235 research outputs found

    Decidability and definability with circumscription

    Get PDF
    AbstractWe consider McCarthy's notions of predicate circumscription and formula circumscription. We show that the decision problems “does θ have a countably infinite minimal model” and “does φ hold in every countably infinite minimal model of θ” are complete Σ12 and complete π12 over the integers, for both forms of circumscription. The set of structures definable (up to isomorphism) as first order definable subsets of countably infinite minimal models is the set of structures which are Δ12 over the integers, for both forms of circumscription. Thus, restricted to countably infinite structures, predicate and formula circumscription define the same sets and have equally difficult decision problems. With general formula circumscription we can define several infinite cardinals, so the decidability problems are dependent upon the axioms of set theory

    Circumscriptive reasoning

    Get PDF
    We show how the non-monotonic nature of common-sense reasoning can be formalised by circumscription. Various forms of circumscription are discussed. A new form of circumscription, namely naive circumscription, is introduced in order to facilitate the comparison of the various forms. Finally, some issues connected with the automation of circumscriptive reasoning are examined.ComputingM. Sc. (Computer Science

    Modelling causal reasoning

    Get PDF
    PhDAlthough human causal reasoning is widely acknowledged as an object of scientific enquiry, there is little consensus on an appropriate measure of progress. Up-to-date evidence of the standard method of research in the field shows that this method has been rejected at the birth of modern science. We describe an instance of the standard scientific method for modelling causal reasoning (causal calculators). The method allows for uniform proofs of three relevant computational properties: correctness of the model with respect to the intended model, full abstraction of the model (function) with respect to the equivalence of reasoning scenarios (input), and formal relations of equivalence and subsumption between models. The method extends and exploits the systematic paradigm [Handbook of Logic in Artificial Intelligence and Logic Programming, volume IV, p. 439-498, Oxford 1995] to fit with our interpretation of it. Using the described method, we present results for some major models, with an updated summary spanning seventy-two years of research in the field

    EMIL: Extracting Meaning from Inconsistent Language

    Get PDF
    Developments in formal and computational theories of argumentation reason with inconsistency. Developments in Computational Linguistics extract arguments from large textual corpora. Both developments head in the direction of automated processing and reasoning with inconsistent, linguistic knowledge so as to explain and justify arguments in a humanly accessible form. Yet, there is a gap between the coarse-grained, semi-structured knowledge-bases of computational theories of argumentation and fine-grained, highly-structured inferences from knowledge-bases derived from natural language. We identify several subproblems which must be addressed in order to bridge the gap. We provide a direct semantics for argumentation. It has attractive properties in terms of expressivity and complexity, enables reasoning by cases, and can be more highly structured. For language processing, we work with an existing controlled natural language (CNL), which interfaces with our computational theory of argumentation; the tool processes natural language input, translates them into a form for automated inference engines, outputs argument extensions, then generates natural language statements. The key novel adaptation incorporates the defeasible expression ‘it is usual that’. This is an important, albeit incremental, step to incorporate linguistic expressions of defeasibility. Overall, the novel contribution of the paper is an integrated, end-to-end argumentation system which bridges between automated defeasible reasoning and a natural language interface. Specific novel contributions are the theory of ‘direct semantics’, motivations for our theory, results with respect to the direct semantics, an implementation, experimental results, the tie between the formalisation and the CNL, the introduction into a CNL of a natural language expression of defeasibility, and an ‘engineering’ approach to fine-grained argument analysis

    The Logic of Empirical Theories Revisited

    Get PDF
    corecore