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Abstract
Coin mixing is a prevalent privacy-enhancing technology for cryptocurrency users. In this paper, we
present MixEth, which is a trustless coin mixing service for Turing-complete blockchains. MixEth
does not rely on a trusted setup and is more efficient than any proposed trustless coin tumbler. It
requires only 3 on-chain transactions at most per user and 1 off-chain message. It achieves strong
notions of anonymity and is able to resist denial-of-service attacks. Furthermore the underlying
protocol can also be used to efficiently shuffle ballots, ciphertexts in a trustless and decentralized
manner.
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1 Introduction

Bitcoin [20] and other cryptocurrencies are pseudonymous. Users’ public keys are used as
pseudonyms in these systems. Transactions essentially record a flow of cryptocurrency from
one (or more) public keys to another public key (or more). Flow of cryptocurrency can be
easily tracked due to the open and transparent nature of cryptocurrencies’ transaction ledger.
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Moreover, coherent public keys, which are used by the same user, can be clustered merely by
analyzing the ledger. Recently several tools and algorithms were proposed to diminish users’
privacy [17, 19, 18]. Such deanomyzation attacks are extremely harmful to user privacy,
especially in the case when any of the users’ pseudonyms, public keys, are linked to their
real world identity.

One of the methods to increase users’ privacy is coin mixing or tumbling. This technique
provides k-anonymity or plausible deniability. The idea is that k users deposit 1 coin each
and then in the course of a coin shuffling protocol either a centralized trusted third party
or a smart contract mixes the coins and redistributes them to designated fresh public keys.
This powerful technique gives users superior privacy and anonimity since their new received
coins cannot be linked to them.

Several coin mixing protocols were proposed in the literature both centralized [6, 26, 13]
and decentralized [14, 25, 1, 16, 4]. A major drawback of centralized coin mixing is that
the availability of the tumbler is entirely dependent on the trusted party and in most cases
theft prevention cannot be guaranteed [6, 26]. On the other hand decentralized tumblers
achieve availability, theft prevention and satisfy strong notions of anonymity although they
are considerably heavier computationally. In the following we will solely focus on the problem
of coin mixing on Ethereum [27].

There is no doubt that there exists a tremendous need for privacy overlays for Ethereum
as new tools for transaction deanonymization are getting developed and used [8]. This need
of the Ethereum community for privacy was spectacularly embodied in September, 2017
when for several days 68% of all the transaction volume was controlled by a centralized coin
mixing service [22].

The two major techniques to provide decentralized mixing services for Ethereum are
Möbius, a ring-signature-based solution [16] and Miximus, a zkSNARK-based proposal [1].
Both of them burn tremendous amounts of gas to withdraw funds, which could be prohibitive
for many use cases. Möbius requires 335,714n gas (n is the ring size) while Miximus consumes
1,903,305 gas to verify a zkSNARK proof [2]. As the Ethereum network is congested, ie.
blocks were full during 20182, we argue that it is essential for the network scalability to aim
to create protocols and applications that burn as few gas as possible.

Even though (Ethereum) users and transactions can be deanonymized already on the
network layer [21], we consider network anonymity an orthogonal problem to that of anonymity
on the transaction ledger.

Our contributions. In this paper, we present a trustless and efficient mixing protocol for
Turing-complete blockchains. This protocol can be used to shuffle ciphertexts, ballots or
public keys. The protocol have many use cases: shuffling ElGamal-ciphertexts, decentralized
mixnets, e-voting.

To show the practicality of the protocol, we introduce MixEth, a privacy-enhancing
protocol and a practical tool for Ethereum, to overcome the above mentioned efficiency issues
of Ethereum-based coin-mixers while retaining strong notions of anonymity, mixer availability
and theft prevention already achieved by previous proposals [16, 1]. MixEth requires as few
off-chain messages and on-chain transactions as Möbius and Miximus, meanwhile it burns
significantly less gas.

The intuition behind MixEth is to apply Neff’s verifiable shuffles [23] in the context of
coin mixing. Participants of the tumbler shuffle their public keys in order to break links

2 https://etherscan.io/chart/gasused
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between sender and recipient public keys. The key insight is that verifying on-chain a Neff
proof about the correctness of a shuffle would be too gas-inefficient, therefore we require
receivers to be online to issue fraud proofs, if and only if an incorrect shuffle was made.
Whenever recipients consider that enough shuffling was executed, they can withdraw their
funds from the mixer.

We also implement MixEth in a state channel to leverage the scalability and instant
finality of off-chain scaling solutions. Furthermore, the MixEth protocol could be used in
any state channel application to mix funds before going back on-chain.

2 Background

In this section we introduce the building bocks required to create our mixing protocol and
MixEth, the trustless coin tumbler.

2.1 Notations
In most cases if it is possible we will stick to the notations used in [16] for sake of uniformity.
Let [] denote the empty tuple. For a tuple t = (x1, . . . , xn) we denote as t[xi] the value
stored at xi. The cardinality of a finite set X is denoted as |X|. In the following let λ ∈ N
be the security parameter and its unary representation is 1λ. If x is uniformly randomly
sampled from a set A we write x $← A. The symmetric group of degree n is written as Sn.
In a cyclic group G, the standardized generator is denoted as G and we use the additive
notation. Secret keys and public keys are denoted as sk and pk respectively (or often times
s and sG), while the user the corresponding key belongs to is indicated in subscript. Let
PKi denote the set of public keys belonging to receivers at a particular shuffling round i.

We use games in definitions and proofs of security. At the end of each game, the main
procedure of game G outputs a single bit. Pr(G) denotes the probability that the output is 1.

