489 research outputs found

    MixEth: Efficient, Trustless Coin Mixing Service for Ethereum

    Get PDF
    Coin mixing is a prevalent privacy-enhancing technology for cryptocurrency users. In this paper, we present MixEth, which is a trustless coin mixing service for Turing-complete blockchains. MixEth does not rely on a trusted setup and is more efficient than any proposed trustless coin tumbler. It requires only 3 on-chain transactions at most per user and 1 off-chain message. It achieves strong notions of anonymity and is able to resist denial-of-service attacks. Furthermore the underlying protocol can also be used to efficiently shuffle ballots, ciphertexts in a trustless and decentralized manner

    An Innovative Approach Towards Applying Chaum Mixing to SMS

    Get PDF
    Currently there are few user-friendly applications for anonymous communication across multiple platforms, leaving data that is often both personal and private vulnerable to malicious activity. Mobile devices such as smartphones are prime candidates for such an application as they are pervasive and have standardized communication protocols. Through the application of mixing techniques, these devices can provide anonymity for groups of individuals numbering 30 to 40 members. In this work, a Chaum mix inspired, smartphone based network that uses the Short Message Service (SMS) is described first in theory and then in implementation. This system leverages both techniques used by current anonymity networks as well as knowledge gained from current and past research to make messages private and untraceable. The work addresses previously published attacks to anonymous systems through current and innovative mitigation technique

    Quantum Anonymous Transmissions

    Full text link
    We consider the problem of hiding sender and receiver of classical and quantum bits (qubits), even if all physical transmissions can be monitored. We present a quantum protocol for sending and receiving classical bits anonymously, which is completely traceless: it successfully prevents later reconstruction of the sender. We show that this is not possible classically. It appears that entangled quantum states are uniquely suited for traceless anonymous transmissions. We then extend this protocol to send and receive qubits anonymously. In the process we introduce a new primitive called anonymous entanglement, which may be useful in other contexts as well.Comment: 18 pages, LaTeX. Substantially updated version. To appear at ASIACRYPT '0

    Correlation-Based Traffic Analysis Attacks on Anonymity Networks

    Get PDF
    In this paper, we address attacks that exploit the timing behavior of TCP and other protocols and applications in low-latency anonymity networks. Mixes have been used in many anonymous communication systems and are supposed to provide countermeasures to defeat traffic analysis attacks. In this paper, we focus on a particular class of traffic analysis attacks, flow-correlation attacks, by which an adversary attempts to analyze the network traffic and correlate the traffic of a flow over an input link with that over an output link. Two classes of correlation methods are considered, namely time-domain methods and frequency-domain methods. Based on our threat model and known strategies in existing mix networks, we perform extensive experiments to analyze the performance of mixes. We find that all but a few batching strategies fail against flow-correlation attacks, allowing the adversary to either identify ingress and egress points of a flow or to reconstruct the path used by the flow. Counterintuitively, some batching strategies are actually detrimental against attacks. The empirical results provided in this paper give an indication to designers of Mix networks about appropriate configurations and mechanisms to be used to counter flow-correlation attacks
    • …
    corecore