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Abstract

Minimal consequence is embodied in many approaches to non-monotonic reason¬

ing. In this thesis we define minimal consequence in sentential logic and present a

number of results of a model theoretic and recursion theoretic character about this

newly introduced non-monotonie consequence relation. We show that the minimal

consequence relation is not compact and is n° and not E°. We also connect this
relation to questions about the completion of theories by "negation as failure." We

give a complete characterization of the class of theories in sentential logic which
can be consistently completed by "negation as failure" using the newly introduced
notion of a subconditional theory. We show that the class of theories consistently

completable by negation as failure is II® and not E^.

In first order logic minimal consequence is the semantic notion underlying

circumscription formalisms. We study domain, predicate, and formula minimal

consequence, which are obtained by varying the type of minimization involved
and correspond to domain, predicate, and formula circumscription, respectively.
The results, again, are model theoretic and serve to clarify properties of minimal

consequence in first order logic. Relationships between domain, predicate, and
formula minimal consequence are established. We show that every satisfiable the¬

ory in a finite language can be finitely expanded to a minimally satisfiable theory
in an extended language which has the same logical consequences in the original

language as the original theory. We also show that minimal satisfiability is not

compact for any of the types of minimality under consideration.
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Chapter 1

Introduction

When looking at the world through a small "information window" our imagination
and ingenuity are responsible for making up the remainder. Most of the time we

are forced to try our competence in this respect, and, fortunately, most of the time
the world is very lenient: it is usually good enough to consider a small number
of possibilities. As we experience the world, through ever widening information

windows, we develop and improve these capabilities; every time that the window

widens, we find out a little more about the world; more importantly, we also find
out something about our choices and the methods that led us to these choices.

It is very difficult to study a process like this, because certainly by the time we

are old enough to discuss it, it is already routine; from then on we are happy to

simply use it in dealing with other pressing concerns, like learning to speak. By
the time that we are ready to be interviewed and psychologically tested we are

too competent and too familiar with it. The best we can do is to isolate a list of

"features" that appear to work.

Suppose now that one of us crosses to the other side of the window and w

play a game. You are on the outside and I am on the inside and we now have a

telescope. Now the whole world is in view for you, but I can only see a piece of it

through the telescope, which you control. You may zoom or point the telescope in
whichever direction you choose. Your objective is to give me as much information
as possible about the world. You are also free to talk to me and explain which part
of the world is visible, so as to help me make a better judgement about the rest,

1
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but it is impossible for you to communicate all the information about the world,
either through the telescope or through words or with the two together. There is
a crucial factor which you would like to take into account, and that is my method
of going about making conjectures. Unfortunately, all you can do is assume that I
am like you. Moreover, although you are very competent at applying your method,

you know little about its working. Perhaps you discuss this with me. You may

also look through the telescope and imagine what you would think the world is
like from what you see, and decide whether that is indeed close to what it is really

like, from what you know. This knowledge is somewhat of a burden, however:
once you know what the world is like, it is very difficult to imagine anything else.

So, you try something else: you get me to look through the telescope and tell you
what I think the world is like. This seems to work a little better. Soon you find
out which angles are good and which are misleading. Now, suppose that you were

to generalize this, i.e., suppose that new worlds went by and for each one you had
to point the telescope for me. Could you develop a good methodology for doing
this?

Note that you may develop a good methodology for this game in two ways: 1)
you learn my approach to making conjectures; or 2) we come to an understand¬

ing about what type of information you will be showing me and what type of

conjectures I should be making.

This is the game of logic programming. The methodology, we can say, is
fair and it has been developed in a hybrid way: you (the designer of a logic

programming paradigm) take into account some features ofmy (the programmer's)
approach to making conjectures, but we have also come to an understanding about
the sorts of conjectures that I should make (we have fixed a logic programming
language and I have learned its interpretation).
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1 Objectives

The hypothesis of this thesis is that the features of our approach to making conjec¬

tures, both in everyday life and in a contrived situation such as logic programming,
should coincide. Although a good methodology for winning the logic programming

game could be developed in either of the two ways mentioned above, we maintain
that the first way is superior because it sheds some light into human reasoning.

Furthermore, it reflects how we win this game — with style and ease; by providing
a robust, elegant, and user friendly logic programming environment.

This thesis explores the use of one feature common among approaches to logic

programming and to human reasoning with incomplete information — that of
"smallness." We study minimal consequence relations, expressing that "B is true

in all minimal models of A." Minimal consequence is a semantic notion implicit

in past attempts to deal with the problem of incomplete information, both in the
context of logic programming and in the context of modelling human reasoning.
From the point of view of logic programming, these involve the notion of "negation
as failure," i.e., roughly, the assumption that information not derivable can be
assumed to be false. From the point of view of modelling human reasoning, past

attempts in this line involve the notion of "circumscription," i.e., formalisms that

generate conjectures of the sort "the objects that can be shown to exist (or, can
be shown to have a certain property P) by reasoning from a set of facts A, are all
the objects there are (or, that have the property P)."

Our objectives are twofold:

1. to formulate minimal consequence for sentential logic1 and provide a com¬

plete and detailed study of its model theoretic and recursion theoretic prop¬

erties that bear on practical applications.

1Also called propositional logic.
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2. to investigate properties of minimal consequence for first order languages
where these have a direct impact on the applicability and power of circum¬

scription formalisms.

Previous work on reasoning with incomplete information has focussed primar¬

ily on first order logic and has largely been occupied with syntactic as opposed
to semantic questions. This is true, for example, of McCarthy's original work
on circumscription [McCarthy 80], as well as Clark's work on negation as failure

[Clark 78]. Subsequent developments in each of these traditions have accorded
some attention to semantic issues. A significant example of this trend is Schlipf's
extended study of the recursion theoretic complexity of various semantically de¬
fined first order consequence relations developed as partial explications of circum¬

scription formalisms. None of this work has, however, addressed the question of

reasoning with incomplete information in the context of sentential logic. This

question is of great significance to the development of automated systems for rea¬

soning with incomplete information. In semantics of logic programming, one is
often led to consider the set of ground instances of a (finite) database; in general,
this is an infinite sentential theory. Hence, the formulation and study of minimal

consequence in sentential logic underlies the applicability of negation as failure
rules in logic programming. Thus, our first objective is to formulate minimal con¬

sequence in sentential logic and to settle questions that naturally arise regarding
this consequence relation.

The earliest semantic study of a minimal consequence relation related to cir¬

cumscription appears in [Davis 80]. Davis gave the natural definition of a mini¬
mal model which underlies McCarthy's domain circumscription and showed that
there are satisfiable first order theories that have no minimal models. Subse¬

quent research defined analogous notions of a minimal model that capture other
forms of circumscription and showed that the same result holds for these also

[Etlierington 86]. None of this work, however, considered language related issues,

i.e., the effect of the particular symbols available in the non-logical vocabulary
of a first order language to the minimal models of a theory in that language. As
we will see, language related issues play a crucial role in the existence of minimal
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models. Previous syntactic research on circumscription attempted also to relate
the various circumscription formalisms, but produced no tangible results (see e.g.,

[Etherington & Mercer 86]). Our second objective is thus to study the well known
semantic formulations of circumscription, settling questions regarding the exis¬
tence of minimal models and drawing precise relationships among the different
notions of minimal model and minimal consequence.

2 Outline

Chapter 2 gives a broad introduction to the consequence relations studied in logic
and traces the development of minimal consequence as a method of reasoning
with incomplete information. This chapter reviews the background material in

logic and recursion theory that will be used in the remainder of the thesis and
surveys other work on reasoning with incomplete information that is important in

motivating this research.

Chapter 3 introduces minimal consequence in sentential logic and gives exam¬

ples which illustrate some of its more interesting features. We show that every
satisfiable sentential theory has a minimal model, but that the consequence relation
is not compact. We also connect this relation to questions about the completion

of theories by negation as failure. We introduce the notion of a subconditional

theory (which subsumes propositional Horn theories) and give a complete char¬
acterization of the class of theories in sentential logic which can be consistently

completed by negation as failure. Lastly, this chapter examines questions of com¬

plexity. We show that both the minimal consequence relation and the class of

theories consistently completable by negation as failure (i.e., theories equivalent
to subconditional theories) are and not in sentential logic, i.e., that deciding
these is as difficult as deciding whether a given program (in a Turing equivalent

programming language) halts on every input.

Chapter 4 studies minimal consequence relations in first order logic. In first
order logic minimal consequence is the semantic notion underlying circumscription
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formalisms. Domain, predicate and formula minimal consequence are obtained by

varying the type of minimization involved and correspond to domain, predicate,
and formula circumscription, respectively. The results, again, are model theoretic
and serve to clarify properties of minimal consequence in first order logic which
have an impact on the usefulness and applicability of circumscription formalisms.
Each type of minimal consequence relation is illustrated by several examples that

clarify important issues and some concerns expressed in the literature. Perhaps
the most prominent of these concerns is that, unlike sentential theories, there are

satisfiable theories in first order logic which have no minimal models. Unusual

phenomena which arise when considering the minimal consequences of a theory in
an extended language are discussed and exploited in the solution that we offer for
this problem: we show that every satisfiable theory in a finite first order language
can be finitely extended to a theory (in a finitely extended language) which has
minimal models and makes true the same sentences in the original language. We
show this fact for all three notions of minimality that we study; in particular,
for domain minimal consequence, the extension to the language suffices. Next we
establish precise relationships between domain, predicate, and formula minimal

consequence. We also show that minimal satisfiability is not compact for any of
the types of minimality under consideration in this chapter.

Chapter 5 discusses related work in AI and Logic Programming and compares

it to the results obtained in this thesis.

Chapter 6 contains ideas for further research on minimal consequence and

reasoning with incomplete information. Here we discuss how the methods devel¬

oped in this thesis can be employed in investigating alternative directions. We
also connect reasoning with incomplete information to learning and propose that

learnability considerations should play an important role in future research on this

subject.

Chapter 7 gives a summary of the main results of this thesis and conclusions.



Chapter 2

Consequence Relations and
Incomplete Information

1 Introduction

The power of human reasoning can, to a great extent, be attributed to people's

ability to reason from incomplete information. People seem able to "jump to

conclusions" and make plausible conjectures which fill out the information they
are given. Such leaps are not only very common, but also appear in all forms
of reasoning, from linguistic inferences to problem solving. This raises some very

interesting questions about whether such behaviour can be reproduced and be

advantageously used in a computer program. We need both a good understanding
of this behaviour and a rigorous framework for its study, in order to exploit it in a

computational setting. This chapter gives the background to this study, by means

of an introduction to a logical treatment of consequence relations and reasoning
with incomplete information.

Consequence relations are relations holding between theories (sets of sentences)
and sentences. Of interest to logic are consequence relations expressing the fact
that the truth of a sentence follows from the truth of a theory. This chapter gives
a broad introduction to the consequence relations studied in logic and traces the
development of minimal consequence as a method of reasoning with incomplete

7
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information. In Section 3 we begin with a discussion of the character and scope of

consequence relations and their connection to proof and provability; next we give
a brief introduction to the two most prominent logical languages, the language of

propositions (or sentence letters) and the first order language of relation and func¬
tion symbols with quantifiers and equality; lastly, we outline the main properties
of semantic consequence relations in classical logic that relate to computational
considerations. Section 3 reviews the background material in logic and recursion

theory, which will be used in subsequent chapters, so as to introduce the nota¬

tion used and the spirit of the research. Section 4 below discusses the problem of

reasoning with incomplete information, from a logical perspective, as it arises in

modelling common sense reasoning, scientific discovery, and logic programming.
It introduces a first, very general definition of minimal consequence and discusses

past attempts to capture various special cases of it in computational systems.
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2 General Notational conventions

We favour English sentences for definitions, theorems, proofs, etc, wherever this
is possible, but in some cases, to ease readability and avoid ambiguous or lengthy
statements, we will use a limited number of (metalinguistic) logical symbols. The
standard abbreviation "iff" for "if and only if" will sometimes be denoted
with "=r>" and "•£=" used to denote the "if ... then... " and "only if" parts respec¬

tively. In addition, we will (very occasionally) use "3," "V," and to stand for
"there exists," "for every," and "and" respectively, wherever clarity is improved

by the use of metalinguistic quantifiers and conjunction.

The symbols "C," "U," "fl," and "P" will be used for the usual set-
theoretic relations and operations denoting membership, subset, set union, set

intersection, and powerset, respectively; "C" is used for proper subset; "0" is used
to denote the empty set. The symbol cj will be used to denote the set of finite

ordinals, i.e., natural numbers.1

The equality symbol, "=," will be used to denote equality among all types of

objects. Note that the equality symbol and the quantifiers of the metalanguage
will not be distinguished from their formal counterparts in first order languages.
Wherever this may result in some confusion we refrain from using such symbols
in the metalanguage and revert to English.

1o; is the least infinite ordinal and the smallest infinite cardinal, since we identify
cardinals with initial ordinals.
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3 Semantic Consequence Relations

Semantic consequence, or logical consequence, or simply consequence, as it is often

called, forms the basis of the study of "correct reasoning" in the classical logic
tradition. Although defined and studied with the utmost rigour, it expresses a

simple to state and clear intuitive relation among sentences in a given language:

sentence <f> is true whenever sentences {■?/>!,... ,tpn} are true. (2.1)
\

Related to semantic consequence, are the syntactic notions of proofand provability.

A proof is simply an argument that derives a sentence from a set of sentences
*

{-01,..., ipn}. Clearly, for the notion of proof to bear any relation to normal English

usage of the same word, we must place some constraints on the form of acceptable

arguments, ruling out unsound or vague arguments. The most crucial point to
note is that the soundness of an argument or method of arguing will ultimately

depend on how well proofs mirror consequence, i.e., whether proofs only yield true
conclusions from true premises. The notions of proof and provability therefore are

closely connected with the notions of truth and consequence.

Our study of minimal consequence is primarily motivated by practical consid¬
erations. This suggests that we value proofs and syntactic formalisms in general

very highly. Although, as argued earlier, the semantic notions of consequence are

fundamental, our study of these will concentrate on properties that have an impact
on the existence of proof systems and syntactic characterizations.

3.1 Logical Consequence

The intuitive notion of logical consequence given in (2.1) above is made precise in
logic by specifying what is meant by "sentence," "true" and "whenever." Para¬

phrasing (2.1) simplifies this task:

In every situation where sentences {ifi. . . ipn} are true, sentence <f is also true.

• (2.2)
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The approach in logic is to first fix a language, so that what constitutes a sentence
is well understood. Then, with respect to this language it is possible to define set-

theoretic structures that represent each of the possible situations that may arise.

Finally, a definition of what is meant by being true in such a stucture is given.

The languages that have been studied in logic are very simple, as compared
to human languages. But even for these simple languages the major obstacle
has been the definition of truth — the definition of truth in first order logic was

not given in a rigorous manner until this century [Tarski 35]. We will restrict
attention to the two most studied types of languages in logic: the languages of
sentence letters and connectives (sentential logic) and the first order languages of
relation, function, and constant symbols with logical connectives, quantifiers, and

equality (first order logic). Each of these is outlined in a section below.

Structures interpret the primitive elements of a language. The truth of sen¬
tences in a structure M. is determined by the interpretation in M. of the primitive
elements that comprise them. For each language, there are usually many struc¬

tures that interpret it. For a language C we will refer to the structures that

interpret it as £-structures; ^-sentences and C-theories will be used to refer to
sentences and theories (sets of sentences) of C. When an ^-sentence (j> is true in
an £-structure M. we say that M. satisfies <f> (or that <j> holds in M., or that M. is
a model of <j>) and write M. |= <f>. An T-structure M. satisfies an £-theory F if and

only if it satisfies each sentence of T. The set of models of a theory T are denoted

Modc(r); Modcifii) (the models of the empty theory) thus denotes the set of all

^-structures, since, trivially, all ^-structures satisfy every sentence in 0. Leaving
the issue of languages and truth aside, we are now ready for a definition of logical

consequence:

Definition 3.1 Let T be an £~theory and cj> an ^-sentence. r (= <f> (<f> is a logical
consequence of T) iff for every M. such that M. (= T, M. }= <f>.

Note that the symbol "|=" is used to denote both satisfaction and logical
consequence. This is standard practice in the logic literature and no confusion
should arise since, in the case of satisfaction, it denotes a relation between a
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model and a sentence (or a set of sentences), whereas, in the case of consequence,
it denotes a relation between a theory and a sentence. In the special case where

the theory T is the empty theory, in the above definition, the sentence <j> is said to
be valid.

Observe that we neither require that theories be closed under consequence nor

that they be finite (as suggested by (2.2)). A theory is any set of sentences of the
language and need not include the consequences of those sentences.

Definition 3.2 An £-theory T is complete iff for every ^-sentence (f>, either T |= f
or T j= -i4>.

Note that we will be using the words "complete" and "completeness" in several
different (standard) senses in this thesis. Completeness of a theory, as we see here,
means that the theory decides every sentence of its language. Below, we will see
the term applied to a deductive calculus and also to a set in a complexity class —
with different, though related, meanings.

So far we have intentionally avoided introducing language related issues. These
axe addressed in Sections 3.2 and 3.3 below. In Sections 3.4 and 3.5 we return to

a general discussion of consequence relations.

3.2 Sentential logic

A language C of sentential logic is a set of sentence letters and sentences built

up from them using the sentential connectives "-i" and "A." Given a set S of

sentence letters, we can define a.language for sentential logic as the smallest set C
such that S C £; if f> G £, then 6 £; if € C and tp 6 £, then (<f> A ip) E C.
We will call the objects of the language £, C-sentences (or simply sentences when
the language is clear from the context). Among these, we will use the term atom

to refer to sentence letters and the term basic formula to refer to atoms and their

negations. A set of ^-sentences is called a theory.

For convenience, as is usual, the symbols "V," and are introduced

as abbreviations. Note that the language £ is uniquely determined by the set S,
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and is of the same cardinality as S (if S is infinite), so from now on a language
will be given as its set of atoms. The symbols p, q,r, s (possibly subscripted) will
be used to denote distinct atoms of S. For a countable language, the atoms will

typically be denoted by pi, P2,..., although in some cases, for reasons of clarity of
exposition, a number of additional symbols will be used, again with the assumption
that distinct symbols denote distinct atoms of the language. Boldfaced versions
of these symbols (p,q,r,s) will be used where it is necessary to have a symbol

ranging over the atoms of the language.

