ≤ sd,k and thus |E(Γi)| ≤ d · sd,k.
Next, we note that the algorithm performs at most md,k itera-
tions and the maximum number of edges sampled in any itera-
tion is 1+max1≤i≤md,k

ti = O(c′d,k ·δ−2/(d·sd,k)n1−1/(d·sd,k)),

for some c′d,k depending only on d, k (here we use the fact
that md,k and αi are upper bounded by functions depending
only on d and k). Therefore, the total number of edges

sampled by the algorithm is Od,k(δ−2/(d·sd,k)n1−1/(d·sd,k)).
Next, we prove that with high probability, for all i ≤ md,k

the algorithm returns a good estimate Xi of cnt(Γi). First
note that for any i, the expected number of sampled edges in
the ith iteration is |E(G)|pi ≤ dnpi. Therefore, by Markov’s
inequality, the probability that more than ti = 6md,kdnpi
edges are sampled is at most 1

6md,k
. Thus, by the union

bound, the probability that there is an i such that in the ith
iteration more than ti edges are sampled (i.e., the condition
of Step (1c) holds) is at most 1

6
. From now on, we will

assume that in every iteration i no more than ti edges were
sampled and charge the other case to the error probability
of the tester.

Let κd,k = 2d·sd,k , θi = (3κd,k)i−md,k , and βi = 3i−md,k−2.

Let us specify αi =
(

8sd,2k·κd,k

βi·θ2i

)1/|E(Γi)|
in the algorithm.

We first show the following claim.

Claim 4.3. For every i, 1 ≤ i ≤ md,k:

Var[Yi] ≤

{
sd,2k · p|E(Γi)|

i · n if i = 1 ,

sd,2k · κd,k · p|E(Γi)|
i · n if i ≥ 2 .

Proof. Let S(Γi) denote the set of vertices in G whose k-
discs are isomorphic to any Γ′ with Γ′ � Γi, that is, S(Γi) =
{v ∈ V (G) : disc(v) ' Γj , j ∈ G(i) ∪ {i}}. Note that
|S(Γi)| =

∑
j∈G(i)∪{i} cnt(Γj) ≤ n. Let Zv,i be the indicator

random variable that the k-disc rooted at v in the sampled
graph has type isomorphic to Γi. Note that Zv,i = 1 if and
only if v ∈ S(Γi) and the sampled edges of disc(v) span a
subgraph that is isomorphic to Γi, which is the event that
occurs with probability λ(Γi|pi,disc(v)). Hence, recalling
the definition of Yi given in the algorithm, we have,

E[Yi]=
∑

v∈V (G)

E[Zv,i]=
∑

v∈S(Γi)

E[Zv,i]

=
∑

j∈G(i)∪{i}

cnt(Γj) · λ(Γi|pi,Γj) . (1)

Note that λ(Γi|pi,Γi) = p
|E(Γi)|
i and observe that if disc(v) '

Γj for j ∈ G(i), then we obtain by Lemma 4.1

E[Zv,i] = λ(Γi|pi,Γj) ≤

(
|E(Γj)|
|E(Γi)|

)
· p|E(Γi)|
i

≤ 2d·sd,k · p|E(Γi)|
i = κd,k · p|E(Γi)|

i . (2)
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If we plug this inequality in the identity (1) for E[Yi], then
we obtain the following inequality:

E[Yi] =
∑

j∈G(i)∪{i}

cnt(Γj) · λ(Γi|pi,Γj)

≤ cnt(Γi)p
|E(Γi)|
i +

∑
j∈G(i)

cnt(Γj)κd,k · p|E(Γi)|
i . (3)

Next, we will consider E[(
∑
v∈S(Γi)

Zv,i)
2]. Let dt(u, v) be

the distance between u and v in the underlying undirected
graph. Note the following,

E[(
∑

v∈S(Γi)

Zv,i)
2] =

∑
u∈S(Γi)

∑
v∈S(Γi)

E[Zu,iZv,i]

=
∑

u∈S(Γi)

( ∑
v∈S(Γi)

dt(u,v)≤2k

E[Zu,iZv,i] +
∑

v∈S(Γi)
dt(u,v)>2k

E[Zu,iZv,i]
)
. (4)

Since for any vertex u ∈ V (G), the number of vertices v
within distance at most 2k is at most sd,2k, we have that for
any u ∈ S(Γi),∑
v∈S(Γi):dt(u,v)≤2k

E[Zu,iZv,i] ≤
∑

v∈S(Γi):dt(u,v)≤2k

E[Zu,i]

≤ sd,2k ·E[Zu,i] .