2.2 Cryptographic keys in Ethereum
Ethereum uses Elliptic Curve Cryptography (ECC) to secure users’ funds. More specifically,
it uses the secp256k1 curve, the same one as used in Bitcoin. If a user wants to create an
Ethereum address, first they needs to generate a secret key s $← Zn, where n is the order of
secp256k1 over a finite prime field Fp. The corresponding public key will be sG. Note that
any multiples of G is also a generator of curve points since n, the order of the group is also a
prime. Accounts in Ethereum are identified by their addresses which can be obtained by
taking the right most 20 bytes of the Keccak hashed public key [27].

2.3 Verifiable shuffle
Neff introduced the notion of verifiable shuffle [23]. It is a cryptographic protocol allowing
a party to verifiably shuffle a sequence of k modular integers. The output of the shuffle
is another k modular integers multiplied by the same secret multiplier only known to the
shuffler. The shuffler can generate a publicly verifiable zero-knowledge proof to convince the
public that the shuffle was done correctly without disclosing the secret multiplier.

Neff’s mathematical construct is extremely powerful, since it only relies on the intractab-
ility of the Decision Diffie-Hellman (DDH) problem. Therefore, Neff’s verifiable shuffle can
also be applied in groups over elliptic curves.

Tokenomics 2019
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Verifiable shuffle can be used to shuffle a set of public keys, PK = (s1G, s2G . . . , skG).
Note that secret keys are not known to the shuffler.

1. Shuffler commits to C = cG, publishes

PK∗ = (c(sπ−1(1)G), c(sπ−1(2)G), . . . , c(sπ−1(k)G))

where π is a random permutation. Shuffler additionally computes and publishes a
zero-knowledge proof about the correctness of the shuffle. This proof can be made
non-interactive via the Fiat-Shamir heuristic. Let us call C as the shuffling constant.

2. Assuming the proof verifies users gain new public keys with respect to another generator
element, namely cG.

For verifying the proof one needs to compute 8k + 5 exponentiations, however later this
result was ameliorated to 3, 5k exponentiations by Bayer and Groth [3].

So far verifiable shuffles were only applied in voting schemes, we argue that they are
useful in trustless coin mixers as well. The key insight in order to be able to apply verifiable
shuffles in a decentralized, computational-resource-constrained environment, for instance
Ethereum smart contracts, is to dismiss the proof generation for the correctness of the shuffle,
rather we request users to give more succinct proofs for the incorrectness of the shuffle, if
applicable.

2.4 Decision Diffie-Hellman Problem and Chaum-Pedersen Protocol

The Decision Diffie-Hellman assumption (DDH) is a standard cryptographic hardness assump-
tion which underlies the security of many cryptographic protocols. Roughly speaking DDH
states that no efficient algorithm can distinguish between the two distributions (aG, bG, abG)
and (aG, bG, cG), where a, b, c $← Z|G|. It is believed that the DDH assumption holds for
elliptic curves with prime order over a prime field with large embedding factor [5], specifically
DDH holds for the secp256k1 curve, which is used to generate accounts and sign transactions
in Bitcoin and Ethereum among other cryptocurrencies.

Although it is hard to decide whether a triplet is a DDH-triplet without knowing the
multipliers, one could convince anyone in zero-knowledge that a tuple is indeed a DDH-tuple
if one possesses the multipliers.

The language LDDH is defined to be the set of all tuples (G, aG, bG, abG) where G ∈ G
is of order prime q. The Chaum-Pedersen protocol enables a prover P to prove to a verifier
V that (G,A,B,C) ∈ LDDH in zero-knowledge for groups of prime order [9]. The protocol
is organized as follows:

1. V: s $← Zq, then sends commit(s)

2. P: r $← Zq, then sends y1 = rG, y2 = rB.
3. V opens commitment by sending s
4. P sends z = r + as (mod q)
5. V checks zG = y1 + sA (mod q) ∧ zB = y2 + sC (mod q)

Note that in the following a non-interactive version of this protocol will only be considered
that can be achieved by applying the Fiat-Shamir heuristic.
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2.5 ECDSA with arbitrary generator element
Elliptic Curve Digital Signature Algorithm (ECDSA) is a key component of MixEth. ECDSA
is widely deployed in practice, where in most cases signatures are generated and verified with
respect to a fixed generator element of the underlying group [12]. Since all generators are
equal from a security point of view, a single generator element is usually fixed in order to
promote standardization and assist usability.

However, in MixEth, we deploy a somewhat loosened version of ECDSA, where we allow
arbitrary generator elements to be used. Such an extension is indeed needed for withdrawing
funds from the mixer, because shuffled public keys remain public keys with respect to non-
standardized generator elements. Therefore the usual Sig and Vf algorithms for signing and
verifying a messages gets an additional parameter G′ , which is not necessarily the standardized
generator element. Key generation algorithm works as usual (pk, sk) $← KGen(1λ), on the
other hand σ $← Sig(G′ , sk,m) and 0/1← Vf(G′ , pk, σ,m) accept new generators.

In our security proofs we will be relying on the fact that ECDSA is existentially unforgeable
[12], i.e. no efficient adversary could forge a signature on any given message with non-negligible
probability.

Note that although Ethereum does not support natively the verification of ECDSA
signatures with respect to arbitrary generators, however it can easily be implemented in a
smart contract.

2.6 Ethereum
Ethereum is a cryptocurrency built on top of a blockchain. Similarly to Bitcoin, network
participants broadcast transactions in a peer-to-peer network, where transactions are bundled
together into blocks that are appended to a public ledger called blockchain. Only those
specific nodes can append new blocks to the blockchain who previously solved a difficult
cryptographic puzzle. The state of the system consists of the state of different accounts
populating it.