A structure for a language £ .is defined as a subset of S, so the set of structures
for £ is of cardinality 2s; thus, the set of structures of any countably infinite

language has the cardinal number of the continuum.

In a language of sentential logic the definition of truth is very simple — it is

only necessary to specify how to interpret sentence letters and the two connectives,
-i and A:

Definition 3.3 Let M. be an £-structure and 4> an ^-sentence. M. \= <t> (M.

satisfies a sentence <f>) iff

(i) (f> is an atom and <f> 6 At; or

(ii) <j> — A *l>2 and M. f= if>\ and M. (= ^2! or

(iii) <f) = and M. \fi=. tp

3.3 First-order logic

A first order language £ is determined by a set of relation, function, and constant

symbols, the equality symbol "=;"2 and the first order connectives "A," and

2The equality symbol is sometimes considered optional for first order languages (see,
for example, [Enderton 72], page 68). In this thesis we assume that it is present in all
first order languages that we study.
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"V." As such, a first order language provides a much greater richness of expression
than the simple sentential languages which we encountered in the previous section.
The definitions of what constitutes a sentence and truth in a structure also become

more challenging.

We will use uppercase letters P, R,... to denote relation symbols, a, b, c,...
for constant symbols, for function symbols, and x, y, z,... for variables
— all these possibly subscripted.

Definition 3.4 The set of terms of a first order language C is the least set T such
that T contains all constant symbols and all variables of C and, whenever f is an

n-placed function symbol and il5... ,tn £ T, then f(tl5... ,tn) £ T.

Definition 3.5 The set of atomic formulas of a first order language £ are strings
of the form given below:

(i) ti = t2 is an atomic formula, where t\ and t2 are terms of C.

(ii) If R is an n-placed relation symbol and tl5... ,tn are terms, then

R(ti,..., tn) is an atomic formula.

Definition 3.6 The set of formulas of a first order language C is the least set $
such that every atomic formula belongs to $ and, whenever <f>, ^ £ <f>, then (fAif),

and Vx(</>), for each variable symbol x of the language, all belong to $.

For convenience, as is usual, the symbols "V," "w," and "3" are intro¬
duced as abbreviations. An occurrence of a variable in a formula is said to be

bound iff it is in the scope of one of the quantifiers governing it; otherwise it is said
to be free. A closed term is a term with no variables. Similarly, a closed formula
or a sentence is a formula with no free variables. Again, Greek letters will be used
to denote sentences and formulas.
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First order structures give meanings to terms, formulas, and sentences by in¬

terpreting the non-logical symbols of the language3 — the relation, function, and
constant symbols. We will again use M, AT, .. .to denote structures; M will de¬
note the domain of M.; RM will denote the interpretation of the relation symbol R

in the structure M and similarly cM and fM for constant and function symbols.

Thus we can write a structure as a tuple (M,R^,...,R^, f",..., , cf4,... c^4).
Where it is necessary to refer to elements in the domain of a structure we will use
boldfaced letters a, b,..., possibly subscripted.

Let M. be an £-structure. Let a be an assignment to the variables of £, i.e.,
a function from the set of variables of £ into M (the domain of £-structure Ai).
Let d : T—>M. d associates with each term of £ a domain element which is to be

understood as its interpretation, d is defined from a as follows:

(i) d(x) = Oi(x), if x is a variable;

(ii) a(c) = cM, if c is a constant;

(hi) d(/(ti,... ,tn)) = fM(a(t{),-... ,a(tn)) otherwise.

Definition 3.7 Let <j> be an £-formula. A4 f= (f>[oi\ (Ai satisfies <f under the

assignment a) iff one of the following holds:

(i) <t> is an atomic formula P(t\, and P"M(d(t1),..., a(tn))\ or

(ii) <f) is ti = t2 and d^) = d(t2);4 or

(iii) 4> is ifi A if2 and M ifi[a] and M f= ifi[oc\, or

3The first order connectives, the equality symbol, parentheses, and the variable sym¬

bols are called the logical symbols of a first order language (their interpretation is fixed),
whereas the relation, function, and constant symbols comprise the non-logical symbols
of the language (the symbols that are open to interpretation).

'Note that we are using the symbol "=" both as a formal and a metalinguistic symbol.
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(iv) <j> is -up and M. ^ ip\ot\\ or

(v) (pis Vxip and for every assignment /?, such that /3(y) — a(y) for all y ^ x,

M (= ip[(3].

It should be clear from this definition that if a and /? are two assignments such
that a(x) = ft(x) whenever x is free in <f>, then M. |= <p\oi\ iff M. (= <f>[/3\. We are

now ready for the definition of satisfaction:

Definition 3.8 Let <p be an ^-sentence and M. an £-structure. A4 |= <f> {Ad

satisfies 6) iff for some assignment (equivalently, for every assignment) a, Ad \=

<t>[a\.

We now define some notions that can be used to compare first order structures.

Definition 3.9 Zl-stuctures Ad and Af are elementarily equivalent iff for any C-
sentence (p, Ad \= (p <=> J\f f= <j>.

Definition 3.10 £-stuctures Ai and Af are isomorphic iff there is a one-one map

Q of M onto N satisfying:

(i) For each n-place relation RM of Ad and the corresponding relation R? of

RM{ai,.:.-,an) iff RM , £(an))

for all ai,..., an in M;

(ii) For each n-place function fM of Ad and the corresponding function fM
of Af,

ff(f*'(ai,...,aa)) = /'(£?(a1),...,a(a„))
for all ai,... , an in M; and

(hi) For each constant cM of Ad and the corresponding constant cM of Af,

q(cm) = cu
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Definition 3.11 Let M and Af be /^-structures. At is a substructure of Af iff

(i) M CN;

(ii) Rm is the restriction of R? to M, for each relation symbol R G £;

(iii) fM is the restriction of fM to M, for each function symbol / G £; and

(iv) cM = cf, for each constant symbol c G /L

We say that Af is an extension of Ad iff At is a substructure of Af.

In some contexts it is useful to consider the addition of some new symbols

to a first order language and the enlargement of structures of that language to

accomodate the new symbols, which we will call expansions. We emphasise the
distinction between extensions, which increase the domain of a structure, and

expansions, which increase the number of symbols interpreted by the structure.

3.4 A Generalization of Logical Consequence

As we stated in the beginning of Section 3.1, the definition of logical consequence
aims to capture an intuitive notion, given in (2.2):

In every situation where sentences {if\... ipn} are true, sentence <f> is also true.

In order to make this notion precise, we stated that it is necessary to define
structures that represent all the possible situations that may arise (see Section

3.1). The class of all structures for a given language contains enough structures

to represent all situations that can be (in set-theoretic terms) expressed for that

language, but in the definition of logical consequence these are implicitly identified
with all possible situations. This identification is not always justifiable, since the
class of all structures, even for a sentential language, usually contains a great

many structures which represent situations that the common person would deem

unfathomable; a definition of consequence that requires that all these be taken into
account in order to determine whether a sentence follows from a theory may be
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too restrictive in some cases. Without entering into a discussion of what might be

meant by "possible situations," we may proceed by assuming that if these cannot
be identified with the class of all the situations expressible for the language, they

are at least included therein5.

In the style of (2.2) above, we reinterpret a consequence relation between an

£-theory and an ^-sentence, relativizing it to a class of structures C:

In every /^-structure Ai such that Af £ C and /I-theory T is true in Ad,
^-sentence <j> is also true. (2.3)

Logical consequence is then seen as a special case of consequence as defined in

(2.3), where C is the class of all /^-structures.

We will not discuss at this point questions of definability of C (in the language
of r or otherwise). There is little one can say about the structure or contents of C
without delving into philosophical questions concerning the meaning of "possible

situations," except that it is very likely that they depend on the contents of the

theory I\ This observation suggests a further refinement of (2.3), yielding the

following definition:

Let J- : V(jC)—*V(Modc($))- An ^-sentence <j> is an J--consequence of
an £-theory T iff for every Ad £ 1F(T) such that Ad |= T, Ad (= <j>.

Instead of fixing a "relevant" class of structures, C, we now have a function from the
set of £-theories into the "powerset" of /^-structures, which picks a "relevant" class
of T-structures depending on the /3-theory. Without loss of generality, however, we

may restrict IF to be of type T : V(jC)—>V(Modc(r)) (since Modc(r) C Modc{0)

5A complementary concern is that the class of all (set-theoretic) structures is too
narrow for assessing the consequence relation, i.e., some possible situations are not

representable by set-theoretic structures and hence not expressible by a language whose
semantics is set-theoretic[Kreisel 67]. We do not engage this topic here.
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and in the definition we are only interested in those elements of .F(r) that are

models of T). As with "Ad [= T" (Ad is a model of T), we let "Ad t=.yT" stand
for "Ad G ^(T)" (intuitively, Ad is a relevant model of F), arriving at our final
definition of consequence relative to IF : V(C)-+V(Modc(r))\

Definition 3.12 An ^-sentence f is an IF-consequence of an £-theory T (written
T \=r<t>) iff for every ^-structure Ad, if Ad (=^r, then Ad f= <t>-

For logical consequence .F(r) = Modc(r), for every £-theory T. As we will
see, minimal consequence relations will be consequence relations where ^(T) is
identified with the set of all minimal models of T.

We say that T is IF-satisfiable iff .F(r) ^ 0. For a consequence relation \=yr,
let Cnr(T) = {<£| T

Definition 3.13 A consequence relation \=jr is monotonic iff VTVA(r C A =4>

Cnjr(T) C CnT{A)).

The consequence relations studied in logic are typically monotonic, but those that

maj* be of interest in approaches to reasoning with incomplete information are most

often non-monotonic. Thus, any type of defeasible reasoning is often referred to

as "non-monotonic reasoning," and it includes minimal consequence relations, as

we will see.

The next definition generalizes the notion of completeness (of a theory) to

.^-completeness, also relativizing it to a set of sentences.

Definition 3.14 Let 0 be a set of £-sentences. An £-theory F is J--complete for
0 iff for every f in 0, either T f=^<f> or T (=^—'<j>.

An £-theory is jF-complete iff it is IF- complete for the set of all £-sentences.
We will loosely refer to £-theories that are complete (jF-complete) for some set
0 C £ as partially complete (partially IF-complete).
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3.5 Logical and Computational Considerations

There are a number of important model theoretic properties of languages and

consequence relations which underlie their applicability in a variety of ways. The
first and foremost, at least for computer scientists, is the existence of a proof system

that captures the consequence relation. By this is meant a method of deriving

consequences of theories that derives all (completeness) and only (soundness) the
consequences of a theory. In addition, it is required that the proofs generated

by such a system bear a strong resemblance to what, say, a mathematician would
accept as a proof, i.e., we would like to rule out vague proofs, or proofs that cannot
be given in a finite amount of time or space. If there is to be a sound and complete
proof system, the latter of these requirements promptly translates to a condition
that proofs be finite, and therefore (as discussed below), that the consequence

relation be compact; the former must remain an intuitive concern, because, as

we will see, it translates to a requirement that the consequences of a theory be
semi-decidable. The compactness and semi-decidability of a consequence relation
are necessary and sufficient conditions for the existence of a sound and complete

proof system.

Compactness

Perhaps the most basic property of a first order language from a model theoretic

point of view is the compactness of the first order consequence relation.

Let S be a set and R a relation, R C V(S) X S.

Definition 3.15 R is compact iff for every X C S and a £ S, if R(X,a) then
there is a finite Y C X such that R(Y,a).

For a consequence relation (i.e., a relation between theories and sentences),
the compactness property requires that, if a sentence is a consequence of a theory,
then it is a consequence of a finite subset of that theory. If a deductive calculus can

be constructed that will be capable of proving all the consequences of any theory
of the languages under consideration (e.g., first order languages), i.e., a complete
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proof system exists, then it must a priori be the case that each of the consequences

of a theory is also a consequence of a finite subset of the sentences of that theory

(i.e., a finite set of hypotheses). The compactness theorems for sentential and first
order logic ensure us that this will not be an obstacle. On the other hand, from
the fact that a sound and complete formalization exists, in which proofs are finite,
it immediately follows that the consequence relation formalized is compact. For
this reason, the compactness theorem for sentential and first order logic is often
stated as a corollary to the completeness theorem.

The two (equivalent) formulations of compactness in classical logic are the
following:

(i) If T \= <f> then there exists a finite ACT such that A f= <f>. (Compactness
of logical consequence)

(ii) If every finite subset of T is satisfiable, then T is satisfiable. (Compactness
of satisfiability)

These are equivalent, since T (= iff T U is unsatisfiable. Moreover, the

equivalence follows from the monotonicity of consequence. As we will see, minimal

consequence is non-monotonic, so it will be important to distinguish between the
two types of compactness defined above. In fact, for sentential logic, minimal

satisfiability is compact, whereas minimal consequence is not (see Chapter 3,
Section 3).

Semi-decidability

The existence of a sound and complete deductive calculus that captures a conse¬

quence relation by means of a reasonable notion of proof depends on yet another
factor: the semi-decidability of the consequence relation between a theory and a

sentence. Reasonable proofs, as discussed, must be finite. In addition, we would
like to rule out proofs that are vague, i.e., contain gaps or claims that require
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further proof.6 Thus we require that a proof p of a sentence <f> from a theory T
be a finite syntactic object that can be checked by someone with access to T and

<f>, but with no special talents except clerical competence, i.e., that there is an

effective procedure that, given T, <f>, and p, always terminates and outputs "yes" iff
p is a proof of 4> from T and "no" otherwise — in short, we require that the proof
relation be decidable.

If there is to be a sound and complete deductive calculus where the proof
relation is decidable, then the consequence relation must be semi-decidable. To
see this, note that from an effective procedure that decides the proof relation, we
can construct an effective procedure that, given T and <f>, will output "yes" iff cj> is a

consequence of T. For example, this procedure could systematically examine initial

segments of T, constructing ever longer proofs from sentences in each segment, so

that all proofs are constructed in the limit; at each stage, the procedure examines
the proofs constructed so far to determine if one of them is a proof of 4> and, if so,
it outputs "yes" and stops. Thus, if the deductive calculus is sound and complete,
this procedure will output "yes" iff T |=?<{>.

Conversely, if the consequence relation is semi-decidable, then there exists a

complete deductive calculus that incorporates a decidable proof relation. To see

this, note that, given T and (j>, the trace of a terminating computation of the
semi-decision procedure that outputs "yes" iff T |=^<f>, can be viewed as a proof
of <j) from T (i.e., when the trace is finite and the output is "yes"). Now, given

T, (j>, and p, it is possible to check that p is such a trace, so the proof relation is
decidable. In addition, since there will be a terminating computation that outputs

"yes" iff T \=r<t>, we have that the deductive calculus is complete.

At first glance, it may seem obscure how an intuitively conceived mechanical

procedure of this sort could accept an input for T, which is not restricted to be

6Clearly, mathematicians do not place such stringent requirements on proofs. Math¬
ematical rigour does, however, require at least the existence of such detailed proofs, to
support the more informal arguments that are commonplace in mathematics.
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finite. This can be visualized as follows: we assume that our idealized machine

is connected to an infinite memory device containing T (this may be conceived
as an oracle for T) and that any (converging) computation involves making only
finitely many calls to this oracle; since the computation must be finite, only a

finite amount of input will actually be used.

Formal characterizations of the notion of an effective procedure are numerous,

and are all shown to be equivalent; this general agreement supports both the be¬
lief that the notion of an effective procedure is natural and useful and the claim
that the proposed formalizations indeed define exactly the class of (intuitively con¬

ceived) effective procedures. The claim that the proposed formalizations include
all effective procedures is called Church's Thesis (see [Rogers 67] for further dis¬

cussion). The (partial) functions computed by any of the proposed formalizations
of the notion of an effective procedure are called partial recursive funtions. The
formal notion corresponding to decidability is that of recursiveness: a set (or re¬

lation) is recursive iff it has a (total) recursive characteristic function. A set (or
relation) is semi-recursive iff it is the domain of a partial recursive function.

As noted above, exploring the computational properties of consequence rela¬
tions requires formulating the notion of semi-decidability for "higher type" rela¬
tions. That is, the consequence relation is a relation between a (possibly) infinite
set of sentences and a sentence. The standard approach invokes the arithmeti-
zation of syntax (where sentences are encoded as natural numbers and sets of
sentences by functions on natural numbers) and defines partial recursive function-
als (corresponding to formalizations of effective procedures which accept functions
as input), following the intuititive conception of an oracle machine given above,
to arrive at a definition of semi-recursiveness that can be used to describe a con¬

sequence relation.

Note that the usual treatment of soundness and completeness for the propo-

sitional and predicate calculus engages neither formal notions of effectiveness nor

complexity of relations of higher types. As we saw in the case of compactness, (clas¬
sical) logical consequence enjoys certain properties that greatly simplify matters,

specifically, by collapsing compactness of consequence and compactness of satis-
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fiability. Similarly, the requirement of semi-decidability for logical consequence
reduces to requirements for compactness of satisfiability and effective enumerabil-

ity of validities (i.e., the existence of an effective procedure that enumerates the
valid sentences of the language). Moreover, since in the case of logical conse¬

quence these requirements are met, it is not necessary to bring in formal notions
of effectiveness. 7

Remarks

The foregoing remarks serve to motivate our consideration of compactness and

complexity of consequence relations and to describe, in broad terms, the ap¬

proach taken in this thesis. As we will see, the minimal consequence relations

that we study are neither compact nor semi-recursive (see Chapter 3, Section 5
and [Schlipf 87]), so, by Church's Thesis it then follows that they are not semi-
decidable and, therefore, there cannot be a sound and complete deductive calculus

that captures them via a reasonable notion of proof. Indeed, we show that minimal

consequence, even in the case of sentential logic, is a rather complex relation — it
is as hard as deciding whether a given program (in a Turing equivalent language)
terminates on every input.

This section has given an introduction to elements of logic, model theory, and
recursion theory that will be used in subsequent chapters. Much of the material
on logic and model theory is drawn from [Chang & Keisler 73] and [Enderton 72];
the material on recursion theory is drawn from [Rogers 67] and [Hinman 78].