On the other hand, if the distance between u and v is larger
than 2k, that is, if dt(u, v) > 2k, then Zu,i and Zv,i are
independent, and thus E[Zu,iZv,i] = E[Zu,i] ·E[Zv,i]. Hence,
continuing from inequality (4), we have,

E[(
∑

v∈S(Γi)

Zv,i)
2]

≤ sd,2k
∑

u∈S(Γi)

E[Zu,i] +
∑

u∈S(Γi)

E[Zu,i] ·
∑

v∈S(Γi)

E[Zv,i]

= sd,2k ·E[Yi] + (E[Yi])
2 .

This immediately gives us the following bound for Var[Yi]:

Var[Yi] = E[Y 2
i ]− (E[Yi])

2

= E[(
∑

v∈S(Γi)

Zv,i)
2]− (E[Yi])

2

≤ sd,2k ·E[Yi] .

If we plug here identity (3), then we will obtain the follow-
ing bound:

Var[Yi] ≤ sd,2k(cnt(Γi)p
|E(Γi)|
i +

∑
j∈G(i)

cnt(Γj)κd,kp
|E(Γi)|
i ) ,

which, after observing that
∑
j∈G(i)∪{i} cnt(Γj) ≤ n, yields

our bound on Var[Yi], completing the proof of Claim 4.3.

Next, we prove by induction our main claim of Lemma 4.2,
that for any i, 1 ≤ i ≤ md,k, the following holds:

Pr[|Xi − cnt(Γi)|] ≥ θiδn] ≤ βi . (5)

Before we will prove inequality (5), let us first note that
(5) implies the statement of the lemma by the union bound,
the fact that

∑md,k

i=1 βi = 3−md,k−2 ·
∑md,k

i=1 3i ≤ 3−md,k−2 ·
3
md,k+1

2
= 1

6
, and the previous proven upper bound of 1

6
on the probability that the condition of Step (1c) in any
iteration is satisfied. Therefore, to complete the proof, we
only have to prove inequality (5).

We begin with i = 1. Note that X1 = Y1

p
|E(Γ1)|
1

, and

therefore E[X1] = E[Y1]

p
|E(Γ1)|
1

= cnt(Γ1) and by Claim 4.3,

Var[X1] ≤ sd,2k·n

p
|E(Γ1)|
1

. Hence, by Chebyshev’s inequality,

Pr[|X1 − cnt(Γ1)| ≥ θ1δn] = Pr[|X1 −E[X1]| ≥ θ1δn]

≤ Var[X1]

θ21δ
2n2 ≤

sd,2k·n

p
|E(Γ1)|
1 ·θ21δ2n2

≤ β1 ,

where the last inequality follows by our setting of p1, θ1, and
β1. This proves inequality (5) for i = 1.

Next, we will proceed by induction and prove that inequal-
ity (5) holds for i ≥ 2, assuming that it is true for 1 . . . , i− 1.
Let us first note that using Claim 4.3, by Chebyshev’s in-
equality we have the following:

Pr

[∣∣∣∣∣ Yi

p
|E(Γi)|
i

−E

[
Yi

p
|E(Γi)|
i

]∣∣∣∣∣ ≥ θiδn

2

]

≤ Var[Yi]

p
2|E(Γi)|
i

· 4

θ2
i δ

2n2
≤ sd,2k · κd,k · p|E(Γi)|

i · n
p

2|E(Γi)|
i

· 4

θ2
i δ

2n2

≤ βi
2

.

