44,725 research outputs found

    Optimization of Spatial Joins Using Filters

    Get PDF
    When viewing present-day technical applications that rely on the use of database systems, one notices that new techniques must be integrated in database management systems to be able to support these applications efficiently. This paper discusses one of these techniques in the context of supporting a Geographic Information System. It is known that the use of filters on geometric objects has a significant impact on the processing of 2-way spatial join queries. For this purpose, filters require approximations of objects. Queries can be optimized by filtering data not with just one but with several filters. Existing join methods are based on a combination of filters and a spatial index. The index is used to reduce the cost of the filter step and to minimize the cost of retrieving geometric objects from disk. In this paper we examine n-way spatial joins. Complex n-way spatial join queries require solving several 2-way joins of intermediate results. In this case, not only the profit gained from using both filters and spatial indices but also the additional cost due to using these techniques are examined. For 2-way joins of base relations these costs are considered part of physical database design. We focus on the criteria for mutually comparing filters and not on those for spatial indices. Important aspects of a multi-step filter-based n-way spatial join method are described together with performance experiments. The winning join method uses several filters with approximations that are constructed by rotating two parallel lines around the object

    Classical simulatability, entanglement breaking, and quantum computation thresholds

    Full text link
    We investigate the amount of noise required to turn a universal quantum gate set into one that can be efficiently modelled classically. This question is useful for providing upper bounds on fault tolerant thresholds, and for understanding the nature of the quantum/classical computational transition. We refine some previously known upper bounds using two different strategies. The first one involves the introduction of bi-entangling operations, a class of classically simulatable machines that can generate at most bipartite entanglement. Using this class we show that it is possible to sharpen previously obtained upper bounds in certain cases. As an example, we show that under depolarizing noise on the controlled-not gate, the previously known upper bound of 74% can be sharpened to around 67%. Another interesting consequence is that measurement based schemes cannot work using only 2-qubit non-degenerate projections. In the second strand of the work we utilize the Gottesman-Knill theorem on the classically efficient simulation of Clifford group operations. The bounds attained for the pi/8 gate using this approach can be as low as 15% for general single gate noise, and 30% for dephasing noise.Comment: 12 pages, 3 figures. v2: small typos changed, no change to result

    On the number of perfect lattices

    Get PDF
    We show that the number p_dp\_d of non-similar perfect dd-dimensional lattices satisfies eventually the inequalitiesed1−ϵ<p_d<ed3+ϵe^{d^{1-\epsilon}}<p\_d<e^{d^{3+\epsilon}} for arbitrary smallstrictly positive ϵ\epsilon

    Drawing Area-Proportional Euler Diagrams Representing Up To Three Sets

    Get PDF
    Area-proportional Euler diagrams representing three sets are commonly used to visualize the results of medical experiments, business data, and information from other applications where statistical results are best shown using interlinking curves. Currently, there is no tool that will reliably visualize exact area-proportional diagrams for up to three sets. Limited success, in terms of diagram accuracy, has been achieved for a small number of cases, such as Venn-2 and Venn-3 where all intersections between the sets must be represented. Euler diagrams do not have to include all intersections and so permit the visualization of cases where some intersections have a zero value. This paper describes a general, implemented, method for visualizing all 40 Euler-3 diagrams in an area-proportional manner. We provide techniques for generating the curves with circles and convex polygons, analyze the drawability of data with these shapes, and give a mechanism for deciding whether such data can be drawn with circles. For the cases where non-convex curves are necessary, our method draws an appropriate diagram using non-convex polygons. Thus, we are now always able to automatically visualize data for up to three sets

    Influence tests I: ideal composite hypothesis tests, and causal semimeasures

    Full text link
    Ratios of universal enumerable semimeasures corresponding to hypotheses are investigated as a solution for statistical composite hypotheses testing if an unbounded amount of computation time can be assumed. Influence testing for discrete time series is defined using generalized structural equations. Several ideal tests are introduced, and it is argued that when Halting information is transmitted, in some cases, instantaneous cause and consequence can be inferred where this is not possible classically. The approach is contrasted with Bayesian definitions of influence, where it is left open whether all Bayesian causal associations of universal semimeasures are equal within a constant. Finally the approach is also contrasted with existing engineering procedures for influence and theoretical definitions of causation.Comment: 29 pages, 3 figures, draf
    • …
    corecore