'It should be clear that a formalization of the notion of effective procedure is only

necessary in establishing negative results.
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4 Incomplete Information

By incomplete information we mean that the collection of facts that are given —

a theory— does not contain enough information to decide every question on these
facts — i.e., it is not the case that, for every sentence of the language of the theory,
either it or its negation is a consequence of the theory. Clearly, there is nothing

particularly odd about a theory that is not complete, from a logical or theorem
proving point of view, but rather, the problem arises when it is desirable to treat
it as a complete theory. There are two ways in which this can be the case.

First, it is possible that a theory is complete, but not feasibly axiomatizable, so
that it is not usable by a theorem prover or a database system based on a theorem

prover. One famous example of this is the airline reservation problem, where,
even if we take the language to be finite (in this case, the set of pairs of cities
and times), it is still very impractical to encode complete information. The usual
solution is to encode all and only positive information (e.g., source-destination

pairs served and times) so that negative information is implicitly assumed when
positive information is not present. The idea is that instead of using the intended

(complete) theory, we can use an incomplete theory together with a systematic
method of completing the theory.

The second way in which it would be desirable to have a complete theory, is
in areas where the objective is to model the process of characterizing, through

approximations, a single model.. The goal is to analyse the behaviour of a person

observing certain facts, whose assumption is that these facts partially describe a

model of the world which he or she is trying to discover. For example, a scientist

believes that there is some explanation for his or her observations of the world,
be that the world of physical objects or an abstract world, such as that of arith¬

metic, i.e., that there is a way in which the world is. In other words, the scientist
believes that, among the possible models of the world consistent with the facts

observed, there is one "real" model, which s/he wants to determine so as to be
able to make predictions. The scientist will first choose a language so as to be
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able to keep track of observations and to characterize this model. To this end,
since the information available will typically be incomplete, s/he will proceed by

making reasonable conjectures that at least explain the set of facts observed and

hypothesise other facts which s/he subsequently may test by performing experi¬
ments. Whether the scientist decides to conjecture a model or a set of possible

models, the only means available for doing so will be by conjecturing a theory
that characterizes it, which is more complete (has fewer models) than the theory

consisting only of the facts observed. Though, in general, it will not be possible
to characterize a single model up to elementary equivalence by using a discov¬

ery procedure of this sort, in a variety of interesting cases, single structures may

even be characterizable up to isomorphism (among countable structures) by such

techniques. Recently, a framework for studying scientific inference from this point
of view has been developed in the context of theoretical Computer Science (see
[Osherson & Weinstein 88]).

A person faced with "common sense" information about the world will behave

in a similar manner, assuming that, even though s/he is not aware of the answer

to some question, there is an answer. Using whatever means of intuition, common
sense and experience that s/he is capable of, s/he can conjecture an answer that
seems reasonable. To mention the inevitable bird example, suppose that you know
that Tweety is a bird and are wondering whether Tweety can fly. If you are type

A, you may assume that it can; if you are type B, you may assume that it cannot

fly. Either way, the point is this: you will conjecture a theory which has fewer
models than your observations, in an attempt to get at the ultimate truth about

your bird problem.

4.1 Minimal Consequence

For each of the cases described above, and in many more, concerning incomplete

information, whether this arises due to practical limitations or due to the nature of

the problem, the objective is to formulate a way in which an incomplete theory can

be completed, or partially completed. Generally speaking, this has been viewed as
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the problem of defining a new consequence relation which yields more conclusions
than the original theory, or, alternatively, extending the theory with new consistent
facts, with some ideology justifying their choice. Another way to view it, however,
is as the problem of choosing, among the models of a theory, one model or a

set of models, again with some intuitively motivated justification for that choice.
Minimal consequence encapsulates a seemingly natural choice: the set of minimal
models of a theory. The justification for this choice, on grounds of its applicability
to common sense reasoning, learning or scientific discovery, must await a precise
definition and study of its properties and is beyond the scope of this thesis.

Definition 4.1 Let C x be a partial order on the structures of a language £. A
structure is x-minimal iff it is minimal with respect to C.x.

Definition 4.2 Let T be an £-theory and (f> an ^-sentence. T \= x<f) (4> is an

x-minimal consequence of T) iff (f> is true in every x-minimal model of T.

From now on, we restrict attention to minimal consequence relations, so we will

find it convenient to subscript consequence relations in accordance with the mini¬

mality criteria that give rise to them, rather than the function T', as we have done
so far; similarly for satisfiability and the set of consequences. Thus, instead of

writing "|=jr," for ^"(T) = {M\ M is an x-minimal model of T}, we simply write

"f=x"; similarly we say that a theory is x-satisfiable when it has an x-minimal
model and write uCnx(T)" for the set of x-minimal consequences of a theory T.
This abuse of notation would make it difficult or obscure to discuss consequence

relations that cannot be articulated as minimal consequence, but it is preferable,
for our purposes, to avoid a proliferation of symbols.

Several choices of C x arise very naturally. In sentential logic we define min¬
imal models with respect to the subset relation (see Chapter 3). In first order
logic perhaps the most natural definition is in terms of the substructure relation,

proposed originally by McCarthy in [McCarthy 77], where it is called minimal

entailment, as a semantic counterpart of his domain circumscription formalism

(discussed in Section 4.3 below). Other partial orders can easily be defined for
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structures with the same domain, focusing on containment relations among the
extensions of some of the relations in the structures. We will call the earlier form of

minimal consequence (in terms of substructures) domain minimal consequence (or
d-minimal consequence) to distinguish it from the other types of first order minimal
consequence that we study in this thesis: predicate minimal consequence and for¬
mula minimal consequence (p-minimal and f-minimal consequence, respectively).
The ideas for p-minimal and f-minimal consequence can also be traced back to

McCarthy, to his formalisms for predicate circumscription [McCarthy 80] and for¬
mula circumscription [McCarthy 84], although a rigorous semantic definition of
f-minimal consequence first appeared in [Etherington 86]. p-minimal consequence
is based on minimization of the extensions of a set of relations in the language
— for structures with the same domain, interpreting all other symbols identically,
f-minimal consequence is also based on minimization of the extensions of a set of
relations in the language — for structures with the same domain, and interpret¬

ing all other symbols identically except for another set of relation symbols of the

language, whose extensions are allowed to vary.

4.2 Closed World Reasoning

One goal for Computer Science and AI has been to build into computer pro¬

grams the ability to "jump to conclusions." This has led to the develop¬
ment of frames [Minsky 75], scripts [Schank 77], truth maintenance systems

[McAllester 78], [McAllester 80], negation as failure rules [Kowalski 79], non¬

monotonic logics [McDermott & Doyle 80] and various forms of non-monotonic

reasoning systems, such as default reasoning [Reiter 80b] and circumscription

[McCarthy 80], [McCarthy 84].

One major theme shared by many approaches to common sense reason¬

ing and others addressing purely computational concerns in logic programming
(see, e.g., [Clark 78], [Kowalski 79]) and database theory (see, e.g., [Reiter 78],
[Gallaire et al 84]) is the assumption that all relevant positive information is
known (or represented). When faced with incomplete information, an agent op-
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erating under this assumption, popularly known as the closed world assumption,
will conclude that anything about the domain of interest which is not known to
be true is false. Minimal consequence, i.e., truth in all minimal models, is the

consequence relation expressed in this type of reasoning. The domain of interest
ma}' be the extension of a predicate (or predicates), the number of individuals in
the world, etc

The following are specific instances of the closed world assumption that govern

query evaluation in logic programming and most database systems:

1. The domain closure assumption— which states that there are no other indi¬
viduals than those in the database. Thus, for a given first-order theory T, the
domain of interpretation for all the models of T is restricted to the smallest
set which contains the individuals mentioned in the theory [Reiter 80a].

2. The Unique Names Assumption — which states that individuals with dif¬
ferent names are different. This assumption is invoked whenever it seems

reasonable to assume that all equalities among names, and, more generally,

terms, in a database are already known, i.e., different names denote different

individuals [Reiter 80a].

3. The negation as failure assumption — which states that facts not known to

be true are assumed to be false, i.e., any atomic sentence which is not a

(logical) consequence of a theory is assumed to be false.

In this thesis we will use negation as failure to mean the addition to a theory
of the negations of all atomic sentences that are not provable from the theory. In

logic programming negation as failure has a slightly more specific meaning, namely
the addition to the database of the negations of sentences whose proof results in
a finite failure [Clark 78]. This amounts to a weakened form of the closed world

assumption. This distinction, although of great practical import, will not be of
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concern in this thesis, since it is intricately connected with syntactic matters lying

beyond the scope of this work. 8

Each of the assumptions listed above concerns a specific aspect of a logic
database that is being "closed off." The domain closure and unique names as¬

sumptions can be realized by developing semantics restricted to Herbrand models
and interpreting equality as a non-logical symbol (i.e., viewing it as just another
relation symbol of the language). A Herbrand model is a model whose domain
consists of the closed terms of the language; each term is interpreted in a Herbrand
model as "itself," i.e., its interpretation is the syntactic object itself. If the (real)

equality symbol were present, a difficulty would arise when two terms were equated

by a theory, because then they would have to be interpreted as the same object.9
This is not a problem, however, if equality is treated as a non-logical symbol, i.e.,
if we leave it open to interpretation, as with the other relation symbols of the

language.

Given the restriction to Herbrand models, this approach to equality makes

it convenient to then collapse the unique names assumption under negation as

failure (since now sentences asserting equality of terms can be assumed false if

unprovable). For a comprehensive survey of work in semantics of databases and

logic programming see [Gallaire et al 84].

In order for the interpretation of negation as failure to be coherent, we must be
sure that the operation A(T), of adding the negations of atomic sentences unprov¬

able in r to the theories T with which we are concerned, is consistency preserving.

8Another point worth noting, concerning terminology, is that some authors identify
the closed world assumption with what we here call the negation as failure assumption
and do not view the domain closure and unique names assumptions as special cases of
it.

°This problem is overcome for languages with equality by taking equivalence classes
of terms under equality. Although this is straightforward, it means that the Herbrand

base, i.e., the set of equivalence classes of terms that form the domain of the Herbrand

model, will not in general be unique.
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For standard versions of logic programming — where programs are, in effect, sets
of universal closures of Horn clauses — the fact that A preserves consistency fol¬

lows from Herbrand's theorem and the existence of unique minimal models for
Horn theories in sentential logic (see also [Van Emden & Kowalski 76]). The op¬

eration A, however, is consistency preserving for a wider collection of first order
theories than universal Horn theories. In Chapter 3 we give a precise character¬
ization of the theories (i.e., subconditional theories) which have unique minimal
models in sentential logic. In Chapter 6, we discuss the possibility of using this
result to characterize the class of first order theories which possess unique minimal

Herbrand models.

It should be clear that the first order minimal consequence relations that are

the subject of this thesis (d-, p-, and f-minimal consequence) are not defined in
terms of minimal Herbrand models and represent a more general approach to closed
world reasoning. The domain closure assumption is formulated as d-minimality,
a minimality property defined in terms of arbitrary first order theories, not just
universal Horn theories (see Chapter 4, Section 2). Similarly, p-minimality and

f-minimality of structures can be used to enforce (generalizations) of negation as

failure and the unique names assumption for first order theories (see Chapter 4,
Sections 3 and 4). Indeed, a large part of the logic programming approach to

the closed world assumption can be accomodated via our treatment of minimality
for sentential theories via the reduction of satisfiability questions for skolemized
first order sentences to questions of satisfiability of sentential theories achieved by
Herbrand's Theorem.

The following sections give brief expositions of circumscription formalisms;
these aim to formalize the first order minimal consequence relations which we

discuss here, by introducing schemata or second order sentences that generate
domain closure or negation as failure assumptions for (arbitrary) finitely axiom-
atizable first order theories. Although subsequent chapters do not engage their
discussion further, since they concentrate on the purely semantical issues relating
to minimal consequence, circumscription formalisms inspired much of the work

reported in this thesis.
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4.3 Domain Circumscription
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Domain circumscription provides a syntactic way of conjecturing domain closure
axioms. The domain circumscription of a sentence A is the schema:

[(3x$(x) A Axiom(^) A A$)—>Vx<I>(x)]0 (2-4)

where $ is any formula with at least one free variable, [1Ir]0 denotes the closure
of a formula 4/ (i.e., the sentence obtained by prefixing T by universal quantifiers
with respect to all of its free variables), Axiom($) is the conjunction of 4>(a) for
each constant symbol a and Vxi,..., xn($(xi) A • • • A <h(xn))—*$(/(xi,..., xn)) for
each n-ary function symbol /, and A® is the result of rewriting A replacing each
universal or existential quantifier "Vx" or "3x" in A by "Vx4?(x)—>" or "3x$(x)A,"
respectively [McCarthy 77,McCarthy 80].

[Davis 80] shows that domain circumscription is sound, i.e., every instance of

(2.4) is true in all minimal models of A. 10 He also shows that the converse (i.e.,
completeness) is false and gives a partial completeness result for some classes of
theories.

4.4 Predicate and Formula Circumscription

Predicate circumscription and formula circumscription are rules of conjecture de¬

veloped by McCarthy [McCarthy 80,McCarthy 84] that provide partial charac¬
terizations of minimal consequence with respect to the extensions of some set of

predicates. In predicate circumscription the extension of this set of predicates is
minimized while the extensions of all other predicates are held fixed. In formula

10The proof in [Davis 80] omitted the case of theories with no constant symbols or

existential sentences and in fact did not work for the original formulation of domain

circumscription proposed in [McCarthy 77] which omitted the"3x$(x)" conjunct from
(2.4); (2.4) was proposed by Etherington in [Etherington 86] who also completed the
soundness proof in [Davis SO].
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circumscription there is an additional set of predicates that is allowed to vary while
the first set of predicates is minimized. Predicate and formula circumscription are

intended to model reasoning under the closed world assumption in the following
sense: we assume that the objects which can be shown to have a certain property

P, by reasoning from certain facts A, are all the objects that satisfy P.

Definition 4.3 The predicate circumscription of an n-ary predicate P in a sen¬

tence A(P) is the sentence schema:

A($) A Vx($(x) -» P(x)) -+ Vx(P(x) -> $(x)) (2.5)

A{P) is a sentence involving the predicate P and expresses that which is known
so far by the reasoning agent. The predicate P is singled out as that with respect

to which circumscription is carried out. The assumption is that all relevant facts
about P are stated in A(P) so circumscription enables a jump to the conclusion
that what does not follow from A(P) is actually false. $ is any formula of the

language of A on n free variables.

A generalization of (2.5) allows circumscribing several predicates jointly; jointly

circumscribing P and Q in A(P, Q)Ts given by the schema:

(A($, ) A Vx($(£) - P(x)) A (j7) -* Q(m

- (Vx(P(x) - *(a?)) A Wy(Q(y) - *(£)))

[McCarthy 80] shows that predicate circumscription is a sound formalization
of p-minimal consequence, by showing that every instance of the circumscription
schema is true in every p-minimal model of the sentence A{P). This generalizes to
the joint circumscription of multiple predicates. An argument given in [Davis 80]
for domain circumscription can be adapted to show that the converse, i.e., com¬

pleteness of predicate circumscription as a formalization of p-minimal consequence,
does not hold. [Perlis & Minker 76] give a number of partial completeness results
in the case of various classes of theories.

Formula circumscription is a generalization of predicate circumscription that
provides for the minimization of arbitrary formulas, rather than just predicates
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[McCarthy 84], Let T(R) be a second order sentence and R = {Pi,... ,P„}, a

set of predicate symbols that occur free in T(R). Let P(R, x) be a second order
formula in which the predicates in R and the variables in x = {ari,.. ., xm} occur
free. The formula circumscription of the formula P(R, x) in the sentence T(R) is
the second order sentence:

T(R) A V$((T(<£) A Vx(£($, x) -> E{R, x))) -> (VxP(R, x) — E($, x))) (2.6)

where E($,x) is the result of replacing every occurrence of the predicate letters
Pi in P(R, x) with predicate variables, of the same arity.

Etherington introduces the notion of f-minimal consequence as the semantic
notion underlying formula circumscription and proves soundness [Etherington 86].
He also observes that minimizing the extensions of arbitrary formulas is equivalent
to minimizing the extensions of some predicates, provided predicates other than
those being minimized are allowed to vary. [Perlis &: Minker 76] give a Unitary

completeness result for formula circumscription for a special class of theories.

5 Summary

As mentioned in the introduction, the starting point of this chapter is the problem
of formulating a reasonable and computationally viable means of reasoning with

incomplete information. The object of this chapter was to furnish the necessary

background so that we are in a position to define and tackle the part of this

problem that is the subject of this thesis — minimal consequence relations. To
this end, we introduced a rigorous framework for the study of reasoning with

incomplete information, based on a generalization of logical consequence. We
then surveyed work on reasoning with incomplete information that is related to

minimal consequence, aiming to provide a better understanding of the problem
and to further motivate the type of study undertaken in this thesis.



Chapter 3

Minimal Consequence in Sentential
Logic1

1 Introduction

This chapter presents a study of minimal consequence in sentential logic. The sim¬

plicity of sentential logic makes for a transparent exposition of many interesting

aspects of the model theory and formalization of minimal consequence. This is
of great significance to the development of automated systems for reasoning with

incomplete information, in particular logic programming systems employing nega¬

tion as failure. Certain properties particular to sentential logic, e.g., that there is a

decision procedure for validity, will reflect on aspects of minimal consequence. On

the other hand, sentential logic already contains enough complexity so that many
issues concerning important model theoretic features of more interesting languages
are raised. Significant aspects ofminimal consequence can thus be articulated and

studied in a clear and natural way. The formulation and detailed study of mini¬

mal consequence presented in this chapter, not only subserves the applicability of

logic programming formalisms, but also illuminates the development and study of
minimal consequence for more sophisticated languages.

Section 2 gives the definitions of s-minimal model and s-minimal consequence,

followed by examples that illustrate some of the key features of these notions.
'This chapter ft»"i 4x.pa.rt«i€<J of £ fapalasHar.' U VJti„s+«in/90Q.
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Section 3 contains an exposition of the central model theoretic properties of min¬

imal consequence, namely minimal satisfiability of satisfiable theories and non-

compactness. In section 4 we undertake a study of some interesting fragments;
here we define subconditional theories and compare them to conditional (or Horn)

theories; since this is of great computational import with regard to the consistent

application of negation as failure, we offer a syntactic characterization of the class
of subconditional theories and show that they are the largest class of theories that
remain consistent under the application of negation as failure. Section 5 deals with

complexity theoretic aspects of minimal consequence and subconditional theories;
we show that the minimal consequence relation is n° and not an(^ that even

in the case of theories with unique minimal models it is and neither r.e. or

co-r.e., while the question of determining whether a theory has a unique minimal
model is also n° and not E°-

2 Minimal Consequence in Sentential Logic

We begin by defining the notions of s-minimal model and s-minimal consequence.