Next, by induction, we know that for each j ≤ i − 1,
with probability at least 1 − βj we have |Xj − E[Xj ]| ≤
θjδn. Thus, with probability at least 1 −

∑
j∈G(i) βj ≥

1−
∑i−1
j=1 3j−md,k−2 ≥ 1− βi

2
, we have

|
∑
j∈G(i)(Xj −E[Xj ]) · λ(Γi|pi,Γj)|

p
|E(Γi)|
i

≤ λ(Γi|pi,Γj)
p
|E(Γi)|
i

·
∑
j∈G(i)

θjδn ≤ κd,k ·
∑
j∈G(i)

θjδn

≤ κd,k ·
i−1∑
j=1

θjδn ≤ κd,k ·
i−1∑
j=1

(3κd,k)j−md,kδn

≤ (3κd,k)i−md,k

2
δn =

θi
2
· δn ,

where in the second inequality we used (2), that λ(Γi|pi,Γj) ≤
κd,k · p|E(Γi)|

i .
Hence, by noting that∣∣∣∣∑j∈G(i) Xj ·λ(Γi|pi,Γj)

p
|E(Γi)|
i

−E

[∑
j∈G(i) Xj ·λ(Γi|pi,Γj)

p
|E(Γi)|
i

]∣∣∣∣
=
|
∑

j∈G(i)(Xj−E[Xj ])·λ(Γi|pi,Γj)|

p
|E(Γi)|
i

,

we obtain that with probability at least 1− βi,∣∣∣∣∣Yi −
∑
j∈G(i) Xj · λ(Γi|pi,Γj)

p
|E(Γi)|
i

− E

[
Yi −

∑
j∈G(i) Xj · λ(Γi|pi,Γj)

p
|E(Γi)|
i

]∣∣∣∣∣
≤

∣∣∣∣∣ Yi

p
|E(Γi)|
i

−E

[
Yi

p
|E(Γi)|
i

]∣∣∣∣∣
+

∣∣∣∣∣
∑
j∈G(i) Xj · λ(Γi|pi,Γj)

p
|E(Γi)|
i

− E

[∑
j∈G(i) Xj · λ(Γi|pi,Γj)

p
|E(Γi)|
i

]∣∣∣∣∣
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≤ θiδn

2
+
θiδn

2
= θiδn . (6)

Therefore, using the fact that

cnt(Γi) = E

Yi − ∑
j∈G(i)

Xj · λ(Γi|pi,Γj)

 · p−|E(Γi)|
i ,

inequality (6) yields |Xi − cnt(Γi)| ≤ θiδn.

5. TESTING PROPERTIES IN SUBLINEAR
TIME IN THE UNIDIRECTIONAL MODEL

Now we are ready to prove our main theorem and show that
using the framework developed in Lemmas 3.2 and 4.2, we
can transform any tester with constant query complexity in
the bounded degree digraph model that allows incoming and
outgoing neighbor queries into a tester with query complexity
n1−Ωε,d(1) with two-sided error in the bounded degree digraph
model that permits only outgoing neighbor queries.

Proof of Theorem 1.1. Let Π = (Πn)n∈N be a prop-
erty that is testable with query complexity q = q(ε, d) in
the bidirectional model. Let c and n0 = n0(ε, d) be inte-
gers as in Lemma 3.2. Let q′ = c · q and k = q′. Let
n1 := (1 + k) · 48 · (2kmd,k)k. Since for n < max{n0, n1} we
can trivially test Πn with a constant number of queries, we
only consider n ≥ max{n0, n1}.

Let Fn be the set of all subgraphs (unions of k disjoint
k-discs) that ensure that the tester for property Πn accepts
graphs satisfying Πn, as guaranteed in Lemma 3.2. Note
that without loss of generality, we can write each F ∈ Fn as
a multiset of k-discs, that is, F = {∆1, . . . ,∆k}, where each
∆i is a k-disc.

Let m = md,k and Hd,k = {Γi}mi=1 be as defined in Section
4. For convenience, for two integers N , M , we let

(
N
M

)
= 0 if

N < M . We will use the following algorithm TestP to test
Πn in the model that only allows outgoing neighbor queries.

Algorithm: TestP(G,n, d, ε,Πn)

1. Let k = q′ and δ = 1
48·(2kmd,k)k

.

2. Invoke ApproxNumofDiscType(G,n, d, k, δ).

• If it returns Fail, then abort and return Fail.

• Otherwise, let X1, . . . , Xmd,k be the returned es-
timates.