In Ethereum currently there are two types of accounts. The first account type is called
externally owned account. It owns an ECDSA keypair controlled by its user. Private keys
are used to sign transactions. On the other hand there are contract accounts, often smart
contracts, that additionally have persistent storage and contract’s code. Both of the account
types have Ether balances, which is the native currency of the Ethereum network. Ether is
denominated in wei, where 1 ETH = 1018 wei.

Transactions can alter the system’s state by either creating a contract account or by
calling to an existing account. Transactions to externally owned accounts can only transfere
Ether, while transactions to contract accounts can additionally execute the code associated
with them. Codes are executed in a quasi-Turing complete execution environment, called
Ethereum Virtual Machine (EVM).

EVM is quasi-Turing complete, since smart contract’s code cannot run indefinitely due
to the so called gas mechanism. In every transaction the sender needs to pay upfront for the
execution of the contract’s code. The computational complexity of a transaction is measured
in gas, which can be bought for Ether on a price set by the transaction originator, so called
gas price. Therefore the transaction fee is the gas cost multiplied by the gas price. One needs
to specify a gas limit, meaning that they do not allow their transaction to burn more gas
than the limit. If a transaction during execution runs out of gas, then all the state changes
are reverted, while the transaction fee is paid to the miner. If there is gas left after successful
execution, transaction originator is reimbursed. Additionally there exists a block gas limit,
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which limits the number of computational steps fitting in one block. Currently the block
gas limit is cca. 8,000,000 gas. Naturally users of Ethereum are very much incentivized
to minimize the gas cost of their transactions in order to spend as little as possible on
transactions fees. Small gas costs are also crucial from a scalability point of view, since the
less gas burnt for each transaction, the more transaction can fit into a single block.

2.6.1 State channels
Public blockchain’s decentralization comes at an inherent cost in regard to scalability, since
currently each full node verifies the full state of the public ledger. Often times Bitcoin’s (∼ 7
transactions per second (tps)) or Ethereum’s (∼ 15 tps) throughput is compared to that of
Visa’s (∼ 45,000 tps). Blockchains’ scalability issues became an increasingly growing problem
as more and more users adopted the technology. One remarkable example was the launch of
the Cryptokitties game in 2017, when the Ethereum network was congested for a few hours
due to the enormous popularity of the game. Therefore several solutions were proposed to
alleviate aforementioned scalability issues.

One of the major class of these techniques is called off-chain solutions. The insight of
these proposals is that it is not needed to conduct all transactions on the blockchain, since
participants could lock funds on-chain and afterwards securely issue transactions off-chain,
for instance micropayments, with high degree of security and finality. Participants only need
to get back on-chain if there is a dispute about what happened precisely off-chain or they
would like to lock up funds and redeem them on-chain. The first implementation of this idea
was a payment channel network for Bitcoin called Lightning network [24]. The advantage
of the Lightning network is that participants can issue several payments without sending
transactions to the blockchain and paying the sometimes costly transaction fees. Furthermore
users are guaranteed to have instant finality instead of waiting several blocks to confirm their
payments.

State channels are the more general form of payment channels, they can be used not only
for payments, but for any arbitrary state updates on a blockchain, like changes inside a smart
contract. State channels were first described in detail by Jeff Coleman et al.[10]. Since then
several other frameworks for generalised state channels were elaborated [11, 15]. Recently a
case study of the Battleship game was published by Patrick McCorry, Chris Buckland et al.
to evaluate how state channels could contribute in scaling blockchain-based applications [15].

Later in this paper, in Section 6.2 we argue that MixEth can be made more scalable by
implementing shuffling in a state channel.

3 Threat model

3.1 Participants and interactions
In a decentralized tumbler, we have 3 distinct entities: the tumbling smart contract, a set of
senders and a set of receivers. A sender, whom we will call Alice, sends funds to the receiver,
Bob, through the mixer contract in order to break direct links between their public keys.
The list of contract identifiers associated with distinct sessions is denoted as tumblers. In all
the following interactions and algorithms we assume that the public state of the tumbler is
implicitly given as input. Interactions of these entities can be summarized as follows:

tx
$← Deposit(tumblers, skA, pkB): The sender runs this algorithm to deposit a predefined

amount of ether to the receiver’s public key.
0/1← V erifyDeposit(tx): The tumbler contract checks the validity of senders’ deposits.
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ProcessDeposit(tx): upon receiving a valid deposit transaction, the mixing contract
updates its internal state accordingly.

Let PK0 denote the set of public keys to be mixed after the depositing period. Generally
PKi will denote the set of shuffled public keys after i shuffling round. Furthermore let us
set C∗0 = G, the standard generator point of the secp256k1 curve. Similarly C∗i denotes the
shuffling accumulated constant after the ith shuffling round. Shuffles are computed off-chain,
the outputs of the algorithm are written into the on-chain mixer contract. Anyone is allowed
to shuffle the public keys by paying some deposit to the tumbler contract.

PKi+1, C
∗
i+1, proofDDH(G, ciG,C∗i , C∗i+1) $← Shuffle(PKi, C

∗
i , ci, πi). The new shuff-

ling accumulated constant C∗i+1 can be obtained by C∗i+1 = ciC
∗
i . The shuffling accumulated

constant is needed for receivers to audit shuffling and to collect their funds at the end of
the final shuffling period. The permutation πi and the secret multiplier ci from the new
shuffling accumulated constant should be kept private after shuffling, otherwise it is trivial
to track how public keys are shuffled. All the outputs of the Shuffle algorithm are public
and written into the tumbling contract.

Note that we need an additional Chaum-Pedersen proof from the shuffler in order to
prove that the shuffler knows a secret multiplier between the new and the previous shuffling
accumulated constants. If we did not require such proof, a malicious shuffler could break
anonymity just by uploading a random shuffle of the original public keys, the set PK0.