Definition 2.1 Af b ^ (Af is an s-minimal model of T) iff A4 |= T and

VA\Af b r =» M £ M).

Definition 2.2 F f=s^ (<f> is an s-minimal consequence ofT) iff VA4(A4 (=SF =>

M b t).

Thus, a model At of a theory is s-minimal if the theory has no models that are

proper submodels of Af and a sentence f is an s-minimal consequence of a theory
r (or T s-minimally entails if f is true in all s-minimal models T. Note that
the symbol "bs" is used both as a relation between models and theories and as a

relation between theories and sentences, but no confusion should arise, since the

meaning will always be clear from the context. Within this chapter we will drop
the "s-" prefix from s-minimal model and s-minimal consequence. It was included
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in the definitions so that these notions could be differentiated from their first order

counterparts, and will only be used when the distinction needs to be emphasized.

Similarly we will often write "minimally satisfiable" instead of "s-satisfiable."

The following examples illustrate some interesting features of minimal conse¬

quence. In each of them it is assumed that T is a theory of a countable sentential
language £, determined by the set of sentence letters S = {p,-| i 6w}.

Example 2.1 Let T = 0. The set of models of T is V{S) and so 0 is the unique
minimal model for I\ Thus T A ... A ~>p„, for p,- £ S, 1 < i < n. T U

{p! A ... A pn} has a unique minimal model also, namely {p,| 1 < i < n}, so

T U {p: A ... A pn} ^3-ipi A ... A ~ipn.

We immediately see from this simple example that the relation ]=s is non-monotonic.

Example 2.2 Let T = {p2i V P2»+i| i £ u;}. Every model of T must contain either

P2» or P2i+ij or both, for each i 6 u>. The minimal models of T will be the ones

that contain exactly one of p2t- or P2«+i- So the set of minimal models of T is of

cardinality 2W, ie, the cardinal number of the continuum.

These examples depict two extreme cases: Cns(r) in example 2.1 is complete,
whereas Cns(T) in example 2.2 has continuum many models.

Intuitively, the number of models of a theory is an indication of its degree of

completeness. As more sentences are added to a theory, its number of models de¬
creases (if these sentences were not already consequences of the theory). Complete
theories have unique models and hence, unique minimal models. As we will see,

the number of minimal models of a theory is, roughly, an indication of the ease

with which it can be completed, while retaining its basic structure.

One systematic way in which a theory can be so completed is by adding the

negation of some set of sentences which are not consequences of the theory. Using
minimal consequence, the theory of example 2.1 can be completed by the addition
of the negation of every sentence letter in the language. The theory of example 2.2,
however can be completed in 2W different ways, but there is no apparent reason for
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choosing one over any of the others. The difference between those two examples
lies in that the former is completed in a very natural way, i.e., positive sentences

which are not consequences are now refuted by the theory, while in the latter, no
matter how we decide to complete it, some of the positive sentences which were

not consequences will now be refutable and others will become consequences.

Note that, in this, positive and negative sentences are not treated evenly. In

particular, positive information appears to be favoured, in the sense that it is
taken to be more significant — and significant in the sense that it is assumed that
it will be given if in fact it holds. Of course, we could take the opposite approach.
That is, T of example 2.2 can also be completed by the addition of the sentences

{p, | i € u}, thus making every positive literal valid (and thus favouring negative

information, in the sense that "what is not known is assumed to be true"), but
then all structure of T is lost. (The same, of course, holds for T of example 2.1.)

These observations indicate that adding the negation of a set of sentences that
are not consequences of a theory is a plausible way to complete that theory; it is

worthy of consideration, since, typically, it is not destructive to the structure of
the original theory and appears to conform with some human intuition, namely
that what is not asserted does not hold (although, at this point we would not like
to press this last issue). It remains to make this process more precise and examine
the cases where it is most likely to succeed.

Recall that another (equivalent) way to view the process of completing a theory
is as singling out one of its models. If a theory has a unique minimal model, this
would be an obvious choice. For theories that do not possess unique minimal mod¬

els, we can proceed in the same manner, by first narrowing down to its minimal
models and then picking one among those. The second step will necessarily em¬

body some arbitrariness. The idea of completing a theory by selecting one among

its minimal models corresponds to adding the negations of atoms which are not

consequences. Whether it is possible to consistently add all such sentences to the

theory, on the other hand, depends on whether the theory has a unique minimal
model. For the theory of example 2.1, which has a unique minimal model, we can

indeed add the negation of every atom (since T has no consequences that are not
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tautologies). For T of example 2.2, which is very far from having a unique minimal
model, we can add the set of sentences E = {~1(p2i A P2»'+i)l i £ but, although
for any i E u>, neither P2i nor P2t+i are consequences of T, T U {~>P2i, —"P21+1} is

inconsistent. Adding E to T corresponds to the first step above, of narrowing
down to T's minimal models, for it is easy to see that the set of models of T U E is

precisely the set of minimal models of T. The next step involves arbitrarily adding
either —ip2» or -lP2i+i to T (but not both).

We can now rephrase an earlier comment about the effect of the number of

minimal models of a theory. The number of minimal models of a theory is pro¬

portional to the degree of arbitrariness required in completing the theory and thus
theories that do not have unique minimal models will pose limits to the minimal

models method. This exposition, which was chosen because it separates the well
defined from the arbitrary aspects of this strategy of completing a theory, was in
terms of two steps, first narrowing down to the minimal models and then picking
one among these. Note, however that no connection is drawn between the first

step of narrowing down to the minimal models and the set of sentences added to

the theory. It may be felt that, since any arbitrariness is contained in the second

step for theories with more than one model, it would be adequate to only partially

complete a theory, by performing only the first step. However, as we see from the
next example, this is not always possible.

Example 2.3 Let T = {pt- V pj\ i E uj, j E u>, i ^ j}. T has sentences of the
form -ipi —> pj, for j ^ i, so in any model M of T, if pi g M, then for all j i,

Pj E M. Thus the models of T are those where at most one element is missing
and the minimal models of T are those where exactly one element is missing.

The importance of this example lies in the fact that the set of structures =

{Mi\ pi £ Mi, pj E Mi, i ^ j} cannot be characterized as the set of models of

any theory, as can be shown by a straightforward application of the compactness

theorem. Hence, Cns(r) = Cn(T) and there is no set of sentences E such that the
models of T U E are exactly the minimal models of T.
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We conclude that, in completing a theory, it is not always possible to first par¬

tially complete it (down to the minimal models) as was suggested in the discussion
of examples 2.1 and 2.2; as we see here, there is no set of sentences that could be
added to T so as to achieve this, since no extension of T has as its models exactly

the set of minimal models of T. On the other hand, if a theory has a finite number
of minimal models, it is always possible to find an extension of that theory that
has these as its models, since any finite set of structures can be characterized as

the models of some theory. Thus, it is possible to separate the well defined from
the arbitrary steps in completing a theory with a finite number of minimal models,
and the arbitrariness will be proportional to the number of minimal models. For
theories with unique minimal models the first step will be sufficient to complete
them. Thus, theories with unique minimal models form a special class and section

4 will be devoted to their study.

Although there are sets of structures that cannot be characterized as the models
of any theory, but that can be characterized as the set of minimal models of some

theory, there are also sets of structures which cannot be characterized as the

minimal models of any theory. Trivially, any set that contains structures M. and

M with At C M is such a set.' The question now arises whether there are sets

that do not contain any two structures such that one includes the other (in this
sense, incomparable structures), and which cannot be characterized as the set of
minimal models of any theory. The answer to this question is necessarily positive,
because the number of theories of a countably infinite language is of cardinality
2W, while there are 22" sets of incomparable structures. To show that there are

22" sets of incomparable structures, first note that there are 22" sets of structures

for any countably infinite language. Next, we define a 1-1 mapping h from the
set of all structures into itself, such that, if M and Af are two distinct structures,

h{M) and h(Af) are incomparable, thus embedding the set of all structures into
the set of all incomparable structures (from which it follows that they are of the
same cardinality). Let / : V(S) x to -> {0,1}, g : V(S) x u —► {0,1} and
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h : V{S) —► V(S) be defined as follows:

J 1 if pi E M
I 0 otherwise

= L|J) + i) mod 2
= {pi\g(M,i) = 1}

([_^J denotes integer division.) Intuitively, the effect of / is to represent a structure
as a string of O's and l's; g creates a new string by mapping each 0 in the string
created by / to a pair "0 1" and each 1 to a pair "1 0"; h then maps the strings
created by g to structures. Clearly, if AA C -A/*, then some element of Af not
in AA will be mapped by / to a 0 in AA and to a 1 in Af; thus, some element
will be mapped by g to a pair "0 1" in AA and to a pair "1 0" in Af; hence,

h(AA) will contain an element (corresponding to the 1 in the "0 1") which is not
in h(Af). Therefore, for any two distinct structures AA, Af, h(AA) and h(Af) are

incomparable, so any set of structures can be mapped to a set of incomparable
structures. Since the set of all sets of structures is of cardinality 22", it follows
that there are 22"' sets of incomparable structures, while there are only 2W theories
for any countably infinite language. Thus, there are (many!) sets of incomparable
structures that cannot be characterized as the minimal models of any theory.

A specific example of a collection of structures (in fact, a countable collection)
that cannot be characterized as the set of minimal models of any theory is the set

E u>}. As was the case with the minimal models of the theory in

example 2.3, any theory that is satisfied by all AA E 3ft', will also be satisfied by
the empty model (again, by compactness); but in this case, the empty model will
be the unique minimal model of that theory.

g(AA,i)

h(AA)
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3 Existence of Minimal Models

Due to the simplicity of sentential logic, the intersection of every chain (under the
submodel relation) of models of a theory will be a model of the theory and thus
every satisfiable theory is minimally satisfiable, i.e., has a minimal model. This is
the content of proposition 3.1T

Proposition 3.1 Every satisfiable theory is minimally satisfiable.

Proof: It suffices to show that any maximal chain of models of a theory

(ordered by the submodel relation) will contain a minimum element.2

Suppose that the set of models of a theory T contains a chain of models AT such
that AT C AT_i and Hi AT = A4, but M ^ T.3 Let S = M U {->p \ M |= _,p}.
At is the only model of E, thus T U E is inconsistent. By the compactness

theorem, there is a finite ACS such that T U A is inconsistent.

Let A = {pi,P2, • • - ,pm, ~"qi, ~"l2, • • •, It follows that

r |= ->(pi A p2 A ... A pm A ->qi A ->q2 A ... A ->qn).

:This proposition is related the well known result of [Van Emden & Kowalski 76],
which states that the intersection of the Herbrand models of a set of Horn clauses is

itself a model, in fact the unique minimal Herbrand model. The connection is via

the correspondence of the Herbrand models of a skolemized set of sentences to the

(sentential) models of the Herbrand expansion of that set of sentences.

2By "chain of models" here we mean a set of models of a theory that is linearly
ordered by the substructure relation (i.e., the subset relation, since we are now working
in sentential logic). A maximal chain of models is a chain of models such that there is
no chain of models that properly includes it.

3Note that we place no restriction on the cardinality of the language of T or the chain
of models AT.

Tjd* »t'i Leoima,.
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Since A C E, we have that M \= p\ A ... A pm and, therefore, for all Mi,
Mi [= pi A ... A pm- We also have that, for each j, qj ^ M, and hence there is an

Mk such that, for each j, qj Mk- (Recall that M is the intersection of a chain
of models Mi-)

It follows that Mk 1= Pi A p2 A ... A pm A ->A -ig2 A ... A -^n, and thus Mk is
not a model of T. This is a contradiction, so we conclude that M (= T. □

Corollary 3.1 Minimal satisfiability is compact.

Proof: Immediate from the proposition and the compactness of satisfiability in
sentential logic. □

Proposition 3.1 is of relevance with respect to some of the intended applications
ofminimal consequence, where, in general, it is crucial that any sentences added to

the consequences of a theory preserve consistency. As discussed earlier these have
to do with completing a theory by adding sentences true in all minimal models

(but not necessarily all models) to the theory. Clearly, if it were the case that
some theory has no minimal models, it would mean adding every sentence of the

language, which would result in an inconsistent theory. No such problem arises in
sentential logic, its language and model theory being so simple that every element
of a model corresponds to a proposition letter in the language, and there is no way

of constructing a chain of submodels such that their intersection is not a model of
the theory. However, minimal satisfiability of satisfiable theories is not retained
in the usual notions of minimal consequence for first order languages.[Davis 80]

Corollary 3.1 suggests that minimal consequence bears a strong similarity to

logical consequence and, in particular, that the minimal consequence relation may

be compact. As discussed in Chapter 2, the two (equivalent) formulations of

compactness for sentential logic are the following:

(i) If T (= <j> then there exists a finite ACT such that A (= <f>. (Compactness
of logical consequence)

(ii) If every finite subset of T is satisfiable, then T is satisfiable. (Compactness
of satisfiability)
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The equivalence follows from the fact that T [= <f iff T U j-1^} is unsatisfiable.
Due to non-monotonicity phenomena, however, the corresponding formulations of

compactness for minimal consequence and minimal satisfiability are not equivalent.
That is, it is possible that T \=s(f>, although T U {->(/>} is (minimally) satisfiable.

(For example, 0 |=;S-'P, but {p} clearly has a minimal model.) Thus the question as

to whether it is at all possible to construct a complete logical calculus for minimal

consequence is not settled by corollary 3.1 and to this end it will be necessary to

inquire whether, if a sentence is a minimal consequence of a theory, then it is a

consequence of a finite subset of that theory. The answer to this question is no.

Proposition 3.2 The minimal consequence relation is not compact, ie, there is

a set of sentences T and a sentence f such that (i) T |= sf, and (ii) VA C

T(A is finite A ).

Proof: Let T = I\ U T2, where

ri = {pi V /\ pi\ n > 1}, and
3<i<2n+l

r2 = {p2 v /\ Pi\n > 1}.
3<i<2n

Note that T f=s(pi p2) A (pi V p3), but for all finite ACT,
A ^»(Pi ^ P2) A (pi V p3). This is because T has exactly two minimal models:
one in which p\ and p2 are true and all other letters are false and another where

Pi and p2 are false and all other letters are true; both of these make

(pi p2) A (pj V p3) true. On the other hand, any finite subset A of T will fail to

minimally entail (px <-+ p2) A (pi V p3) for one of the following reasons:

(a) A n Ti = 0 and thus A kAspi V p3;

(b) A fl T2 = 0 and thus A (=s—<p2, but A ^=s~'p1, so A \£spi <->• p2;

(c) there will be a largest m for-which either the sentence px V I\3<i<mpi or the
sentence p2 V A3<i<mPi will be in A; supposing the former is the case, A
will then have exactly three minimal models:
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(i) Mi = {pi,P2>

(ii) Mi = {p3,---,Pm}

(iii) M3 = {pi,P3,P4, • • for m' <m

and pi *-* p2 will fail to hold in M3. Similarly for the case where the largest
m for which pm occurs in T appears in a sentence of the form p2 V A3<i<mPi-

We have exhibited a theory T and a sentence <f> such that T (=s^>, but for no finite
subset A of T, A \=3<f>. Thus, the minimal consequence relation is not compact.
□

The above result settles negatively the question of the existence of a complete

Unitary logical calculus for minimal consequence. Although the practical implica¬
tions at this point may appear very grim, there are, as we see in the next section,

fragments for which it is of demonstrated practical value. Moreover, the absence of

compactness attests to a greater richness of expression, a fact that is very relevant
to the obvious need in AI for more powerful formalisms.

4 Unique Minimal Models

The idea of adding the negation of every sentence letter which is not provable, is not
a novel one; it has been studied extensively in Computer Science in connection with

theorem proving for Horn clauses and logic programming, and is generally referred
to as negation as failure. In general, negation as failure as applied to a consistent,

incomplete theory results in an inconsistent theory. Consider, for example the

theory T = {p V q}. T is consistent but T' = TU {—-19} is inconsistent, although
neither p nor q is a consequence of I\ This motivates the search for a class of

consistent theories that remain consistent under the application of negation as

failure. A necessary and sufficient condition to this end is that a theory has a

unique minimal model and is given in the following lemma:

Lemma 4.1 Let T be a theory in a language £. fU {->p | T ^4 p and p £ £} is
consistent T has a unique minimal model.
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Proof: ( => ) Let Vne9 = {-ip | T p and p € £} and suppose that T U rne9
is consistent. Let M. f= T U rne3. Then AA — {p | T 1= p}. Hence, ifW |= T, then

AA C Af. Therefore, AA is the unique minimal model of T.

( 4= ) Suppose T has a unique minimal model AA. Note that

rne9 = {—>p| T Y= p and p £ £} = {—ip| 3Af{Af f= T and Af f= ~>p) and pg£}

and, since AA isfkminimal model of T, the latter equals {—>p| AA (= ~^p}. Thus
AA |= Tne9 and, therefore, T U Tne9 is consistent. □

Thus, the class of theories that can be completed using negation as failure is

exactly the class of theories with unique minimal models. Observe also that a

theory T with a unique minimal model shows a form of completeness: for each

sentence, (f> in the language of T, either T \=s(f) or T \=s->(j) (this fact follows directly
from the definition of minimal consequence). For this reason, theories that have a

unique minimal model will be referred to as minimally complete.

Definition 4.1 A theory is minimally complete iff it has a unique minimal model.