3. For every F = {∆1, . . . ,∆k} ∈ Fn:

• For 1 ≤ i ≤ m, let xj be the number of copies
among {∆j}kj=1 that are of the same isomorphic
type as Γi.

• Let estim(F ) =

∏m
i=1 (Xi

xi
)

(nk)
.

4. If
∑
F∈Fn

estim(F ) < 1
2

then output Accept.

Otherwise, Reject.

By Lemma 4.2, the query complexity of the algorithm
TestP is O(cd,q′ · δ−2/(d·sd,q′ ) · n1−1/(d·sd,q′ )) = n1−Ωε,d(1)

in the unidirectional model. It remains to prove that the
algorithm is indeed a property tester for Πn.

Note that by Lemma 4.2, with probability at least 2
3
, the

algorithm ApproxNumofDiscType returns estimates such that
|Xi − cnt(Γi)| ≤ δn for all 1 ≤ i ≤ m. In the following,
we will condition on this event and we will prove that if G
satisfies Πn, then

∑
F∈Fn

estim(F ) < 1
2
, and if G is ε-far

from satisfying Πn, then
∑
F∈Fn

estim(F ) ≥ 1
2
. This would

complete the proof.
Let us first discuss the idea behind our algorithm. Algo-

rithm ApproxNumofDiscType(G,n, d, k, δ) ensures that each
returned value Xi will be very close to cnt(Γi) (cf. Lemma
4.2). Therefore for every F = {∆1, . . . ,∆k} ∈ Fn and
the relevant x1, . . . , xm, we will study prob(∆1, . . . ,∆k) :=∏m

i=1 (cnt(Γi)
xi

)

(nk)
, from which we will obtain the required bounds

for
∑
F∈Fn

estim(F ).

Observe that for any multiset {∆1, . . . ,∆k}, the probabil-
ity that the k-discs of k vertices sampled uniformly at ran-
dom without replacement span a subgraph isomorphic to the
subgraph corresponding to {∆1, . . . ,∆k} has the multivari-
ate hypergeometric distribution with parameters n, cnt(Γ1),
. . . , cnt(Γm), k. That is, if for every i, 1 ≤ i ≤ m, there are
exactly xi copies in the multiset {∆1, . . . ,∆k} that are of
the same isomorphic type as Γi (note that x1 + · · ·+ xm = k
for any 1 ≤ i ≤ m), then the probability that the subgraph
spanned by k-discs of k uniformly sampled vertices is iso-
morphic to {∆1, . . . ,∆k} is equal to prob(∆1, . . . ,∆k) =∏m

i=1 (cnt(Γi)
xi

)

(nk)
, where we assumed

(
N
M

)
= 0 for N < M .

To study the relation between estim(F ) and prob(F ), we
begin with the following auxiliary claim.

Claim 5.1. For any i, if |Xi− cnt(Γi)| ≤ δn, it holds that

|
(
Xi
xi

)
−
(
cnt(Γi)
xi

)
| ≤ 4δnxi .

Proof. Let us first observe that the inequality trivially
holds for xi = 0, and it also easily holds for xi = 1: |

(
Xi
xi

)
−(

cnt(Γi)
xi

)
| = |Xi − cnt(Γi)| ≤ δn ≤ 4δnxi . Therefore, let us

assume now that xi ≥ 2.
Let us recall a binomial identity:

(
N
M

)
=
∑N−1
K=M−1

(
K

M−1

)
,

which gives for M ≤ L ≤ N the following:
(
N
M

)
=
(
L
M

)
+∑N−1

K=L

(
K

M−1

)
. Using this identity, that cnt(Γi) ≤ n, and

xi ≥ 2, we obtain,(
Xi
xi

)
≤

(
cnt(Γi) + dδne

xi

)

=

(
cnt(Γi)

xi

)
+

dδne∑
j=1

(
cnt(Γi) + j − 1

xi − 1

)

≤

(
cnt(Γi)

xi

)
+ dδne ·

(
cnt(Γi) + dδne − 1

xi − 1

)

≤

(
cnt(Γi)

xi

)
+ 2δn(cnt(Γi) + δn)xi−1

≤

(
cnt(Γi)

xi

)
+ 2δn((1 + δ)n)xi−1

=

(
cnt(Γi)

xi

)
+ 2δ(1 + δ)xi−1nxi

≤

(
cnt(Γi)

xi

)
+ 4δnxi ,
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where in the last inequality, we used the fact that (1 +
δ)xi−1 ≤ (1 + δ)k ≤ 2.