0 ∨ 1← ProcessShuffle(PKi+1, C
∗
i+1, proofDDH(G, ciG,C∗i , C∗i+1)). If the mixing con-

tract is in a shuffling period and the Chaum-Pedersen proof is verified, then (PKi+1, Ci+1)
is written into the contract state, otherwise shuffling transactions is reverted.

0 ∨ 1 ← ChallengeShuffle(PKi, C
∗
i , PKi−1, C

∗
i−1, pkB): receiver B with public key

pkB = sBG can challenge an incorrect shuffle at the ith round by giving a Chaum-Pedersen
zero-knowledge proof that the following tuple is DDH-tuples: (C∗i−1, sBC

∗
i−1, C

∗
i , sBC

∗
i ). If

the proof verifies and sBC∗i /∈ PKi, while sBC∗i−1 ∈ PKi−1, then the challenge is accepted,
otherwise rejected. This proof and checks allow one to be certain that indeed the ith round
is the first round in which the corresponding public key to sB is shuffled incorrectly.

tx
$←WithdrawShufflingDeposit(skB): after a challenging period a shuffler can with-

draw their shuffling deposit from the tumbler contract.
0 ∨ 1← V erifyWitdhrawShufflingDeposit(pkB): if there was no successful challenges

against the shuffler, i.e. their deposit is not slashed, they can withdraw their shuffling deposit.
tx

$←Withdraw(skB , C∗final): after the end of the shuffling period users are allowed to
withdraw their funds. Note that here withdraw transactions will be signed with a modified
version of ECDSA, where not the original generator element G is used as generator rather
C∗final, the final shuffling accumulated constant.

0/1 ← V erifyWithdraw(tx): tumbler checks the validity of a recipient’s withdrawal
transaction.

ProcessWithdraw(tx): upon receiving a valid withdrawal transaction, mixing contract
updates its internal state accordingly.

3.2 Security goals
We are aiming to achieve and prove the same notions of security as the ones defined in [16],
namely anonymity, availability and theft prevention. These notions of anonymity, availability
and theft prevention were introduced in [16], which are included in the Appendices for sake
of self-containedness.

Tokenomics 2019
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We are going to assume that at most n− 2 recipients are malicious (n is the number of
recipients). Otherwise, no meaningful notion of security can be achieved. Furthermore we
presume that participants are on-line during the entire course of mixing in order to be able
to monitor and potentially challenge any incorrect shuffle. Finally we assume that honest
recipients will always exercise their rights to shuffle and they do not disclose any private
information used in their shuffles.

Hereby we only give intuition for the notions of security, for formal definitions the astute
reader is referred to the Appendices.

3.2.1 Anonymity
Sender anonymity is achieved if an adversary cannot determine to whom honest senders are
sending funds, assuming that honest senders’ deposits are indistinguishable.

Recipient anonymity is achieved if honest recipients withdrawal transactions are indistin-
guishable.

3.2.2 Availability
It is essential for a coin mixer to provide availability, meaning that honest recipients can
always withdraw their money from the mixer, even if senders and all but one recipients are
compromised.

Adversary A wins the availability security game if they manage to get the tumbler into a
state where honest recipient cannot withdraw their funds.

3.2.3 Theft prevention
We would like to ensure that neither coins can be withdrawn twice, nor withdrawn by anyone
other but the intended recipient.

4 MixEth

MixEth is a coin mixing smart contract allowing parties to efficiently tumble coins in a
trustless manner on Ethereum.

4.1 Initializing the tumbler and depositing period
A MixEth contract living on the Ethereum blockchain at idcontract address must be initialized
with the amt parameter, which denotes the denomination of ether to be mixed. Every sender
must deposit exactly amt ether to a specific public key. Deposits with incorrect ether value
or invalid public key are rejected. Public keys in subsequent deposit transactions are written
into the initPubKeys[] array.

4.2 Shuffling period
After the depositing round, shuffling and challenging rounds are coming after in turns. Each
shuffling round is followed by a challenging round when the correctness of the preceding
shuffle can be challenged by anyone. If a challenge is accepted, then shuffler’s deposit is
lost and given to the challenger, the incorrect shuffle is discarded and shuffling continues
from the set of public keys prior to the discarded shuffle. In the course of a shuffle an honest
shuffler should multiply all the public keys with a secret multiplier c and then permute all the
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transformed public keys. Honest shuffler commits to c by sending back to MixEth the new
shuffling accumulated constant and the shuffled public keys along with a Chaum-Pedersen
proof, proving the correctness of the new shuffling accumulated constant.

Computing the shuffle is done off-chain, see Procedure 1, however the new set of shuffled
public keys, the updated shuffling accumulated constant and the Chaum-Pedersen proof are
loaded into the MixEth contract enabling anyone to verify the shuffle’s correctness and to
continue public key shuffling after the corresponding challenging round. In Procedure 1 the
function generateChaumPedersen(G,A,B,C) denotes a PPT algorithm, which generates
a Chaum-Pedersen proof, proving that logG(A) = logB(C). The mixing contract accepts a
shuffling transaction if and only if the contract is in a shuffling period and the Chaum-Pedersen
proof is verified, otherwise rejects.

Algorithm 1 Off-chain public key shuffling algorithm for the ith shuffling round.

1: PKi ← []
2: c $← Zn
3: C∗i−1 ← read from MixEth contract

4: PKi−1 ← read from MixEth contract the current sequence of shuffled public keys

5: π $← S|PKi−1|
6: for j = 0; j < |PKi−1|; j + + do
7: PKi[π(j)] = c ∗ PKi−1[j]
8: end for
9: C∗i = cC∗i−1
10: proofDDH = generateChaumPedersen(G, cG,C∗i−1, C

∗
i )

Output: (PKi, C
∗
i , proofDDH)

4.3 Challenging period

Every participant should check the correctness of incoming shuffles, therefore sufficient time
should be provided for each challenging round. These are the actions Bob as a receiver needs
to perform to check the correctness of the shuffle at ith round if Bob has secret key sB . In
this case Bob should check whether sBC∗i ∈ PKi or not. If not, Bob should prove to MixEth
that the ith round is indeed the first round, where the shuffled public key corresponding to
sB is compromised. The Chaum-Pedersen proof in the challenge transaction ensures that
the integrity of the shuffled public key in round i− 1st is intact, while shuffled public key is
compromised in the ith round.