As was noted above, minimally, complete theories are significant to computer

scientists via their connection to negation as failure and therefore the question to

be addressed next is their syntactic characterization. The first candidate class of

minimally complete theories are conditional theories:

Definition 4.2 Conditional theories (or Horn theories) are sets of sentences each
of which is in of one of the following forms:

(i) P

(ii) ^q1 V ... V qm

(iii) ",«i V ... V ngmVp

Horn theories have been extensively studied in computer science and it is a well
known result that they remain consistent under negation as failure. Apart from
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the interest they offer in connection to negation as failure, conditional theories
have been an object of study in model theory because they exhibit a preserva¬

tion property for model intersections. A theory is said to preserve intersections
iff for any set of its models, their intersection is also a model. A converse of the
above is also true, namely, every theory that preserves intersections is equivalent
to a conditional theory. Clearly, a theory that preserves intersections must have
a unique minimal model. Thus conditional theories provide a partial characteri¬
zation of the class of minimally complete theories and, therefore, by lemma 4.1,

of the class of theories where negation as failure can be consistently applied. The

converse, however is not true: it is possible for a theory to be minimally complete
without preserving intersections. This is clear from the following trivial example.
Let F = {-ipV^Vr}; T has a unique minimal model, namely the empty set, but
it also has the models {p, q} and {p, r} whose intersection is not a model of I\ Of

course, T is not a conditional theory either, but T can be consistently completed

via negation as failure in this case, since it is minimally complete. Examples such
as this suggest a weaker preservation property for minimally complete theories,

namely that the intersection of a set of models of the theory contains a model of

the theory, and motivate the following definition:

Definition 4.3 A theory T is subconditional iff every sentence of T is in one of

the following the forms:

(i) Pn, n e I, I Cu

(h) VneJ ~"Pn v VneAT Pn, J Q uj, I< C u, J and I< finite, and J % I

In intuitive terms, a subconditional theory consists of a set of positive literals

(indexed by a set I) and a set of disjunctions; each of the disjunctions contains
one or more negative literals (indexed by a finite set J), at least one of which
does not appear in isolation as a positive literal, and zero or more positive literals

(indexed by a finite set K). The theory mentioned above is a subconditional theory.
Another simple example is the theory {p4,p7, -,p1 V p2 V p3, ->p2 V ~<p4 V p3 V p7}.
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The aim of this section is to provide a complete characterization of minimally

complete theories. We proceed by showing that the class of subconditional theories
contains exactly those theories that are equivalent to some minimally complete

theory. As was suggested earlier conditional theories fail in this respect due to

a slightly stronger preservation property. The preservation property required for

minimally complete theories is given in proposition 4.1 below.

Proposition 4.1 A consistent theory T is minimally complete the inter¬

section of every set of models of T contains a model ofT.

Proof: (=£>) Let T be a minimally complete theory and let AA* be the

unique minimal model of I\ Since AA* is minimal, it is contained in every model
of T, and thus, in the intersection of any set of models of T.

( 4= ) Let T be a consistent theory and suppose the intersection of any set of
models of T contains a model of I\ If Af and /C are minimal models of T, then
their intersection will contain a model AA* of T, but since Af and K are minimal,

Af = JC — AA*. □

Although proposition 4.1 is useful in emphasising the distinction between min¬

imally complete theories (which preserve a submodel of intersections) and condi¬
tional theories (which preserve all intersections), rather than showing that sub-
conditional theories have the desired preservation property, we will directly show
that subconditional theories are the desired characterization and thus obtain the

preservation property as a corollary.

Proposition 4.2 A theory T is minimally complete <==>■ T is equivalent to a

subconditional theory.

Proof: ( =£>) Suppose T has a unique minimal model AA. Let

I = {n|p„€A4},
- {p„| n € /} and

Tc = {<f | f is the conjunctive normal form of if and if G T}
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Thus,

TC = { V "IPn V V Pnl i e
nGJi nGKi

for some sequence of (finite) sets Jt- and K{. Note that rp U T0 is equivalent to T.

Let rc~ = {VneJi-7Tn V VneKi Pn \ i £ w}- rp U rc~ is equivalent to Tp U Tc and
therefore to T (for q £ J,- fl 7, {pq, Vngj; "'P* v Vngk{ Pn} is equivalent to
{Pq, VneJi-N} V VneKi Pn})-
Let rc* = {MnzJi-i^Pn V Vn£Ki Pn |» G w and Ji-I f 0}. rp U rc* is a

subconditional theory, so now it suffices to show that Tp U Tc* is equivalent to
rp u rc. rc* c rc~, so va/"(af |= rpur =» Af (= rp u rc*). Let <j> e rc~ - rc\
Then <f> — \lneKi Pn for some i. Now, since Tp U Tc is equivalent to T, M is a

model of <j>, so Ki fl I ^ 0, and therefore <j> contains a (positive) literal already in
Tp. Hence Tp U Tc* \= <f>. Therefore, V0 € rc~(rp U Tc* \= <j>), so Tp U Tc* is

equivalent to Tp U Tc .

( <£= ) Suppose T is equivalent to some subconditional theory T*. Let A4 = {pi\ i £
I}. Clearly, M satisfies every positive sentence in T*. Let <f> = Vngj, Pn V

Vn^Ki Pn £ r*. By the definition of subconditional theories, <j> contains a negative
literal -<pi such that pi £ M, so A4 }= <f>. M. is minimal since for any Af C y\d
there is a pi £ T* such that Jf Pi. □

Corollary 4.1 (Preservation theorem for subconditional theories) A theory T is

equivalent to a subconditional theory for every set of models of T, their
intersection contains a model of T.

Proof: Immediate, by propositions 4.1 and 4.2. □

The class of theories that are expressible as subconditional theories is the

largest class of theories that can be completed via negation as failure. This class

properly contains any theory equivalent to a Horn theory. In section 5.2 we will

compute the complexity of determining whether a theory is minimally complete

(and, hence, the complexity of determining whether it is equivalent to a subcon¬
ditional theory).
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5 Complexity
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So far in this chapter we have encountered various properties of minimal con¬

sequence for sentential logic that indicate that minimal consequence cannot be
formalised in the usual sense. In Section 3 we showed that, although minimal

satisfiability is compact, minimal consequence is not, thus settling negatively the

question of the existence of a finatary logical calculus for minimal consequence.

Minimally complete theories appear to have a relatively simple set of minimal

consequences and in the previous section we offered a complete characterisation

for minimally complete theories in terms of subconditional theories. It is thus

interesting to ask: How difficult is it to determine whether a theory is equivalent
to a subconditional theory? The method suggested by the proof of proposition
4.2 would be to put the theory in conjunctive normal form and then check to see

if it meets the conditions — obviously not an easy task. One may then wonder

whether there is an alternative characterisation of minimally complete theories

that would simplify this task, or whether the problem of determining whether or
not a theory is minimally complete is intrinsically difficult.

It is the aim of this section to make the above questions and observations

precise by means of complexity considerations, i.e., by determining whether the
relations or properties involved are recursive, recursively enumerable or of higher

complexity. Note that in this, sentences of a countable theory can be viewed as

natural numbers and theories can be viewed as sets of natural numbers or functions

from natural numbers into {0,1} (notation: "2). Thus, |=s is studied here as a

relation on w2 x u.

The arithmetical hierarchy classifies sets (relations) according to the quantifier

complexity of their syntactic definition:

Definition 5.1 (The Arithmetical Hierarchy).

(i) A set B is in Eq (n{j) iff B is recursive.
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(ii) For n > 1, b is in E° (written b G E°) if there is a recursive relation

R(x, yi,...,yn) such that

x € B 3yl\/y2^ys---QynR(x,y1,...,yn)

where Q is 3 if n is odd, and V if n is even. B is in 11° (written B G n°) if

xeB <==> Vyx3?/2Vy3 • ■ • QynR(x, yx,..., yn)

where Q is 3 if n is even, and V if n is odd.

(iii) b is in A° if b g s° n n°.

(iv) B is arithmetical if B G Unew(^n U n°).

The class of arithmetical relations is thus the smallest class of relations contain¬

ing the recursive relations and closed under number quantification. E° relations
are relations definable by a formula with n alternations of quantifiers, beginning
with an existential quantifier, and similarly, 11° relations are definable by a formula
with n alternations of quantifiers, beginning with a universal quantifier. Note that

Aq = A° = E° = 11° = the recursive relations; E° = the recursively enumerable

(r.e.) relations; and 11° = the complements of recursively enumerable (co-r.e.) re¬

lations. For relations A and B we say that A is many-one reducible (m-reducible)
to B iff there exists a recursive function / such that x G A iff f(x) G B. A
relation is called E°-hard iff all E° relations on u> are m-reducible to it; a relation
is called E°-complete iff it is in E° and all E° relations on u are reducible to it

(i.e., B is E°-complete iff B G E° and B is E°-hard). Similarly for 11°-hard and

H^-complete. (Note that the notions of "complete" and "hard" are only defined
for relations on natural numbers and that if a relation is "hard" or "complete" at
some level of the arithmetical hierarchy, then it is not included in any level lower
than that.)

The analytical hierarchy is defined in a parallel manner, with quantifiers rang¬

ing over subsets of the natural numbers (as opposed to natural numbers). The
levels of the analytical hierarchy are similarly denoted A^, E^, and 11^; these again
correspond to relations definable by formulas with n alternations of set quantifiers.

/
/
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For a countable theory T and a sentence <j> in the language of T, we will consider
the complexity of the following questions:

1. r \=s<j>7

2. Is T minimally complete?

3. r \=3<f>1 for T minimally complete

The equivalent questions for logical consequence (in classical sentential logic)
are: (1) r.e.; (2) 11°; and (3) recursive. For minimal consequence, as we will see,
the complexity of these questions will be: (1) 11° (and not E° ); (2) 11° (and not

E° ); and (3) A° (and neither £° nor 11° ).

5.1 Complexity of the Minimal Consequence Relation

The failure of compactness for minimal consequence indicates that the minimal

consequences of a theory T may not be recursively enumerable in T. The aim of
this section is to show that, in fact, the minimal consequence relation is 11° and
not £° . Indeed, we will exhibit a recursive theory T such that {<jS| T (=*<?!>} is

II°-complete.

From the definition of minimal consequence we can obtain the first, very loose,

upper bound; recall that

r K<f> *=* VAd(Ad KF =* M h <f>)

and

M\=ST <*=» M h r and \/AT(Af |= T =► N £ M).

Thus, T 1=s(f> can be expressed by the following formula:

yAA~SJ\f(Ad Y1 F or(M C Ad Fj or

The structures in sentential logic for a countable language are countable, so the

quantifiers of this formula can be taken to range over subsets of to; A4 j= F and
J\f C M are arithmetical relations; therefore it follows that ^=s is a II2 relation,
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i.e., is definable by an V3 formula with the quantifiers ranging over sets. The strict
11° upper bound will be obtained by showing that f=s is definable by an V3 formula
with the quantifiers ranging over numbers, in proposition 5.2. Lower bounds will
be established via many-one reduction of sets of known complexity; proposition
5.1 gives the strict lower bound: 11° •

As a prelude to this, first note that it is easy to modify the non-compactness

example from proposition 3.2 and obtain a many-one reduction of K, the set of
indices of functions that diverge on the diagonal. K is a II°-complete set. From
this it follows that the minimal consequence relation is not r.e.. Indeed, lemma 5.2

employs an even simpler construction to this end, namely that of a theory of the
form: {p Vgq, p V q2, ...} U {<7„| n E I}, for some set I C u. It is easy to see that, if
I = u>, then all the disjuncts of the above theory are subsumed by the second part

containing isolated literals and, therefore, p will be false in all its minimal models.
A generalization of this observation is the content of the following lemma:

Lemma 5.1 Let T = I1 U T2 U T3,- where T1 = {p V qn\ n E I}, T2 = {qn\ n E J},
and T3 is a consistent theory which does not involve p or qfor any i E I U J.

Then T [^"'P <=>■ I C. J.

Proof: Since T3 does not .involve any of the same letters as T1 and T2 we

have that

{m\ m Kr} = {m um\ m Kr1 u r2 and n Kr3} (3.1)

We also have that

M. |= T1 U T2 (p E M or Vi E I qi € M) and \/i E J q\ € M

and thus

M bsF1 U T2 M = i E / U J} or

(M = {p} U {g,| i E J} and I % J).

From (3.1) it now follows that

T t=sW I Q J.
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□

The notation \p]n will be used to denote a conjunction of p, n times: [p]1 = p

and [p]n+1 = ([p]n A p); (n,m) will be used to denote an encoding of the ordered
pair (n, m) ((, ) is a recursive bijection between uxu and u;). We assume a fixed
enumeration of the partial recursive functions. Thus cpn will denote the nth partial
recursive function. For a given partial recursive function <pn we say that <pn(x)
converges iff <pn is defined for input x and write <pn(:r) j; otherwise we say that

<pn(x) diverges and write <pn(x) j. Recall that Cns(T) denotes {</>|T |=s0}.

Lemma 5.2 Minimal consequence is not r.e., i.e., there is a recursive set of sen¬

tences, T, such that Cna(T) is II°-hard.

Proof: We show that minimal consequence is not r.e. by exhibiting a

recursive set of sentences T such that

Vn(T \=s^pn ■$=$■ n £ K). (3.2)

where

K = {e|<pe(e) |}

i.e., the set of indices of partial recursive functions that are defined on the

diagonal. K is a E°-complete set (r.e.) and thus K (its complement) is

II°-complete, so from (3.2) we obtain that \=s is not r.e..

Let {pn|n £ cu} U {q(n,x)\ n,x (E u} be a set of pairwise distinct sentence letters.
To show (3.2), let T = Utkew Tn, where

l^n {Pn V ^(n.x) | U, iT £ w) U {q(n,x) I ~*T(jl, Tl, X^j, % £ tu)

T(e,n,m) 4=>- the eth Turing machine with input n has converged in m steps

(T is the recursive Kleene T-predicate)

T is a recursive set of sentences. By lemma 5.1 and the definitions of T and K

we have that:

r Nap™ <==> {f| ->T(n,n,i), i € u} = to «=> <p„(n) t n £ ~K

□
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Proposition 5.1 There is a recursive set of sentences T such that Cns(T) is IIj-
hard

Proof: Let X = {n| Vx3yR(n,x,y)}, R a recursive relation, be a complete 11°
set of numbers. We show how to construct a recursive set of sentences T such

that X is m-reducible to Cns(T).

Let {pn\n £ w}U {q^x)\n,x £ u} be a set of pairwise distinct sentence letters.
Let T = {pn V q(n,x) \ n,x G u>} U {[^<n,ar>]2/1 R(n, x, y)}. Note that, by lemma 5.1,
(i) for each n,x e u,T [=*<?<«,*> iff 3yR(n,x,y), and (ii) T \=3->pn iff for each x,

T (= q{n,x)- Hence, n G X V □

Corollary 5.1 |=s is not a E° relation on "2 x w.

Proof: The corollary follows directly from proposition 5.1. □

Proposition 5.1 and corollary 5.1 establish a lower bound on the complexity of
minimal consequence. Intuitively, proposition 5.1 expresses the fact that deciding
whether an arbitrary sentence is a minimal consequence of a given theory is at

least as hard as deciding, given an index of a Turing machine, whether that Turing
machine eventually halts at every input. The next proposition establishes that
the lower bound on the complexity of the minimal consequence relation given in

corollary 5.1 is the best possible.

Proposition 5.2 \=3 is a n° relation on "2 x w.

Proof: The proof proceeds by showing that T Y=S<J> is a E° relation, from
which it follows that the relation is n° . Note that T ^s(j) is equivalent to:

3M(M KF and M <f>) (3.3)

Let Con(T) 4=^ T ^ p A ->p (i.e., T is a consistent theory). Con is a n°
predicate. It suffices then to show that (3.3) is equivalent to:

3A(A is finite & Con(P U A) & ^Con(A U {</!>}) &

Wi(Pi G A -Con(T U A" U {-pj)),) (3.4)
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where A- = {—>p \ ->p E A}. (Note that Vz is a bounded quantifier and hence
that (3.4) defines a E° relation on w2 x u.)

( (3.3) =>- (3.4) ) Let M = {p\p E Ad} U {-^p |p ^ Ad}. Observe that

Ad ^ <{> => 3A C M(A finite &->Con(A U {<?!>})) (3-5)

and

Ad Kr => VA C M(Con(T U A) &

Vz (pi € A =>■ ~>Con(T U M~ U {_,pt})) )

=>■ VA C M(Con(T U A) &Vz(p; E A =>■

3Em,» Q M~(Em,- finite &: -iCon(r U Em,- U {~,Pi}))) )

(by compactness)

VAC M(Con(T U A) & Vi(p,- 6 A =►

3Em,- C finite &

-Con(ru 1J Em,-U {-p,}))) )
{i | PiGA}

=» VA C M 3E QA~ (2 finite & Cow (T U A)&

Vz(p,- € A =>■ -iCon(r U E U {—'p,-}))) ) (3.6)

From (3.5), (3.6) with (3.3), we obtain (3.4).

( (3.4) =>• (3.3) ) Suppose (3.4) and let A be such that

A is finite &; Con(r U A) & ->Ccm(A U {4>}) &

Vz(p,- E A =£» -iCon(r U A- U {~'Pi))) (3-7)

Note that for all A'

->Con(A'U {<j>}) =>■ VAd(Ad (= A' =*> Ad ^ <^) (3.8)

and

Con(ruA') =* 3Ad(Ad KruA'). (3.9)

From (3.7), (3.8), and (3.9) it follows that

3Ad(Ad Kru A&Ad ^ <j>). (3.10)
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Now, it suffices to show that

«M Kr U A => M. (=sr,

since (3.3) follows immediately from (3.10) and (3.11).

Suppose M (=sr U A and 3Af' C Ai(JV H^r). From this we have that

3AT c M(J\f [=ruA"&^^ru A).1
So

3i(pi E A & Con(T U A- U {_,pt'}))

which contradicts (3.7). □

5.2 Complexity of the Minimal Completeness Property

In a computational setting it is necessary to have a way of determining whether,

given an arbitrary theory, it is minimally complete, in a straightforward and me¬

chanical fashion. Of course, one such method is suggested by the construction in
the proof of proposition 4.2, which involves checking whether the theory is equiv¬
alent to a subconditional theory, but this requires that the entire theory be taken
into consideration, even in the case where only one new sentence is being added
to a minimally complete theory. Thus the characterisation of minimally complete
theories in terms of subconditional theories seems lacking. In light of complexity

considerations, however, we will see that the perceived defects of a characterisa¬
tion based on subconditional theories stem from the intrinsic complexity of the

problem of deciding minimal completeness.

Proposition 5.3 The set MC of minimally complete theories is 11° and not E°.

Proof: For any theory T we have that

r e mc vv>(r |=scj) or r j=s-i<^). (3.12)

It follows from 3.12 and proposition 5.2 that mc is II" and it follows from (the
proof of) proposition 5.1 that mc is not E°. □

The pirst conjunct follows fro™ Jl'psV/ r dr\6 -Hie second (olloivs frnni
JtK.ru A aid JTCJI.

