10,032 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Multi-objective combinatorial optimization problems in transportation and defense systems

    Get PDF
    Multi-objective Optimization problems arise in many applications; hence, solving them efficiently is important for decision makers. A common procedure to solve such problems is to generate the exact set of Pareto efficient solutions. However, if the problem is combinatorial, generating the exact set of Pareto efficient solutions can be challenging. This dissertation is dedicated to Multi-objective Combinatorial Optimization problems and their applications in system of systems architecting and railroad track inspection scheduling. In particular, multi-objective system of systems architecting problems with system flexibility and performance improvement funds have been investigated. Efficient solution methods are proposed and evaluated for not only the system of systems architecting problems, but also a generic multi-objective set covering problem. Additionally, a bi-objective track inspection scheduling problem is introduced for an automated ultrasonic inspection vehicle. Exact and approximation methods are discussed for this bi-objective track inspection scheduling problem --Abstract, page iii

    A parameterized runtime analysis of simple evolutionary algorithms for makespan scheduling

    Get PDF
    We consider simple multi-start evolutionary algorithms applied to the classical NP-hard combinatorial optimization problem of Makespan Scheduling on two machines. We study the dependence of the runtime of this type of algorithm on three different key hardness parameters. By doing this, we provide further structural insights into the behavior of evolutionary algorithms for this classical problem.Andrew M. Sutton and Frank Neuman

    Decision-making and problem-solving methods in automation technology

    Get PDF
    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming

    The crew-scheduling module in the GIST system

    Get PDF
    The public transportation is gaining importance every year basically due the population growth, environmental policies and, route and street congestion. Too able an efficient management of all the resources related to public transportation, several techniques from different areas are being applied and several projects in Transportation Planning Systems, in different countries, are being developed. In this work, we present the GIST Planning Transportation Systems, a Portuguese project involving two universities and six public transportation companies. We describe in detail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and genetic algorithm to solve the bus-driver-scheduling problem. The metaheuristics have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.Integrated transportation systems, crew scheduling, metaheuristics
    • …
    corecore