Algorithm 2 On-chain verification algorithm of incoming shuffle challenges.
Input(PKi, PKi−1, proofDDH(C∗i−1, sBC

∗
i−1, C

∗
i , sBC

∗
i )

1: b← verifyChaumPedersen(proofDDH(C∗i−1, sBC
∗
i−1, C

∗
i , sBC

∗
i ))

2: b∗ ← 0
3: if b ∧ sBC∗i−1 ∈ PKi−1 ∧ sBC∗i /∈ PKi then
4: b∗ ← 1
5: else
6: b∗ ← 0
7: end if Output: b∗
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Note that every recipient should perform this check after each shuffling. Noone can check
the inclusion and correctness of shuffled public keys for recipients other than themselves.
This task is non-outsourcable unless one reveals her own private key, which would obviously
lead to loss of funds at the end of the MixEth protocol, since anyone can claim the funds
knowing the corresponding secret key.

In Procedure 2 verifyChaumPedersen(proofDDH) denotes a deterministic polynomial-
time algorithm which verifies the correctness of a Chaum-Pedersen zero-knowledge proof.
The algorithm outputs 1 if the proof is verified, otherwise 0.

4.4 Withdrawing

Let C∗final be the final shuffling accumulated constant. For a recipient B, whose public key
sBG ∈ initPubKeys[], in the final shuffle there will be sBC∗final. The recipient can prove to
MixEth that she knows secret key sB by signing their public key using a modified ECDSA,
which uses C∗final as the generator element instead of the standardized G.

5 Security

Notions of security are proven in the Appendices.

6 Implementation

We implemented MixEth with two different approaches. The first implementation of MixEth
does not apply state channels, all the transactions are made on-chain. This could lead to
unwanted gas costs as the number of corrupted shuffles increases. One of our main motivation
with MixEth is to provide an efficient and scalable coin mixing protocol which uses as little
blockchain resources, storage and gas, as possible. Therefore we also implement and evaluate
MixEth applying state channels, namely shuffling and challenging a shuffle occurs off-chain
and only deposit and withdrawal transactions happen on-chain. Both of the implementations
allow users to mix Ether or other ERC20-compatible, a popular Ethereum token standard,
tokens.

One of the main bottlenecks of coin mixing protocols is the withdrawal transactions’ gas
costs. A Miximus withdrawal transaction burns 1,903,305 gas, regardless of the number of
participating parties. Since the block gas limit is 8,000,266 as of 2018, October 24 only 4
Miximus withdrawal transactions could fit in one Ethereum block. This is even worse for
Möbius, since the gas cost for withdrawing coins from a Möbius mixer contract linearly
increases with the numbers of participants.

Although MixEth is more gas-efficient than Möbius or Miximus, it incurs a higher
time-complexity, ie. recipients need to expect longer delays for funds to arrive since each
challenging period lasts a few blocks of time. Furthermore MixEth requires users to be online
during the course of mixing, in some scenarios this might be a demanding requirement.

All MixEth smart contracts were written in the Solidity language, which is currently
the dominant language for developing Ethereum smart contracts. All MixEth contracts are
available online3.

3 https://github.com/seresistvanandras/MixEth

https://github.com/seresistvanandras/MixEth
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6.1 Fully on-chain implementation

Conceivably mixers would like to minimize off-chain coordination, therefore in our first
implementation of the MixEth protocol, we assumed that all transactions will take place
on-chain. There is only a single off-chain message from receiver to sender, where receiver
delivers their public key to the sender. The rest of the protocol happens entirely on-chain.

On-chain storage is extremely expensive: it requires 20,000 gas to store a 256-bit number,
however if a particular storage slot is already taken and one wants to overwrite it with
a non-zero element then storing only consumes 5000 gas. To minimize on-chain storage
costs, only the last two list of shuffled public keys are stored in the MixEth contract’s
permanent storage. Note that storing only the latest list of shuffled public keys would not
be enough, since honest receivers could not prove to the contract that their shuffled public
key is compromised unless also the last but first list of shuffled keys is also available for the
contract to check the Chaum-Pedersen proof against. Such a storage structure implies that
after uploading the new list of shuffled public keys, a challenging period should proceed in
order to let receivers check the correctness of the shuffle and whether their shuffled public key
is stored in the smart contract. Furthermore we also allow senders to shuffle and deposit new
public keys at the same time, meaning that only 3 on-chain transactions (shuffle, withdraw
mixed coins and withdraw shuffling deposit) are sufficient to complete the protocol.

A great advantage of the fully on-chain version of MixEth is that it allows dynamic
anonymity sets. One could potentially deposit funds to the contract and shuffle public
keys and leave funds in the mixing contract for indefinite amount of time. As soon as the
anonymity set is large enough a receiver could withdraw their assets. A receiver in a MixEth
contract with N senders could withdraw their funds after N ′ shuffling rounds, where N ′

is arbitrary. This dynamic nature of the contract could even lead to a single monolithic
MixEth contract instead of having multiple MixEth contracts with significantly fragmented
anonymity sets. A single MixEth contract is able to support the mixing of ether and ERC-20
compatible tokens as well. However note that the gas complexity of shuffling transactions
grows linearly in the number of participants, therefore the fully on-chain implementation is
not capable to support extremely large anonymity sets with participants more than a few
hundreds.