57

(3.11)
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In order to assess the usefulness of minimal completeness it is necessary to

consider a further question: what is the complexity of minimal consequence for

minimally complete theories? Consider the case of a pure conditional theory or

a recursive set of sentences which is known to be minimally complete; does this

knowledge affect the complexity of deciding minimal consequence, which as we

have seen is 11° and not E°? The answer to this question is negative, as one might

suspect by inspecting the proof of proposition 4.2; notice that the construction in
that proof assumes that the theory T has a unique minimal model, corresponding

exactly to the atomic consequences of T, but the difficulty in generating the model
from an arbitrary minimally complete set of sentences is apparent.

Proposition 5.4 For minimally complete theories, minimal consequence is A°
and neither E° or 11°.

Proof: In a minimally complete theory T

V<Kr \=,<t> <=> r (3.13)

So minimal consequence is A° for minimally complete theories. Suppose it is
either 11° or E°. From (3.13) we obtain that it is in fact both, so we have that it
is A° . Let T = {[pe]fc| T(e, e, k)}. Note that T is a recursive set of sentences and
it is minimally complete. We now have that

T \=3Pe <=> e E K

and thus a decision procedure for K, which is a contradiction. □



Chapter 3. Minimal Consequence in Sentential Logic 59

6 Discussion

Having motivated the study of minimally complete theories by computational con¬
siderations, it is natural to ask what bearing these results have on computational

problems, since they were generally obtained in connection to infinite theories. As
was discussed in Chapter 2, in semantics of logic programming, one is often led to

consider the set of ground instances of a (finite) database; in general, this is an

infinite propositional theory. Hence, these results suggest interesting extensions of

logic programming. Second, although no clear connection has been made to date,
there is much evidence that the complexity of a problem restricted to finite objects

is generally connected to that of the unrestricted case (see, e.g., [Stockmeyer 87]);
for example, a very high complexity for the problem of deciding minimal conse¬

quence between a theory and a sentence suggests a high degree of intractability
for the problem of deciding minimal consequence between two sentences.



Chapter 4

Minimal Consequence in First Order
Logic

1 Introduction

This chapter presents a study of minimal consequence in first order logic. A de¬
tailed development of the theoretical aspects of minimal consequence in first order

logic provides a firm basis for the various circumscription formalisms that are of
interest to researchers in AI. The study of minimal consequence in sentential logic
has prepared the ground for this elaboration, by exposing many pertinent prop¬
erties of minimal consequence for a very simple language. Many such properties
extend naturally to first order languages, but here we must expect that with the
added richness of expression there will be an ensuing increase in complexity, all
around. To begin with, many different notions of minimality appear very natural
and equally worthy of investigation. We will restrict attention to three of these,
which underlie McCarthy's domain, predicate, and formula circumscription. We

will begin by considering domain minimal consequence both for historical and
motivational reasons.

Historically, domain circumscription was the first concept of circumscription
introduced [McCarthy 77], and intuitively, it is the clearest, as it relies on familiar
model theoretic notions (e.g., that of a submodel). In order to define the relation

60
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of domain minimal consequence, to be written |=d, (and, subsequently, of predicate
(R)

minimal consequence and formula minimal consequence, to be written |=p and
respectively), we will need some model theoretic notions. All such notions

assumed here are defined in a standard way, as in [Chang & Keisler 73] — Chapter
3 provides the necessary background to the key definitions and notation used here.

Sections 2, 3, and 4 provide definitions for domain, predicate, and formula
minimal consequence, respectively, by analogy with the usual definition of logi¬
cal consequence in first order logic. The definitions are followed by a number of

examples that, in each case, illustrate the more immediate properties of the re¬

lation defined. In contrast with the familiar notion of logical consequence, which
is resilient to expansions of the non-logical vocabulary, minimal consequence is

very sensitive to such changes; for example, a theory that has no minimal mod¬
els in one language may have minimal models in another. The lack of minimal
models for satisfiable theories has been a matter of concern in the circumscription

literature (for example, see [Davis 80,Etherington 86]) because it lights a danger

signal for circumscription-based computational systems: any system that uses cir¬

cumscription to make "common sense" conjectures, runs the risk of introducing
inconsistencies into its database, in so doing. Sections 2, 3, and 4 conclude with
resiilts on this topic, showing that any satisfiable theory can be extended to a

theory (in an extended language) that has minimal models and makes true the
same sentences of the original language as the original theory. Moreover, if the

language is finite, this can be accomplished with the addition of finitely many

new symbols to the language and finitely many sentences to the theory; in fact,
in the case of domain minimal consequence, the extension to the language suffices
— the original theory in the extended language will have minimal models. Next,
in section 5, we examine the relationship between domain, predicate, and formula
minimal consequence and present results on the exact connections among these.
Section 6 will review and extend the investigation of model theoretic properties of
minimal consequence, with particular emphasis on properties underlying practical

applications.

As was the case with most results in the previous chapter, the results in this
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chapter are obtained restricted to finite or countable first order languages — in this

case, languages consisting of a finite number of relation, function, and constant

symbols — since uncountable languages do not appear to be of much practical
use. In most cases, however, this restriction is not necessary and the results are

easily extended to arbitrary first order languages.

2 Domain Minimal Consequence

2.1 Preliminaries

Domain minimal consequence (or d-minimal consequence) aims to capture an in¬
tuitive notion that "the objects required by a certain theory are all there are" (in
this sense it "circumscribes" the domains of the models of a theory). Domain min¬
imal consequence was first introduced by McCarthy in [McCarthy 80], where it is
called minimal entailment, as the semantic counterpart of domain circumscription

(discussed in Chapter 2).

Definition 2.1 Let M. and Af be £-structures. M. CdJ\f (At is a d-submodel of

M) iff

(i) MC1V;

(ii) Rm is the restriction of RU to M, for each relation symbol R £ £;

(iii) fM is the restriction of to M, for each function symbol / 6 £ and
cM = for each constant symbol c £ £.

Note that the definition of a d-submodel is the same as the standard definition

of a submodel (or substructure) in model theory. It is included here for com¬

pleteness and so that it can be compared and contrasted with the definitions of

p-submodel and f-submodel which are to follow.
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Definition 2.2 Let M be an ^-structure and T an £-theory. A4 \=dT (M is a

d-minimal model of T) iff M |= T and for every Af such that Af [= T, if AT C dA4,
then Af = A4.

A d-minimal model is thus a model with no proper d-submodels.

Definition 2.3 Let T be an £-theory and <f) an ^-sentence. T \= dcf> (<f> is a d-
minimal consequence of T) iff 4> is true in every d-minimal model of I\

Example 2.1 Let T = 0 (the empty theory), in a language that contains no

constant or function symbols, but contains at least one one-place predicate symbol,

P. The d-minimal models of T are those with singleton domains. Since all such
models make true sentences of the form 3xP(x) —► VxP(x), for any predicate

symbol P in the language, we have that T \=d3xP(x) —* VxP(x).

This example illustrates the non-monotonicity of d-minimal consequence. Let
A = {3a;P(a:), 3x-iP(x)}. Clearly, T C A, but A \£d3xP(x) —> Va:P(x), since the
minimal models of A have exactly two elements.

Notice that the phenomenon illustrated by example 2.1, namely the non-

monotonicity of d-minimal consequence, results from the following feature of d-
minimal consequence. A sentence is a d-minimal consequence of a theory if it
is true in all the d-minimal models of the theory. Whereas an extension L' of a

theory V always has at most the models that T has, it may have d-minimal models
which T lacks (of course, T may also have d-minimal models which T' lacks). This
is what accounts for the non-monotonicity of notions of minimal consequence in

general.

Example 2.2 Let T = {P(a),P(6)}. The d-minimal models of T are one or two

element structures in which the extension of P contains the whole domain. So we

have, for example, T \=dVxP(x) and T f=A/a:(a: = a V x = b).

This example serves to clarify what is meant by circumscribing the domain of
a theory, as defined here: d-minimal consequence neither forces different interpre¬
tations for the constant symbols nor does it force the same interpretation, as we
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admit as d-minimal models both those where elements have unique names and

those where they do not. Thus there can be no connection between d-minimal

consequence and the unique names assumption.

Example 2.3 [Davis 80] Let

T = {3xVy-is(y) = x, VxVy(s(x) = s(y) —► x = y)}.

Here T is intended as a theory of the natural numbers with the usual successor
function. Any model of T contains an infinite chain of elements generated by the
function s, isomorphic to the natural numbers (usually referred to as a standard

chain), and possibly other chains unbounded in one or both directions (since the
theory only requires one element without predecessor) or finite cycles. Thus, every
model of T contains a proper d-submodel isomorphic to the natural numbers,

obtained by dropping all but one standard chain and one or more elements from
the origin of the standard chain. Since any such d-submodel satisfies T, it follows

immediately from the definition that T has no d-minimal model.

Observe that from this it follows that T d-minimally entails every sentence,

since by the definition it is vacuously true that every sentence holds in all d-
minimal models of T, as T has no d-minimal models. The following definition is
natural in this connection:

Definition 2.4 T is d-satisfiable iff T has a d-minimal model.

T as defined in example 2.3 is thus a satisfiable first order theory which is not

d-satisfiable.

2.2 Existence of Domain Minimal Models

The existence of satisfiable theories with no minimal models has been of some con¬

cern in the circumscription literature (for example, see [Davis 80,Etherington 86]).
For the purposes of modelling common sense reasoning, it is desirable to have a
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computational system that jumps to conclusions which are always consistent with
its database (given that the database was originally consistent). Note that al¬
though the concern is valid, it does not suggest there is anything wrong with the

concept of minimal consequence nor with circumscription formalisms. Rather, it
indicates that caution must be exercised in employing circumscription in a com¬

putational system to generate plausible conjectures. Nevertheless, we feel that,

given the computational barriers posed by consistency checking, this is indeed a

real problem, to be addressed at the theoretical level, as opposed to the applica¬
tions level.

In brief, there are two ways in which to dispense with the difficulty of satisfiable
theories that are not minimally satisfiable. One is to redefine the submodel relation
and the notion of minimality so that some (or all) models of a theory have a

minimal submodel — if this is possible. The other is to identify large classes of
theories where this difficulty does not arise and to argue that these cover all cases

(theories) that would be of interest in our application, except perhaps for a small
number of contrived examples. Efforts in the first direction could, for example,

propose to redefine a minimal submodel to be a model of the theory with no

proper non-isomorphic submodels; under this definition the theory of example 2.3

would be d-satisfiable, but it is still possible to construct theories that are not (see
Chapter 6). Efforts in the second direction will typically formulate a syntactic
restriction that is judged to be general enough to include all the theories that
are of interest in applications or, at least, a logically equivalent theory for each
of these (this type of approach is taken in Chapter 3, Section 4, where we define
sub conditional theories).

This thesis explores the latter approach. This section addresses the problem

by showing that, although there are satisfiable theories that are not d-satisfiable,

every satisfiable theory is d-satisfiable in a finitely extended language. Clearly, this
solves the problem and more: in classical first order logic extending the language of
a theory cannot possibly alter the set of its consequences (in the original language),
thus it can do no harm to suppose there are some extra symbols in the language
that are not used in the theory and, therefore, every satisfiable theory (not only
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those of interest in practical applications) is d-satisfiable. More importantly, this
can be accomplished with the addition of at most finitely many new symbols.

Example 2.3 suggests the possibility that theories which are not d-satisfiable
may have d-satisfiable extensions. This is in fact the case, as shown by the theory
f = T U {Vx-'5(x) = 0}. Note that, up to isomorphism, T' has as its unique
d-minimal model the natural numbers with the usual successor function. This is

due to the fact that some of the expansions of the models of the theory in the
old language to the new language will become d-minimal. In the example above,

intuitively what happens is that the constant 0 somehow "grounds" the infinite
chain of submodels; 0 can be interpreted as any of the elements of the domain

of a model of T' (since there are no axioms governing its interpretation) but if
it is interpreted as the first element of an infinite chain of successors (i.e., its
usual interpretation), then the model will have no proper d-submodel, since a d-
submodel must give the same interpretation to 0. Thus, if a model interprets 0
and s in such a way that 0 is the first element of an infinite chain of terms defined

by the interpretation of s, that model will be d-minimal. Thus T' is a d-satisfiable

extension of a theory which is not d-satisfiable.

It is interesting to note that all d-satisfiable extensions of T use new vocabulary.
Observe that every model for a satisfiable extension of T contains a standard chain,
thus any such extension within the language {s} will have no minimal model (by
the same argument that T is not d-satisfiable). Moreover, the addition of the
sentence {Vx-is(x) = 0} to T is not necessary in order to make T d-satisfiable and
it serves only as a means of introducing the constant 0 to the language; it would
suffice simply to consider F to be a theory of the language {3,0}, instead of {s}.
Indeed, we see that the addition of a single constant symbol to the language of
F, not only renders it d-satisfiable, but also forces all its d-minimal models to be

isomorphic to the d-minimal models of IT", so that T and T' in the language {3, 0}
have the same d-minimal consequences.

The fact that the same theory can have different d-minimal consequences,

depending on the language of which it is considered to be a theory, represents
a radical departure from familiar first order model theory. In the case of logical
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consequence we can leave the language of a theory unspecified and it can safely
be assumed to be the set of symbols occurring in sentences of the theory, since

they must be in the language; it makes no difference to the consequences of the

theory in this restricted language, if there are additional (unmentioned) symbols
in the language. For d-minimal consequence, on the other hand, we see that the

language of a theory plays a very important role. We will continue to define it

implicitly, as the set of symbols occurring in an axiomatization of the theory, but
note now that accordance to this rule is significant.

It is also useful to pause briefly to consider some of the particular effects of the
choice of language on the d-minimal consequences of a theory in that language.
As noted above, the addition of a new constant symbol to the language can turn a

theory that is not d-satisfiable into a d-satisfiable one. This is due to the fact that
some of the expansions of the models of the theory in the old language to the new

language will become d-minimal and it suggests the significance of the availability
of names in the language for elements of the domain of its models. The following
definition will be useful:

Definition 2.5 Let M. be an ^-structure. A4 is called nameable iff for all a 6 M

there is a closed term t £ C such that tM = a.

Nameable structures can be useful in shedding some light into the general ques¬
tion of existence of d-satisfiable extensions for satisfiable theories. For example,
once all the elements of the domain of a model M. are linked to a term (i.e.,
they are "named"), if any of them is eliminated from the domain, the resulting
structure will no longer be a submodel. Any £-structure can be expanded to a

nameable £'-structure for an appropriate choice of C' (see lemma 2.1 below) and
hence, any satisfiable T-theory is a d-satisfiable £'-theory f°r appropriate choice of
C. Moreover it is possible to achieve this with a finite extension of the language.
This is the content of proposition 2.1 below.

Lemma 2.1 Any countable C-structure M can be expanded to a nameable C-
structure M' such that
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(i) C C £;

(ii) £ — C is finite; and,

(Hi) Ai' and Ai make true the same C-sentences.

Proof: For the case where the ^-structure Ai is finite, let

£ — C U {ci,..., cn}, where n = \M\ and c,- $ C, i = 1,..., n. Now, let
Ai1 = (Ai, ai,..., an), where {ai,..., an} = M, i.e., the constants c1;..., cn are

interpreted by the elements of the domain of Ai (thus Ai' is nameable) and all
other symbols receive the same interpretation in Ai' as in Ai, and thus make
true the same £ sentences.

If Ai is countable, i.e., if M = {ai| i £ u>}, where (aj| i £ is an enumeration of
M without repetitions, let £ — C U {c,/}, / ^ C, c C. Let Ai' = {<

ai)ai+i > |i 6 w}), i.e., c is interpreted by ao and / by the successor function
on the elements of the domain of M. (relative to the ordering imposed by their
enumeration {aj| i 6 w}), and all other symbols receive the same interpretation
in .W as in M., and thus make true the same ^-sentences. For every aj, a; =

/(/(• *' /(c) '' ~))M> (i applications of /) and thus JA' is nameable. □

Lemma 2.2 If M. is a nameable C-structure then M. is a d-minimal model of

every C-theory of which it is a model.

Proof: Suppose M is a nameable ^-structure. Then M has no proper

submodel, i.e., if A4l CdJA, then A4' = A4, since for any a £ M we have:

a E M => 3t € C a = tM ( since M is nameable)

=> 3t G £ a = tM ( since Ai' CdAi)
=$> a £ M'

But since Ai has no proper submodel, if Ai f= T, then Ai f=^r. □

Proposition 2.1 Any satisfiable C-theory is a d-satisfiable £-theory, for some

£ D C, where £ — C is finite.
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Proof: Let T be a satisfiable £-theory. By the downward Lowenheim-Skolem
theorem1 T has a countable model, M. By lemma 2.1, M, can be expanded to a

nameable £'-structure, M', by the addition of a finite number of new constant and
function symbols to C and, moreover, M and M! make true the same sentences
in £. Thus, if M. (= T, then M.' \= T and by lemma 2.2 M' will be d-minimal, so
T is a d-satisfiable £'-theory. □

As we will see in the following sections, similar results apply to other notions
of minimality (predicate and formula); sections 3 and 4 also conclude with some

results on this topic, showing that it is possible trivially to extend satisfiable
theories with no minimal models to theories in an expanded language that have
minimal models.

3 Predicate Minimal Consequence

3.1 Preliminaries

Predicate minimal consequence (or p-minimal consequence) aims to capture the
notion that "the objects that can be shown to satisfy a certain property P by

reasoning from certain facts A are all the objects that satisfy P." In this sense

it "circumscribes" the extensions of one or more predicates i.e., it minimizes the
sets interpreting some of the relation symbols of a theory. Predicate minimal con¬

sequence was first introduced by McCarthy in [McCarthy 80], where it is called
minimal entailment, as the semantic counterpart of predicate circumscription (dis¬
cussed in Chapter 2).

Definition 3.1 Let M. and M be /^-structures and let R be a set of relation

symbols in £. M. C^"J\f (J\A is a p-submodel of jV with respect to R) iff

(i) M = N;

iSee, e.g., [Enderton 72], page 141.
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(ii) Rm C RM, for each relation symbol i?;

(iii) Rm = R*, for every relation symbol R (fc R;

(iv) fM = fN and cM — cf, for each function symbol / and constant symbol
c.