Similarly, assuming that cnt(Γi) ≥ dδne + k, we have
cnt(Γi) ≥ dδne+ xi, and we obtain,(

Xi
xi

)
≥

(
cnt(Γi)− dδne

xi

)

=

(
cnt(Γi)

xi

)
−
dδne∑
j=1

(
cnt(Γi)− j
xi − 1

)

≥

(
cnt(Γi)

xi

)
− dδne

(
cnt(Γi)

xi − 1

)

≥

(
cnt(Γi)

xi

)
− 2δn

(
n

xi − 1

)

≥

(
cnt(Γi)

xi

)
− 2δn · nxi−1

=

(
cnt(Γi)

xi

)
− 2δnxi .

On the other hand, in the complementary case cnt(Γi) ≤
dδne+ k, we note that

(
cnt(Γi)
xi

)
≤
(dδne+k

xi

)
≤ (dδne+ k)xi ≤

(2δn)xi ≤ 4δnxi , where the third inequality follows from the
fact that n ≥ n1 = 1+k

δ
. Therefore since

(
Xi
xi

)
≥ 0, we have(

Xi
xi

)
≥
(

cnt(Γi)
xi

)
− 4δnxi .

Now we can combine all the bounds above and obtain that
for x2 ≥ 2, the following holds,(

cnt(Γi)

xi

)
− 4δnxi ≤

(
Xi
xi

)
≤

(
cnt(Γi)

xi

)
+ 4δnxi ,

what yields the claim.

Next, consider any F = {∆1, . . . ,∆k} and the correspond-
ing frequencies x1, . . . , xm. Note that there are at most
k indices i with xi > 0, and that x1 + · · · + xm = k.
Let I = {i : xi > 0, 1 ≤ i ≤ m} and thus |I| ≤ k and∏
i∈I n

xi = nk. We have the following auxiliary claim.

Claim 5.2. For any i, conditioned on |Xi−cnt(Γi)| ≤ δn,
the following inequalities hold:∏
i∈I

((
cnt(Γi)

xi

)
+ 4δnxi

)
<

∏
i∈I

(
cnt(Γi)

xi

)
+ 4δ2knk ,

∏
i∈I

((
cnt(Γi)

xi

)
− 4δnxi

)
>

∏
i∈I

(
cnt(Γi)

xi

)
− 4δ2knk .

Proof. For any i ∈ I, we let yi,0 =
(

cnt(Γi)
xi

)
and yi,1 =

4δnxi . Then∏
i∈I

((
cnt(Γi)

xi

)
+ 4δnxi

)
=

∏
i∈I

(yi,0 + yi,1)

=
∑

i∈I,ji∈{0,1}

∏
i∈I

yi,ji

=
∏
i∈I

yi,0 +
∑

i∈I,ji∈{0,1},
there exists ji = 1

∏
i∈I

yi,ji

=
∏
i∈I

(
cnt(Γi)

xi

)
+

∑
i∈I,ji∈{0,1},

there exists ji = 1

∏
i∈I

yi,ji .

Now note that for any i ∈ I, yi,0 =
(

cnt(Γi)
xi

)
≤ nxi . Therefore,

for any sequence {ji}i∈I with at least one element equal to
1, we have the following bound

∏
i∈I yi,ji ≤ 4δ

∏
i∈I n

xi =

4δnk. Since the total number of such indices is 2k − 1 < 2k,
we have∏

i∈I

(
cnt(Γi)

xi

)
+

∑
i∈I,ji∈{0,1},

there exists ji = 1

∏
i∈I

yi,ji

<
∏
i∈I

(
cnt(Γi)

xi

)
+ 4δnk · 2k ,

which completes the proof of the first inequality. The proof
of the second inequality is analogues.

Using Claims 5.1 and 5.2, we can prove the following
relation between estim(F ) and prob(F ).

Claim 5.3. If |Xi−cnt(Γi)| ≤ δn for every i, then it holds
that |estim(F )− prob(F )| ≤ 4δ(2k)k for every F ∈ Fn.