6.2 State channel implementation

We have also adapted MixEth to operate within a state channel. We wrote the implementation
within the guidelines of the Counterfactual framework [10]. This allowed us to delegate the
processes of setup, liveness disputes and finalisation to the framework so that we could focus
on adapting the application logic. Unlike the on-chain implementation the state channel
implementation requires that the set of participants be agreed upon upfront. In state channels
each update to the state needs to be signed by all other participants, this means that state
channel applications are inherently at least O(n). To co-ordinate these off-chain updates
the Counterfactual framework enforces that all applications be turn based, introducing a
turn taker for each turn who may propose a new state. The original MixEth implementation
was not turn based so we have adapted the application to this constraint, an example of
this adaptation is the challenge round. In the on-chain implementation a time period is
allowed during which any participant may challenge, we have adapted this by proceeding
turn-based through the participants offering each the chance to either challenge or pass. In
the case of a breakdown in cooperation in the channel, a liveness fault, it has been shown
that all operations succeeding the cooperation breakdown must proceed on chain[15] or
be abandoned at some financial cost specified by the application, meaning that if every
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shuffle were to be succeeded by a challenge round each participant would be forced, by
threat this lost deposit, to make an on-chain transaction after each shuffle, incurring O(n)
on chain operations. To mitigate this we removed the challenge after each round and instead
introduced a challenge round that takes place after all shuffles have completed, during this
round any of the preceding shuffles may be challenged.

Given these adaptations the application proceeds as follows, all participants including
senders, shufflers and receivers, deposit funds in a mutli-signature wallet compatible with
the Counterfactual framework, they then follow the installation protocols specified by
the framework to install the adapted MixEth logic. Afterwards each participant signs a
transaction that transfers an equal amount to each withdrawer from the multi-sig, dependent
on correct execution of the channelised MixEth application logic. This application logic
proceeds as follows: each sender names a public key of a shuffler as in the deposit stage of
the on-chain application, then each shuffler takes it in turn to shuffle. After all shuffles have
taken place each withdrawer is given a turn to either declare fraud or no-fraud on any shuffle
round. Finally each withdrawer then provides proof of ownership by submitting a valid
signature on the modified ECDSA scheme. If any of these steps does not occur, or does not
occur correctly, the protocol aborts and the conditional transfer does not occur. In this case
the perpetrator loses a deposit, either through fraud proof or through failure to take their
turn when state is published on-chain. A further modification would be to distribute the
slashed deposit to each of the other participants, compensating them for their lost time and
the gas costs associated with proving the fault of the other party. Following this protocol the
on-chain transactions are now reduced to: one transaction from each participant to deposit
funds into the multi-sig, and a set of transactions that send funds from the multi-sig to each
of the withdrawers and deposits back to each of the other participants.

Table 1 Proof-of-concept implementation gas cost results. Expect further improvements.
MixEthChannel refers to the implementation which leverages state channels for shuffling and
challenging periods.

Deployment Deposit Shuffle Withdraw
Shuffle upload Challenge

Möbius [16] 1,046,027 76,123 0 0 335,714n
Miximus [1] 1,751,378 732,815 0 0 1,903,305
MixEth 5,395,945 99,254 366,216 + 10,000n 227,563 113,265
MixEthChannel 672,276 21,000 0 0 26,749

7 Related work

Möbius was the very first trustless coin mixer designed for Ethereum[16]. Authors of Möbius
provided formal definitions of various notions of security such as anonymity, theft prevention
and mixer availability. These properties could be used to evaluate and compare existing and
future proposals from a security perspective. Möbius is a ring-signature-based trustless coin
mixer with minimal on-chain transaction complexity: users of Möbius just need to create a
deposit and a withdraw transaction. However the gas cost of the withdrawal transaction
increases linearly in the number of receivers, which limits the size of possible anonymity sets.
No more than 24 reciever could use Möbius with current cca.8,000,000 block gas limit. If
more people tried to use the mixer funds would be stucked in the mixer contract, since the
gas costs of withdrawal transactions would be greater than the block gas limit.
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Miximus is a zkSNARK-based mixer for Ethereum[1]. It uses zkSNARKs to conceal the
mapping between depositors and recipients. A depositor creates a leaf in a Merkle-tree. A
depositor needs to exchange the preimage of the leaf with the recipient. Later, a recipient
could prove to the Miximus contract that they know one of the preimages of a certain,
undisclosed leaf. So called nullifiers enable recipients to withdraw funds once and only once.
The gas costs of depositing and withdrawing funds from a Miximus mixer is independent of
the number of participants. However there are disadvantages of this approach; Miximus only
provides anonymity against outsiders, since if Alice funds to Bob via Miximus, Alice will know
when Bob made the withdrawal transaction. Another, more severe limitation of Miximus is
the trusted setup required for generating the proving key for the zkSNARK. If this trusted
setup is compromised, the deployer of the contract, who generated the proving key could
potentially steal funds from the mixer. Although, this issue could be amended somehow via a
multi-party computation (MPC) further increasing the off-chain communication complexitiy
of Miximus.

As Table 2 demonstrates, both Möbius and Miximus require 2 on-chain transactions, while
MixEth requires 3. In spite of this seemingly added complexity, the 3 on-chain transactions
to complete the MixEth protocol (deposit, shuffle, withdraw) consume significantly less gas
than those (deposit, verify linkable ring signature/zkSNARK) of Möbius and Miximus, see
Table 1.

Table 2 Number of on-chain transactions and off-chain messages per a single participant required
to run a certain coin mixer protocol. Note that in case of Miximus if one wants to avoid the trusted
setup for the zkSNARK, then they need to perform a secure multi-party computation protocol to
trust-minimize the proving key generation.