We refer to the relation symbols in R as the circumscribed predicates. Note that
a p-submodel of a model Ad is generally not a submodel of Ad (in the usual model
theoretic sense). In fact, it follows directly from the definition of a p-submodel
that if Ad is a submodel of Af and Ad cf^A/", then Ad = A/*.

The definitions of p-minimal model and p-minimal consequence are analogous
to the respective ones for d-minimal model and d-minimal consequence:

(R ^
Definition 3.2 Ad (=p T (Ad is a p-minimal model of a theory T with respect to
a set of predicates R) iff Ad |= T and for every Af such that A/* |= T, if Af C^Ad,
then Af = Ad.

(R.)
Definition 3.3 T \=p <f> (<j> is a p-minimal consequence of T with respect to R) iff
<f> is true in all p-minimal models of T.

Example 3.1 Let T = 0 and let R = {P}. The p-minimal models of T with

respect to R are those that interpret the predicate symbol P by the empty set,

i.e., those where the extension of P is empty. All such models of T make true all

sentences of the form ->P(t), where t is a term in the language. They also make
true the sentence Vx~iP(x). For other predicate symbols Q / P, there will be

p-minimal models, Af, such that Ad j= Vx-iQ(x) and Af such that Af |= VxQ(x).
Thus it follows that T (=p'Vx-iP(x), but F \f^\/x-iQ(x).

It is easy to see from this example that p-minimal consequence is non-mono-

tonic since, although T \^dx~>P(x), TU {F(a)} ^Vx-iP(x). As with d-minimal
consequence, this is due to the fact that an extension of a theory T may have

p-minimal models which T lacks.
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Example 3.2 Let T = {P(a), P(b), Q(a)}. The p-minimal models of T with

respect to R = {P} are those models in which the interpretation of P contains
only the interpretations of the constants a and b. Depending whether a and b are

given distinct interpretations, the interpretation of P in those models will contain
either one or two elements. There will be such p-minimal models M. in which
the extension of Q contains only aM and ones where, in addition, it contains any

number of other elements of M. Thus, while T j=^Vx(P(a:) —► x = a V x = b),
T y^ix{Q{x) —> x = a). In fact, it is easy to see that for any term t,

r ^Q(t) r !=(?((), and

r^<3(t) <=>• r |—.Q(f)

We also have that, for any ground term t, T f=p P(t) <£=> T |= P(t), i.e., p-
minimal consequence does not produce any new positive ground instances of the

predicate circumscribed.

3.2 Limitations of Predicate Minimal Consequence

In standard AI applications of common sense reasoning, it is generally felt that
it should be possible to obtain new positive ground sentences, as in the typical
bird example, where it is known that Tweety is a bird and typical birds can

fly, and where it is argued that a common sense conclusion is that Tweety can

fly. Many elaborations exist of this example, "axiomatized" in progressively more

peculiar ways, so as to render it explicable by circumscription. One difficulty
lies in obtaining a positive conclusion, namely that Tweety can fly. The fact
that predicate circumscription (and, indeed, p-minimal consequence) does not

produce any new positive ground instances of the predicate circumscribed, and

any new positive or negative ground instances of other predicates, is not due to

an idiosyncracy of the particular theory T of this example, but is characteristic of
a certain class of theories which.includes universal theories (and T happens to be

such) [Etherington et al 85]. Nevertheless, this fact may appear surprising; at first
glance it would seem that, in order to obtain new positive ground instances of a

predicate P via p-minimal consequence, it would suffice to define P in the theory
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as the negation of another predicate Q and circumscribe Q — thus obtaining
new negative ground instances of Q, from which the respective positive ground
instances of P would then follow. Upon some reflection on the definition of p-
minimal consequence, however, we see that this is not the case, as illustrated by
the next example.

Example 3.3 Let T = {Q{a), Vx(->Q(x) —> P(x)),-^a = b,Vx(x = aVx — b)} and
R = {Q}. This theory has only models with two element domains. In addition,
each of its models is isomorphic to one of the following models:

Mi : QM> = {a}, pMi = {b};

M-2 ■ Q■A^2 = {a}, P^2 = {a,b};

M3: QM* = {a,b},PM3=b '

M4: QM* = {a,b}, PM* = {*}■,

Ms : QMs = {a,b}, PM& = {b};

M6 : Q^6 = {a, b}, P•A^6 = {a,b};

where Mx = M2 = M3 = M4 = M5 = M6 = {a, b}. Notice that M1, M2, M3,
and M4 are all p-minimal, so it follows then that T ^^Q(b) and T \^P(b).

Thus, again we have that p-minimal consequence yields no new positive ground
instances of the predicate circumscribed and no new positive or negative ground
instances of any of the other predicates for this theory. Moreover it becomes clear
that ingenuity is not going to help in getting around this problem; its source lies
in the way p-minimal consequence is defined, namely under (iii) of the definition
of p-submodel, which forces the extensions of predicates not being circumscribed
to be the same in p-submodels. If a theory is well founded, i.e., if all its models
have a p-minimal submodel (for every set of circumscribed predicates), then it is
clear that positive ground instances of the predicates circumscribed will be true
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in all the minimal models only if they are true in all the models of the theory;

similarly for any ground instance — positive or negative— of predicates not being
circumscribed [Etherington et al 85]. Most theories that are of interest to AI are
well founded, including the theory of example 3.3, theories of abnormal birds, etc.

Yet, from the point of view of intuitive motivation for p-minimal consequence,
these are the cases where it would be most desirable to be able to minimize the

extension of a predicate, even when the theory logically connects that predicate
to another predicate. In essence this would involve allowing extensions of some

predicates to vary (in either direction) during the minimization. This observation
led to the development of a new minimal consequence relation, which is the subject
of the next section.

Returning to our example, apart from the fact that in the situation it exem¬

plifies no new positive ground instances of the predicate circumscribed could be

obtained via p-minimal consequence, it is interesting to ask whether there are

other types of theories where this is not the case. So the question is the following:
is there a theory T such that T (==^P(a) and T ^ P(a), where R = {P}? The
next example gives a positive answer to this question.

Example 3.4 Let T be the theory of a (strict) linear ordering R and a non-empty

upward closed property P, with a name for the top element, if this exists. For

clarity, the definition of T is broken down into the definitions of a linear ordering

(lo(P)), non-empty upward closed property (neupc(P, P)) and an axiom which
states that if a top element exists then a is the top element (top(P) => top(P, a)).

1°(P) = {Vx\/y(R(x, y) V R(y, i)Vi = y),

Vx\/y(R(x,y) -> -nR(y,x)),

\/x\/y\/z{(R(x,y) A R(y,z)) —► R(x,z))}

neupc(P,P) = {3xP(x),VxVy((R(x,y) A P(x)) -»■ P(y))}

top(P) =» top(P,a) = {Vy{\/x~iR(y,x) -* y = a)}
T = lo(P) U neupc(P, P) U top(P) =*> top(P,a)
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A typical model of this theory is Mo = (N, <, {n|n > 42}, 0), where N is the
set of natural numbers, "<" interprets R and is the usual "less than" relation on

the natural numbers, "{n|n > 42}" interprets P as the natural numbers greater
than or equal to 42, and the constant a is interpreted by 0. In this model we
clearly have ->P(a), so it follows that T P(a).

Another model of T is M\ = ([0,1], <, {n|n > §}, 1), where [0,1] is the closed
interval from 0 to 1 on the real line. We see that aMl is the top element with

respect to the relation RMl and aMl 6 pM\, so ^ f0U0WS that T ^ -iP(a).

Observe that all the models of T fall into two categories: those that have a

top element (e.g., Mi) and those that are unbounded (e.g., Mo). Now consider
what happens when we circumscribe the predicate P in this theory; those models
which have a top element will have a p-minimal submodel M, which also has a

top element, where PM = {aM}-, those models that are unbounded will have an

infinite sequence of p-submodels, each of which interprets P by a proper subset of
the previous model (for example, Mo has a p-submodel where P is interpreted by

"{n|n > 43}," one where it is "{n|n > 44}," one where it is "{n|n > 45}," ... and
so on) and so will have no p-minimal p-submodels. So the p-minimal models of
T are the p-minimal p-submodels of the models with top elements and hence all

p-minimal models of T have a top element. In other words, T p-minimally entails
that the relation R has a top element. Moreover, since P is non-empty upward

closed, it will be the case that in every model M with a top element {aM} C PM
and that in every p-minimal model (which will necessarily also have a top element)

{aM} — PM. Thus we have that T (=^P(a), although T ^ P(a)- (In fact, we also
have that T |=p^3!;rP(;r).)

This example serves to illustrate the fact that p-minimal consequence can yield
new positive ground instances of the predicate being circumscribed. By slightly

modifying this theory we have an example of a theory T' which p-minimally entails
new positive and negative ground instances of a predicate which is not among those
circumscribed. Let T' = ru{a^ b). Clearly, T' \^R(b, a) and T' \^^R(a,b),
although T' R(b,a) and T' -<R(a,b). Of course, neither T nor T' is well

founded, and this is precisely the reason that these theories yield new positive
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ground instances of the circumscribed predicate, or new ground instances of the
other predicates.

3.3 Existence of Predicate Minimal Models

A variation on the theme of example 2.3 yields an example of a satisfiable theory
with no p-minimal models: - .

Example 3.5 [Etherington et al 85] Let

T = { 3x(N(x) A Vy(N(y) —► ~<s(y) = x)),

Wx(N(x) —> N(s(x))),

Vx\/y(s(x) = s(y) —► x = y)}

and let R = {N}. Every model of T has an infinite chain of p-submodels, in
each of which the extension of N corresponds to the natural numbers greater

than n. There is no p-minimal model for this theory, so the set of its p-minimal

consequences consists of all the sentences of the language, and is thus unsatisfiable.

This suggests the following definition:

Definition 3.4 T is p-satisfiable iff T has a p-minimal model with respect to every

set of predicates R.

As with d-minimal consequence, there are theories which are not p-satisfiable,
but possess p-satisfiable extensions. This is exemplified by the theory F' = E U

{iV(0)}. Note that, up to isomorphism, F has as its unique p-minimal model that
in which N is interpreted by the natural numbers and s by the usual successor

function. Thus T' is a p-satisfiable extension of a theory which is not p-satisfiable.

An interesting question that comes to mind is whether any satisfiable theory
can be extended to a p-satisfiable theory. In the case of d-minimal consequence
it was observed that any satisfiable theory can be made d-satisfiable by the mere
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addition of new symbols to the language. This is not generally the case for p-

minimal consequence, but the extension of T to T' above suggests that the addition
of constant symbols to the language and a set of sentences to the theory, stating
that the constant symbols introduced lie in the extension of the circumscribed

predicate, will result in a p-satisfiable theory in the new language.

Proposition 3.1 Any satisfiable C-theory T can be extended to a p-satisfiable £ -

theory T' such that:

(i) T and T' make true the same C-sentences; and

(ii) if £ is finite, then both £ — C and T' — T are also finite.

Proof: First note that if T has finite models, then T is already p-satisfiable

(since any finite model has a p-minimal submodel) and the proposition holds
trivially. We therefore assume that F has only infinite models.

The proof proceeds in a similar manner to that of Proposition 2.1, by exhibiting
a uniform construction that can be applied to expand any (infinite) countable
/^-structure M. to an £'-Structure M.' and to extend any £-theory T to an

£'-theory T', in such a way that, if M. is a model of T, then AA' is a p-minimal
model of T'. The language of T is extended by the addition of new constant and

function symbols; the intention here is to "name" individuals in the extension

that each relation symbol in the language receives in Ad; the sentences added to

T require that, for each relation symbol of the language, individuals denoted by
these new terms "remain" in the extension which that relation symbol receives in
M— thus these cannot be dropped to obtain a p-submodel of M', so Mf is then
a p-minimal model of T'. In this manner, from a model of F, we construct a

p-minimal model of an extension of T.

We exhibit this construction for a finite language C containing a single binary
relation symbol R, so as to avoid cumbersome notation that would obscure the

argument; the proof generalizes easily to arbitrary first order languages, by
replication of this construction for each relation symbol in the language.
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Let C' = C U {ci, c2, /i, h}- We define the structure
AA' — (M', RM , cf4', c^4', ff , fff ) from M as follows. Let M' = M and
Rm — RM. Since M is countable, M x M is also countable; hence RM is also

m'
countable (R C M x M). Let (a,-, be an enumeration without
repetitions of RM . (We can again assume, without loss of generality, that RM is

infinite.) The interpretations of the constant and function symbols in M are

defined as follows:

Px

{((a«, A), at+i)| i € w}U{((x,y),x)| (x,y) g RM }

{((ai,/3i),/3i+l)\i £ w}U{((x,y),x)| (x,y) 0 RM }

Let r = TU {R(c1,c2)yxVy(R(x,y)->R(f1(x,y),f2(x,y)))}.

Note that AA and JA' have the same domain and the same interpretation for R,

so they make true the same T-sentences. The interpretations of the new terms

(built from the new constant and function symbols) "follow" the enumeration
yet' f'

R . (The set {({x,y),x)| (x,y) ^ R } is included in the interpretations of fi
and fi because these must be defined on all pairs in M x M — the particular

interpretation for pairs lying outside R is irrelevant.) T' extends T with an

axiom that requires that the interpretation of these terms be in the extension of

R. Thus, M' ^pR}r.
Any satisfiable theory T in a countable language has a countable model (by the
downward Lowenheim-Skolem Theorem). The above construction can be applied
to any (infinite) countable model M. of T to obtain an expansion M.' of M.
which is a p-minimal model of T' D T; thus T' is p-satisfiable. Clearly, if C is

finite, the extensions to £ and to T are both finite. It remains to show that T

and T' make true the same £-sentences.

Let <f> be an ^-sentence. Since T C T', T \= 4> =» T' \= <j). Now suppose V ^ (f>,
i.e., for some M, Af T, but Af <f>', again, by the downward Lowenheim-
Skolem Theorem there has to be a countable such model, so we assume that Af

cr =

c"' =

.M

fx =

f? =
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is countable. We can thus apply the above construction to Af to obtain an £'-
structure Af' expanding Af which is a model of V. As noted before, Af and Af
make true the same £-sentences. Hence, Af |= and, since Af is a model of T',
we have that T' ^ <j>. □

Throughout this discussion on p-satisfiability, and in example 3.5 above, the
careful reader may have observed some similarities with issues encountered in d-
minimal consequence. In particular, the theory of example 3.5, and the argument

for the lack of existence of p-minimal models, seem almost a repetition of those of

example 2.3. There is indeed a close relationship between domain and predicate
minimal consequence, which will be studied in a later section. As we will see,

parallel results of this sort can be obtained in a more straightforward manner,

once the correspondence between the various notions of minimal consequence is

made precise.

4 Formula Minimal Consequence

4.1 Preliminaries

Formula minimal consequence is a generalization of predicate minimal conse¬

quence. Here, while the extensions of some predicates are being minimized, those
of some of the other predicates are allowed to vary. As we will see, this has the
effect of minimizing the set of objects satisfying an open formula.

Definition 4.1 Let AA and Af be /^-structures and let R and U be sets of relation

symbols in C. AA W (AA is an f-submodel of Af with respect to (R, U)) iff

(i) M = N-

(ii) Rm C R , for each relation symbol R 6 R;

(iii) R^ = R^ , for every relation symbol R, R £ R and R £ U;
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(iv) fM = fM and cM = c^', for each function symbol / and constant symbol
c.

Note that an f-submodel of a model AA is generally not a submodel of AA (in
the usual model theoretic sense). This, as noted in the previous section, was also
the case for p-submodels and again it follows directly from the definition of an f-
submodel that if AA is a submodel of Af and AA cf/*'U!/V, then AA — AT. However,
whereas if AA Cf^Af and Af d^fA, then AA — Af, this is not the case for C^'U^,
i.e., the former but not the latter relation is antisymmetric. This accounts for a

slight deviation in the definition of f-minimal model from the analogous definitions
of d-minimal and p-minimal model:

Definition 4.2 AA (AA is a f-minimal model of a theory T with respect

to the sets of predicates (R,U)) iff AA f= T and for every Af such that Af f= T, if
Af df'V)M, then AA dfV)Af.

Definition 4.3 T f=)'UV ($ is an f-minimal consequence of T with respect to the
sets of predicates (R,U) iff for all AA, AA )^'UV =$■ AA \= <}>

Example 4.1 Let T = 0, R = {P} and U = 0. The f-minimal models of T are

those models in which P is given an empty extension. These are exactly the same

as its p-minimal models. Moreover, this follows trivially from the above definition,

so, in general, we have that if T and U = 0, then T

Thus we see that f-minimal consequence is a generalization of p-minimal conse¬

quence. From this fact it immediately follows that f-minimal consequence is also
non-monotonic.

Example 4.2 Let T = {\/x{E{x) <^(x))}, where f is a formula of one free
variable which only involves the predicate P, in the language of T, Let R = {E}
and U = {P}. The f-minimal models of T are those in which the extension of E is

smallest, and hence where the set of objects satisfying the formula f is minimized.
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This example serves as an explanation for the name "formula minimal conse¬

quence." So we see that formula minimal consequence can (equivalently) be de¬
fined in terms ofminimizing the extension of a formula, as is done in [Etherington 86]

(this is in fact more immediate from McCarthy's exposition of formula circumscri¬
ption, in [McCarthy 84]). The definition given above (which is due to [Schlipf 87])
was nevertheless chosen because it is more direct and thus simplifies subsequent

proofs.

Example 4.3 Let T = {Q(a),\/x(-^Q(x) —► P{x)), ->a = b,\/x(x = a V x = 6)},
R = {Q}, and U = {P}. This is the theory of example 3.3, which has only models
with two element domains. Recall that each of its models is isomorphic to one of
six models, repeated here for ease of reference:

Mx : QMl = {a}, = {b};

M2: QM> = {a}, P^ = {a,b};

M3: QM> = {a,b}, PM* = 0;

Ma: QMi = {a,b}, PM* = {a};

Ms : QMb = {a, b}, PM* = {b};

Mq : Q^e = {a, b}, PMe = {a, b};

where Mi — M2 = M3 = M4= M5 = M6 = {a, b}. Notice that, whereas Mi,

M2, M 3? &nd 4 3.11 p-minimal, only J\sti and fist 2 f~minimal, so, althon^li
r and T \j^P(b), we have that T (=f'U^-iQ(6) and T [=yUlp(6).