Proof. Let F = {∆1, . . . ,∆k} ∈ Fn. By Claims 5.1 and
5.2, we have

estim(∆1 . . .∆k) =

∏
i∈I
(
Xi
xi

)(
n
k

)
≤

∏
i∈I

((
cnt(Γi)
xi

)
+ 4δnxi

)
(
n
k

)
<

∏
i∈I
(

cnt(Γi)
xi

)
+ 4δ2knk(

n
k

)
≤ prob(∆1, . . . ,∆k) + 4δ(2k)k ,

where the last inequality follows from that
(
n
k

)
≥ (n

k
)k. Sim-

ilarly, by Claims 5.1 and 5.2, we have,

estim(∆1, . . . ,∆k) ≥

∏
i∈I

((
cnt(Γi)
xi

)
− 4δnxi

)
(
n
k

)
≥

∏
i∈I
(

cnt(Γi)
xi

)
− 4δ2knk(

n
k

)
≥ prob(∆1, . . . ,∆k)− 4δ(2k)k .

Now, we are ready to conclude our analysis by using the
properties of

∑
F∈Fn

prob(F ) to show that conditioned on

|Xi − cnt(Γi)| ≤ δn for all 1 ≤ i ≤ m, the following two
claims will hold:

• if G satisfies Πn, then
∑
F∈Fn

estim(F ) < 1
2
, and

• if G is ε-far from satisfying Πn, then
∑
F∈Fn

estim(F ) ≥ 1
2
.

Let G be a d-bounded digraph satisfying Π. Then, by
Lemma 3.2, with probability at most 5

12
, the subgraph

spanned by the k-discs of k vertices that are sampled uni-
formly at random without replacement is isomorphic to some
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member in Fn, that is,
∑
F∈Fn

prob(F ) ≤ 5
12

. Therefore, by
Claim 5.3, we have,∑

F∈Fn

estim(F ) <
∑
F∈Fn

prob(F ) +
∑
F∈Fn

4δ(2k)k

≤
∑
F∈Fn

prob(F ) +mk
d,k · 4δ(2k)k

≤ 5

12
+

1

12
=

1

2
.

Similarly, by Lemma 3.2, if G is ε-far from satisfying
Π, then with probability at least 7

12
, the k-discs rooted at

k vertices that are sampled uniformly at random span a
subgraph in Fn. Hence, Claim 5.3 gives∑

F∈Fn

estim(F ) ≥
∑
F∈Fn

prob(F )−
∑
F∈Fn

4δ(2k)k

≥
∑
F∈Fn

prob(F )−mk
d,k · 4δ(2k)k

≥ 7

12
− 1

12
=

1

2
.

These inequalities conclude the analysis of ApproxNumofDisc-
Type and the proof of Theorem 1.1.

6. CONCLUSIONS
In this paper, we study the relationship between two prop-

erty testing models for bounded degree digraphs by showing
that every constant-query testable property in the bidirec-
tional model that allows both incoming and outgoing neigh-
bor queries can be tested in sublinear query complexity in
the unidirectional model that only permits outgoing neighbor
queries. The underlying transformation is performed through
first characterizing by canonical testers all constant-query
testable properties in the bidirectional model, and then by
an analysis of approximating the histogram of d-bounded
k-discs by a sampling based algorithm.

7. REFERENCES
[1] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf

Shapira. A combinatorial characterization of the
testable graph properties: It’s all about regularity.
SIAM Journal on Computing, 39(1):143–167, 2009.

[2] Noga Alon and Asaf Shapira. Testing subgraphs in
directed graphs. Journal of Computer and System
Sciences, 69(3):354–382, 2004.

[3] Noga Alon and Asaf Shapira. A characterization of the
(natural) graph properties testable with one-sided error.
SIAM Journal on Computing, 37(6):1703–1727, 2008.

[4] Noga Alon and Asaf Shapira. Every monotone graph
property is testable. SIAM Journal on Computing,
38(2):505–522, 2008.

[5] Michael A Bender and Dana Ron. Testing properties of
directed graphs: Acyclicity and connectivity. Random
Structures & Algorithms, 20(2):184–205, 2002.