#Off-chain messages #Transactions

Centralized

Mixcoin [6] 2 2
Blindcoin [26] 4 2
TumbleBit [13] 12 4

Decentralized

Coinjoin [14] O(n2) 1
Coinshuffle [25] O(n) 1
XIM [4] 0 7
Möbius [16] 2 2
Miximus [1] 1+MPC 2
MixEth 1 3
MixEthChannel O(n) 2
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A Formal definitions of security

Hereby we formally define the notions of security MixEth is aiming to achieve.

In the security definitions and games introduced by [16] adversary A might have access
to the following oracles. CORR enables A to corrupt a sender or receiver by learning the
secret key of any party l of their choice. Oracle access to AD or AW allow A to deposit or
withdraw respectively from tumbler session j. Furthermore A might instruct honest senders
or receivers to deposit or withdraw from tumbler session j by using oracles HD and HW. In
the following C denotes the set of corrupted parties, while the list of honest deposits and
withdrawals are denotes as Hd and Hw respectively.

These oracles are formally defined as follows:

AD(tx,j)

b← V erifyDeposit(tumblers[j], tx)
if (b) ProcessDeposit(tumblers[j], tx)
return b

AW(tx,j)

b← V erifyWithdraw(tumblers[j], tx)
if (b) ProcessWithdraw(tumblers[j], tx)
return b

CORR(l)

C = C.push(pkBl )
return skBl

HD(i,j,l)

tx
$← Deposit(skAi , pkBl )

Hd = Hd.push(tx)
ProcessDeposit(tumblers[j], tx)
return tx

HW(j,l)

if (pkBl /∈ tumblers[j].keysB) return ⊥

tx
$← Deposit(skAi , pkBl )

Hw = Hw.push(j, l, tx)
ProcessWithdraw(tumblers[j], tx)
return tx
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A.1 Anonymity

I Definition 1. Define Advd−anonmix,A (λ) = 2 Pr[Gd−anonmix,A (λ)] − 1 for d ∈ {dep, with}, where
these games are defined as follows:

MAIN Gdep−anonmix,A (λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKA ← {pki}ni=1;C,Hd, tumblers← ∅

b
$← {0, 1}

(state, j, pk, i0, i1) $← ACORR,AD,HD,AW (1λ,PKA)

tx
$← Deposit(tumblers[j], skAlb

, pk)

b
′ $← ACORR,AD,HD,AW (state, tx)

return b = b
′

MAIN Gwith−anonmix,A (λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hd, tumblers← ∅

b
$← {0, 1}

(state, j, pk, l0, l1) $← ACORR,AD,HD,AW (1λ,PKB)
PK← tumblers[j].keysB
if(pkBl0

/∈ PK) ∨ (pkBl1
/∈ PK) return 0

tx
$←Withdraw(tumblers[j], skBlb

)

b
′ $← ACORR,AD,HD,AW (state, tx)
if(pklb ∈ C for b ∈ {0, 1}) return 0
if((j, lb, ·)) ∈ Hw for b ∈ {0, 1}) return 0

return b = b
′

Then the tumbler satisfies sender or recipient anonymity if for all PPT adversaries A there
exists a negligible function ν(·) such that Advdep−anonmix,A (λ) < ν(λ) or Advwith−anonmix,A (λ) < ν(λ)
respectively.

A.2 Availability

I Definition 2. Define Advavailmix,A(λ) = Pr[Gavailmix,A(λ)], where the game is defined as follows:

MAIN Gavailmix,A(λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hw ← ∅

(l, j) $← ACORR,AD,HW,AW (1λ,PKB)
b← VerifyWithdraw(tumblers[j],Withdraw(skl))
if((pkl ∈ C) ∨ ((j, l, ·) ∈ Hw)) return 0
return (b = 0) ∧ (pkl ∈ tumblers[j].keysB)

Then the tumbler satisfies availability if for all PPT adversaries A there exists a negligible
function ν(·) such that Advavailmix,A(λ) < ν(λ).
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A.3 Theft prevention
I Definition 3. Define Advtheftmix,A(λ) = Pr[Gtheftmix,A(λ)], where the game is defined as follows:

MAIN Gtheftmix,A(λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hw, contract← ∅

(tx, j) $← ACORR,AD,AW,HW (1λ,PKB)
if(tumblers[j].keysB 6⊂ PKB \ C) return 0
return VerifyWithdraw(tumblers[j], tx)

Then the tumbler satisfies theft prevention if for all PPT adversaries A there exists a
negligible function ν(·) such that Advtheftmix,A(λ) < ν(λ).

B Proofs of security

This section provides informal ideas to the security proofs for the notions of security introduced
formally above and informally in Section 3.2.

B.1 Recipient anonymity
The withdrawing transaction for recipient B sends funds to the public key sBC∗. This public
key does not reveal any links to the original sBG in case if at least one honest sender shuffled
and the DDH assumption holds. Adversary can only distinguish between honest recipients
public keys with negligible probability. See reduction proof in Appendix C.

B.2 Availability
If an adversary is able to destroy an honest recipient’s funds’ availability, it implies that
adversary A either breaks the completeness of the Chaum-Pedersen protocol or successfully
launched an eclipse attack against the honest recipient, who cannot send any transactions to
honest Ethereum peers.

B.3 Theft prevention
If an adversary is able to steal funds from other users than it would imply that they managed
to create a valid message/signature, (m,σ) pair for the final shuffled public key of an honest
recipient without having access to the secret key of the honest recipient. This contradicts
to the assumption that ECDSA is existentially unforgeable. Reduction proof is enclosed in
Appendix E.