[6] Itai Benjamini, Oded Schramm, and Asaf Shapira.
Every minor-closed property of sparse graphs is
testable. Advances in Mathematics, 223(6):2200–2218,
2010.

[7] Artur Czumaj, Oded Goldreich, Dana Ron,
C. Seshadhri, Asaf Shapira, and Christian Sohler.
Finding cycles and trees in sublinear time. Random
Structures & Algorithms, 45(2):139–184, 2014.

[8] Artur Czumaj, Pan Peng, and Christian Sohler.
Testing cluster structure of graphs. In Proceedings of
the 47th Annual ACM Symposium on Theory of
Computing (STOC’2015), pages 723–732, 2015.

[9] Artur Czumaj, Asaf Shapira, and Christian Sohler.
Testing hereditary properties of nonexpanding
bounded-degree graphs. SIAM Journal on Computing,
38(6):2499–2510, 2009.

[10] Artur Czumaj and Christian Sohler. Testing expansion
in bounded-degree graphs. In Proceedings of the 48th
Annual Symposium on Foundations of Computer
Science (FOCS’2007), pages 570–578, 2007.

[11] Eldar Fischer, Oded Lachish, and Yadu Vasudev.
Trading query complexity for sample-based testing and
multi-testing scalability. In Proceedings of the 56th
Annual Symposium on Foundations of Computer
Science (FOCS’2015), pages 1163–1182, 2015. Also
available at arXiv:1504.00695.

[12] Oded Goldreich. Introduction to testing graph
properties. In Oded Goldreich, editor, Property Testing,
pages 105–141. Springer, 2011.

[13] Oded Goldreich, editor. Property Testing: Current
Research and Surveys. Springer, 2011.

[14] Oded Goldreich, Shari Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750,
1998.

[15] Oded Goldreich and Dana Ron. On proximity-oblivious
testing. SIAM Journal on Computing, 40(2):534–566,
2011.

[16] Oded Goldreich and Dana Ron. On sample-based
testers. In Proceedings of the 6th Conference on
Innovations in Theoretical Computer Science
(ITCS’2015), pages 337–345, 2015.

[17] Oded Goldreich and Igor Shinkar. Two-sided error
proximity oblivious testing. Random Structures &
Algorithms, 2015. To appear. DOI: 10.1002/rsa.20582.

[18] Oded Goldreich and Luca Trevisan. Three theorems
regarding testing graph properties. Random Structures
& Algorithms, 23(1):23–57, 2003.

[19] Avinatan Hassidim, Jonathan Kelner, Huy N Nguyen,
and Krzysztof Onak. Local graph partitions for
approximation and testing. In Proceedings of the 50th
Annual Symposium on Foundations of Computer
Science (FOCS’2009), pages 22–31, 2009.

[20] Frank Hellweg and Christian Sohler. Property testing
in sparse directed graphs: strong connectivity and
subgraph-freeness. In Proceedings of the 20th Annual
European Symposium on Algorithms (ESA’2012), pages
599–610. Springer, 2012. Full version appeared in
arXiv:1312.0497.

[21] Ilan Newman and Christian Sohler. Every property of
hyperfinite graphs is testable. SIAM Journal on
Computing, 42(3):1095–1112, 2013.

[22] Krzysztof Onak. On the complexity of learning and
testing hyperfinite graphs. 2012. Manuscript. Available
at http://onak.pl/papers/.

[23] Yaron Orenstein and Dana Ron. Testing Eulerianity
and connectivity in directed sparse graphs. Theoretical
Computer Science, 412(45):6390–6408, 2011.

1044



[24] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and
Adam Smith. Strong lower bounds for approximating
distribution support size and the distinct elements
problem. SIAM Journal on Computing, 39(3):813–842,
2009.

[25] Dana Ron. Algorithmic and analysis techniques in
property testing. Foundations and Trends in
Theoretical Computer Science, 5(2):73–205, 2010.

[26] Ronitt Rubinfeld and Madhu Sudan. Robust
characterizations of polynomials with applications to
program testing. SIAM Journal on Computing,
25(2):252–271, 1996.

[27] Yuichi Yoshida and Hiro Ito. Testing
k-edge-connectivity of digraphs. Journal of Systems

Science and Complexity, 23(1):91–101, 2010.

1045