C Proof of Anonymity

Hereby we show that if there exists an adversary A who is able to break withdrawal anonymity
defined in Section 3.2.1, then there exists another adversary B who is able to break the DDH
assumption.

Towards contradiction let us assume that the recipient anonymity does not hold. Let
us assume that the challenge to the DDH-adversary B is of the form (sG, cG, c0G). In a
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c1
$← Zp

PKB = (c0G, c1G)

b
$← {0, 1}

tx
$←Withdraw(tumblers[j], skBcb

)

Input: PKB , tx

Output: b
′

A

B

(sG, cG, c0G)

¬b¬b′ + b
Figure 1 An illustration for the reduction of withdrawal anonymity to the DDH assumption.

DDH-game the adversary’s goal is to decide whether c0G is a random group element or
it equals to scG. At the end of the DDH-game adversary outputs 1 if c0G = scG and 0
otherwise. Adversary B generates uniformly random public key c1G and invokes A with the
set PKB = (c0C

∗, c1C
∗), then B forwards PKB to A. Then a withdrawal transaction occurs

from cbG. After polynomial-time A outputs b′ and B will output ¬b′ . If A outputs 0 and
b = b

′ , this signals to B that c0G might potentially be of the form scG = c0G i.e. it is a
DDH tuple, therefore B outputs 1. In all the other cases B outputs a random bit. Therefore
we have that B has an adventage in their DDH-game if and only if A wins their Gwith,anonmix,A
security game. Since we assumed that recipient anonymity does not hold we have that

Pr[DDHB] = 1
2 + 1

2 ∗ Pr[Gwith,anonmix,A ] = 1
2 + 1

2 ∗ non-negl(λ),

which contradicts to the DDH assumption.

D Proof of Availability

The only possibility for an adversary to threaten the availability of funds for an honest
receiver if they create an incorrect shuffle, where honest receiver’s shuffled public key is
compromised. Since the Chaum-Pedersen zero-knowledge protocol is complete, an honest
receiver is alway able to create a Chaum-Pedersen proof, which demonstrates to the contract
that their shuffled public key is compromised. Therefore we have for any PPT A and ∀λ ∈ N
that,

Pr[Gavailmix,A] = 0 < negl(λ).

E Proof of Theft Prevention

Towards contradiction we assume that there exists an adversary A, who is able to break
the theft prevention property introduced in Section 3.2.3 with non-negligible probability.
Using such an adversary as a subroutine we could create another efficient adversary B who is
able to break the existential unforgeability of ECDSA. The input of the forgeability game
is the security parameter which is forwarded to A along with n randomly generated public
keys. By assumption A outputs with non-negligible probability valid withdraw transaction
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(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hω, contract← ∅

Input: (1λ, PKB)

(tx, j) $← ACORR,AD,AW,HW (1λ, PKB)
Output: (tx, j)

A

B

1λ

(tx, σtx)
Figure 2 An illustration for the reduction of theft prevention to the existentially unforgeability

of ECDSA.

belonging to one of the public keys in the mixer. A valid withdraw transaction is a (tx, σtx)
pair, where σtx is a valid signature on transaction tx. Adversary B outputs the withdraw
transaction and the ECDSA signature on it. B wins the forgeability game if and only if A
wins their Gtheftmix,A game:

Pr[ForgeECDSA,B] = Pr[Gtheftmix,A] = 1
λα
,

for some fixed α. This contradicts to the assumption that ECDSA is existentially unforgeable.

F Extensions and improvements

MixEth is not fully compatible with the current EVM, however it could be deployed with
a workaround. A recipient could ask another party or service to send a signed transaction
including a signature which uses the modified version of ECDSA, where the generator element
is the shuffling accumulated constant. MixEth could check this signature and send out funds
to a fresh Ethereum address given in the withdraw transaction.

In the current design of MixEth if sender, Alice and receiver, Bob would like to use the
mixer several times, Bob needs to share his receiver address in a secure communication
channel with Alice as many times as he would like to receive payments. This communication
overhead could be overcome by applying stealth addresses, where Bob needs to share once
his public master key with Alice in order to receive arbirtary number of payments from her.

F.0.1 Ethereum account abstraction
Unfortunately, neither Möbius nor Miximus can be deployed on the present-day Ethereum.
When users of the coin mixing contract, either Möbius or Miximus would like to withdraw
their funds they cannot do this from a fresh address, since it does not hold any ether. Since
as of now only the sender of a transaction can pay for the gas fee, users cannot withdraw
their funds unless they ask someone to fund their fresh address.

Another solution for this problem is the Ethereum Improvement Proposal (EIP) 86
suggested by Nick Johnson and Vitalik Buterin [7]. EIP86 permits receivers of a transaction
paying the gas fee. This would certainly enable a functional Möbius and Miximus as well,
since the tumbling contract could pay for the withdrawal transactions’ gas fee, eliminating
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the previous workaround to unlinkably fund freshly mixed addresses. Additionally, EIP86
also allows contracts and accounts to define their own digital signature algorithms. This
means that users are no longer required to sign transactions with Elliptic Curve Digital
Signature Algorithm (ECDSA). Moreover if EIP86 or something similar is implemented,
which is expected in 2019, MixEth is also made viable.

F.1 Minimizing shuffle transactions with trusted execution
environments

One might effectively minimize the number of necessary shuffling rounds to 1. If a Trusted
Execution Environment (TEE), e.g., Intel SGX is used to generate the shuffling transaction,
then even a single shuffling transaction would suffice to provide the same level of anonymity
as if every participant shuffles the public keys. Any of the participants could upload the
TEE-generated shuffling transaction, while the MixEth contract could check that indeed the
shuffling transaction was generated by a TEE. Such a shortcut would make our scheme even
more practical and efficient, however it would subsume trust in Intel regarding the security
and confidentiality of the TEE.
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