Thus we see that f-minimal consequence can yield new positive ground in¬
stances of a predicate in this kind of simple theory. In this manner, it is possible
to obtain new positive ground instances of any of the predicates P of a theory, by
adding an axiom which defines P as the negation of a new predicate symbol Q
and then using f-minimal consequence with R = {Q} and U = {P}. The reader
is referred to [McCarthy 84] for several more examples of the use of f-minimal

consequence involving abnormal birds.
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4.2 Existence of Formula Minimal Models
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By analogy to p-satisfiablility and d-satisfiability we can define f-satisfiability:

Definition 4.4 T is f-satisfiable iff T has an f-minimal model with respect to every

pair of sets of predicates R, U.

It is clear that f-minimal consequence is a generalization of p-minimal con¬

sequence and, as such, shares some of its properties. In particular, f-minimal

consequence reduces to p-minimal consequence (or, p-minimal consequence is a

special case of f-minimal consequence) in the case where U = 0. It immediately
follows that not every satisfiable theory is f-satisfiable. As was the case for p-

minimal consequence, however, we again have that every satisfiable theory can be
extended to an f-satisfiable theory.

Proposition 4.1 Any satisfiable C-theory T can be extended to an f-satisfiable

C'-theory T' such that:

(i) r and T' make true the same C-sentences; and

(ii) if C is finite, then both £ — L and T' — T are also finite.

Proof: The proof of this proposition is identical to that of proposition 3.1, by
the following observation: if Af and M' then it follows that for

some P G R, P* C PM'. □

The next section examines the relationship between domain, predicate, and
formula minimal consequence more closely.
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5 Relationship Between Domain, Predicate and

Formula Minimal Consequence

The intuitive motivation for the notions of domain, predicate, and formula mini¬

mal consequence has been to articulate a method of conjecturing theories in which
certain properties of objects which do not follow from the original theory are

refutable. For domain minimal consequence we could, in rather vague and in¬

tuitive terms, view this property as that of the existence itself of those objects.
For predicate and formula minimal- consequence this property is the predicate or

formula being circumscribed.

As is to be expected, there is much in common among the various notions of
minimal consequence. This section draws precise connections between the domain,

predicate, and formula minimal consequences of a theory, namely:

• The p-minimal consequences of a theory with respect to a set of predicates
R are exactly those sentences which are, for every set of predicates U, the
f-minimal consequences of that theory with respect to (R,U).

• The relativizations2 of the d-minimal consequences of a theory (to some new

predicate letter in the language, P) are exactly the p-minimal consequences,
with respect to ({P}), of that theory relativized to P.

5.1 Predicate vs. Formula Minimal Consequence

Predicate minimal consequence is a special case of formula minimal consequence, in
which the set of predicate parameters (those relation symbols which are allowed
to vary under the f-submodel operation) is empty (see section 4, example 4.1).
This follows directly from the definitions of and C^'U^. A somewhat tighter

2Defined in Section 5.2 below.
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connection is reflected in the minimal consequences of a theory under these two

submodel relations. We begin with a lemma relating the p-minimal and f-minimal
models of a theory T:

Lemma 5.1 VA4VRVU(A4 [^'u^r =$> AA (^T).

Proof: Suppose AA ^T, thus

VAf((Af (= r & Af dfV)M) => AA d?'UV), (4.1)

and let Af be such that
■ Af \=ThAf (4.2)

Now, Af *d^AA =t> Af C^'U!m, by the definitions of and so from (4.1)
and (4.2) it follows that AA C^'UW"; but, since Af C^Af, we have that AA — Af
(again, by the definitions of |=^ and |=/'U^). Thus, AA f=^r. □

Proposition 5.1 T f=^V VU(T (==y'U^).

Proof: (=$■) Suppose \/AA(AA [=^T => AA [= (f>) and that for some AA and U
AA j=/'U)r. From the latter, by Lemma 5.1, we then have AA [=^r, and hence,
from the former, we have that AA |= <f. Thus, VUVAf(A4 (=/'U^r =>- AA (= (/>),
i.e., vu(r |LEyDV).
( *— I Suppose VU(T ^°V). For U = 0 we have T (=E'p. □

Proposition 5.1 can be interpreted as saying that f-minimal consequence is

stronger, in the sense that, given a first order theory, a sentence conjectured from
that theory by p-minimal consequence with respect to a set R of minimized pred¬

icates, can also be conjectured by f-minimal consequence, with respect to R, re¬

gardless of which predicates are allowed to vary. The crux of this argument is the
observation that all f-minimal submodels of a theory T with respect to (R,U) are

also p-minimal with respect to R. On the other hand, there are f-minimal conse¬

quences that are not p-minimal consequences (see example 4.3), so, in this sense,

f-minimal consequence is strictly stronger.
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For practical applications, where the need for such conjectures has been felt, it
seems clear that f-minimal consequence can simply replace p-minimal consequence:
no generality is lost and some apparently needed strength is gained. The study of
p-minimal consequence, however, is not rendered fruitless by this outcome since
most properties of p-minimal consequence can thus be generalized to f-minimal

consequence. In particular, since there exists a satisfiable theory that is not p-

satisfiable, it follows that there is a theory that is not f-satisfiable, no matter which

predicates are allowed to vary.

5.2 Domain vs. Predicate Minimal Consequence

The relationship between domain and predicate minimal consequence has received
some attention in the circumscription literature, although no clear connection has
been established to date3. In order to establish a relation between p-minimal

(or f-minimal) consequence and d-minimal consequence the aim is to, in a sense,

"transfer" the minimization from a predicate's extension to the domain of a model.

The following definitions will be useful:

Definition 5.1 Let M = (M, PM,R?,R?,... ,/0", f?,..., c?, cf,...) be a

model for the language £ = {P, R0, Ru ..., f0, fu ..., c0, Ci,...} such that

(i) P is a one place predicate symbol,
I

(ii) PM is non-empty and closed under each of the ,..., and

3McCarthy claimed that domain circumscription is reducible to predicate circum¬

scription [McCarthy 80]. His argument, which was made on syntactic grounds, was an

attempt to make precise the intuition that we can view the existence of objects as a

predicate which is being circumscribed, but it contained some (fatal) faults. We will
not discuss McCarthy's argument, nor its faults; a detailed exposition of this is given in
[Etherington & Mercer 86]. On model theoretic grounds alone it is clear that his con¬

clusion is incorrect — as we have observed, a p-submodel is generally not a d-submodel

(see section 3).
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(iii) cf4 E PM, for each c,- E C.

The inner model of M defined by P (written MP), is a model for the language
C — £ — {P} such that:

(i) Mp = PM]

(ii) = cf4, for each cf4 E C'\ and

(iii) the interpretation for all relation and function symbols of C in MP is
the restriction of their M. interpretations to Mp.

Observe that, although MP is not defined for every C U {P}-structure M,

every ^-structure M is the inner model defined by P of some C U {P}-structure
Af. Thus

VM3Af(Afp is defined &Afp = M) (4.3)

Definition 5.2 Let T be a theory in a language C and P E £, a one place predi¬
cate symbol. The relativization of T to P (written rp) is the theory obtained by

replacing each sentence of the form Wxcp(x) in T by the sentence Vx(P(x) —> <j){x))\
replacing each sentence of the form 3x<f)(x) in T by the sentence 3x(P(x) A 4>{x))\

adding the sentence 3xP(x)] and adding the sentences P(c) for each constant

symbol c E C and Vx(P(x) —» P(f(x))) for each function symbol f E C.

Note that, by the definition of a relativized theory Tp, its models always satisfy
the conditions of Definition 5.1 (since it is the case that in all the models of Tp, P is

given a non-empty extension4, closed under the function interpreting each function

symbol, and containing the interpretation of each of the constant symbols) so the

4This is assured by the inclusion of the sentence 3xP{x) to rp in the case where
there are no constant symbols in the language.
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inner models of Tp are always defined. The Relativization Lemma5 connects the

inner models of a theory defined by a predicate P and the models of that theory

relativized to P:

The Lemma below gives the correspondence between the d-minimal submodels
of the inner models and the p-minimal models of the relativized theory:

Proof: This follows immediately from the Relativization Lemma and the fact

So we see that the models of a theory T are the inner models, defined by a

one-place predicate P, of T relativized to P and also that the d-minimal models of

T are the inner models defined by P of the p-minimal models of T relativized to P.

A further conclusion can be drawn at this point, relating d-minimal consequence
and p-minimal consequence:

Proposition 5.2 Let T be an C-theory and P (fc C. For any sentence <f> E C

M\= Tp <*=* Mp \=T. (4.4)

Lemma 5.2 M |^jPrp M.p (=dT.

that Af dy }M iff Afp CdMp. □

r Ki<t> rp f=p <f>p.P liP^AP

Proof:

r \=dcf> <=> VM(M \=dT =* M'\= <f>)
4=4> VAf((Afp is defined k,Afp j^r) =>• Afp \= 4>)

(from 4.3)

<==> VJ\f{(Np is defined &LV*P (=^1?) => Af (= 0P)
(from 4.4)

5See e.g., [Ebbinghaus et al 84], pp 122-124.
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VAf((J\fP is defined $zj\f J^p^T^) =>• J\f [= <j>p)
(from Lemma 5.2)

4=^ rp [=pVp

□

Thus we see that, although d-minimal consequence is not reducible to p-

minimal consequence, there is a correspondence between the d-minimal conse¬

quences of a theory and the p-minimal consequences of the relativized theory.
For example, note that if a theory is d-satisfiable, then its relativization to a one

place predicate P will be p-satisfiable, and conversely. This correspondence can

be exploited in the investigation of theoretical properties of the minimal conse¬

quence relations. If we have shown that there is a theory for which the d-minimal

consequence relation has a certain property, then it follows immediately that the
relativized theory will also have an analogous property. For example, in section 2

it was shown that there is a theory that has no d-minimal models (example 2.3)
and subsequently, in section 3, it was shown that there is a theory which has no

p-minimal models (example 3.5). The apparent similarity in these two theories is
now made precise; we see that the latter is the relativization of the former, with

respect to the circumscribed predicate. Since any theory can be relativized to a

new one-place predicate symbol,' the fact that there is a satisfiable theory which is
not p-satisfiable follows immediately from the fact that there is a satisfiable theory
which is not d-satisfiable.

Similarly, if we have shown that every theory has a certain property with regard
to p-minimal consequence, then we also obtain that every theory will have the

corresponding property with regard to d-minimal consequence. For example, we

can obtain Proposition 2.1 from Proposition 3.1 as follows. Proposition 3.1 states

that any satisfiable £-theory can be extended to a p-satisfiable T'-theory; therefore
the relativization of any satisfiable £-theory can be extended to a p-satisfiable £'-
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theory.6 We also have that if therelativization of a theory is p-satisfiable, then that

theory is d-satisfiable, so it follows that any satisfiable £-theory can be extended
to a d-satisfiable £'-theory (Proposition 2.1).

In general, examples of theories with a certain domain minimal consequence
property can be easily transformed into examples of theories with an analogous

predicate (and formula) minimal consequence property; proofs of predicate (or
formula) minimal consequence properties that hold for any theory can be trans¬
formed into proofs that the corresponding property holds for domain minimal

consequence. In this sense, domain minimal consequence is a weaker notion than

predicate minimal consequence, which is a weaker notion (since it is a special case)
than formula minimal consequence.

6 Significant Properties of Minimal Conse¬

quence and Minimal Satisfiability for First

Order Languages

So far in this chapter we have a model theoretic exposition of the notions of domain,

predicate, and formula minimal consequence and some of their properties. This
section presents a study of further, more general properties ofminimal consequence
in first order logic.

Common to all minimal consequence relations is their non-monotonicity, which
in essence provides the initial motivation for their study. Also common to the min¬

imal consequence relations presented in this chapter is that there are satisfiable

cAt this point we will also need that extending the relativization of any satisfiable

theory to a p-satisfiable theory will still be a relativization of a satisfiable theory, but
this is clearly so, by the construction of the extended p-satisfiable theory (see Section
3).
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theories with no minimal models and, therefore, theories for which minimal conse¬

quence will produce inconsistent conjectures. Although this fact in itself is rather
natural and by no means invalidates the study of minimal consequence or cir¬

cumscription, it has been felt that circumscription may be of no practical use in

AI, since it was introduced primarily as a method of conjecturing common sense

conclusions drawn from incomplete information. It is generally agreed, among

researchers who favour logical approaches to modelling common sense reasoning,
that these conjectures should at least be consistent with the available information.

Thus, the fact that not all satisfiable theories are minimally satisfiable necessitates
either checking theories for minimal satisfiability before using minimal consequence
to generate conjectures (a highly undecidable problem), or restricting the use of
minimal consequence to theories of a special syntactic form that ensures the ex¬

istence of minimal models for satisfiable theories. The first of these alternatives

is obviously not practicable. Etherington [Etherington 86] explores the second al¬
ternative by introducing and studying the properties of well founded theories. A
first order theory is well founded iff each of its models has a minimal submodel. A

syntactic characterization of well founded theories is not available, but there are

well known classes of theories that are well founded, such as universal theories.

Nevertheless, minimal consequence is found to be of limited use for AI purposes
when restricted to well founded theories. This is most evident in the case of p-

minimal consequence, which yields no new positive ground instances of any of the

predicates circumscribed and no new (positive or negative) ground instances of
any of the other predicates, as shown by [Etherington 86],

Our approach to this problem has not been to attempt to define the set of

minimally satisfiable theories, but rather, to show how satisfiable theories can be

extended to minimally satisfiable theories. Earlier in this chapter we discussed
the significance of the language of a theory and the availability of names. This

exposes another aspect in which minimal consequence differs from logical conse¬
quence, which can be exploited to provide a satisfactory solution to the problem
of satisfiable theories with no minimal models. Namely, the logical consequences
of a theory in a restricted language, are consequences of the same theory in an



Chapter 4. Minimal Consequence in First Order Logic 90

extended language (and vice versa), i.e., an ^-sentence <f> is a consequence of an

£-theory T iff <f> is a consequence of T taken as an £'-theory. This is not true
for minimal consequence, as we saw in section 2, where the addition of a new

constant symbol to the language of a theory that was not d-satisfiable rendered it
d-satisfiable— thus, minimal consequences of the theory in the restricted language

(i.e., all the sentences of this language) are not necessarily minimal consequences
of the theory in the extended language (since this is d-satisfiable).

For domain, predicate, and formula notions of minimal satisfiability, every sat-
isfiable theory can be expanded to a minimally satisfiable theory in an extended

language. In the case of d-minimal consequence, in fact, we found that this expan¬

sion was trivial — it is sufficient to extend the language (see proposition 2.1). In
this section we will consider some further model theoretic properties of minimal

consequence. Apart from the theoretical interest such explorations offer, there is

a significant computational motivation for their pursuit. We will examine issues
discuss +Ke ioorK of £SeMipf 31J on +^e-

of compactness and . complexity of the minimal consequence relations, as these

directly relate to the existence and feasibility of formal proof systems.

6.1 Elementary Properties

Some, but not all, properties of logical consequence find natural analogues in prop¬

erties of minimal consequence. The lack of monotonicity for minimal consequence
invalidates some of the properties one would take for granted. The following propo¬

sitions assure us that some very fundamental properties still hold (here the symbol
is used to denote minimal consequence in general):

Lemma 6.1 If M [=mT, M (= V, and T C V, then M |=mr'

Proof: Let M M |= T', and T C T'. Suppose J\f C mM and Af |= T';
then Af |= T (by the monotonicity of logical consequence), so M C mAf (since
M (=mT). Thus, M \=mT'. □

Proposition 6.1 (Deduction Theorem) ([Shoham 87]) F U {f} \= mip =$■ T (=
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Proof: Suppose T U {f} \=rni>- From Lemma 6.1 we have

M KF kM |= <f> => M KFU {$}
=> M f= if

(since T U {<f} \=mip). Hence M |=mr => (M (= <f => M f= if), i.e., T \=m(f—+if.
□

Proposition 6.2 (Modus Ponens) If T \=m(f> and T \=m(f>—then F \=mtp.

Proof: Suppose T |=m<j> and T So

VA4(j\4 [=mr => (Af 1= f & m. |=

Therefore VAf(Af [=mF => M. j= if). □

The deduction theorem and modus ponens attest to some similarity of minimal

consequence to the familiar notion of logical consequence. Of course, the extent

of this similarity is very limited; the converse of the deduction theorem fails for
minimal consequence. For example, even in sentential logic, 0 [= sp—>q (since
0 l=s-'P A "'?)) but P \£sq.

In chapter 3 we have encountered another significant effect of the non-mo-

notonicity of minimal consequence: the breakdown of the equivalence between

the two widely accepted formulations of compactness, i.e., the compactness of
the satisfiability property and the compactness of the consequence relation. This

of course did not depend on the particular definition of minimal consequence in
sentential logic and is also the case for first order notions of minimal consequence.

Similarly, minimal consequence in sentential logic was found to be a significantly
more complex notion than its usual logical counterpart.

6.2 Compactness

There are a number of important model theoretic properties of first order lan¬

guages which underlie their applicability in a variety of ways. Perhaps the most
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basic property of a first order language from a model theoretic point of view is
the compactness of the first order consequence relation. As discussed in chap¬
ter 2 (section 3), compactness underlies the possibility of elaborating a deductive
calculus which captures the consequence relation.

In a computational setting, a syntactically defined logical calculus is, generally

speaking, a requirement. One route, of course, is to attempt its definition straight
off and, failing that, restrict it to a "reasonable" fragment, where it can be made
sound and complete. We will, however, proceed in a different way, which is to

consider first whether it is at all possible to construct such a deductive calculus by

determining first whether the consequence relation which it aims to formalize is

compact; in this manner we generally uncover interesting model theoretic proper¬

ties of the consequence relation, which are useful, either in proving completeness

(in the case where a complete formalization is possible), or in the search for ap¬

propriate fragments that can be formalized (in the case where the consequence

relation is not compact).

As we have seen in chapter" 3, section 3, the minimal consequence relation
is not compact even for a propositional language. From this it clearly follows
that minimal consequence is not compact for a first order language (by a simple
transformation of the example given in the proof of proposition 3.2). In section

3, it was also pointed out that the compactness of minimal satisfiability and the

compactness of minimal consequence must be distinguished, because, although
these are equivalent notions in classical logic, they are no longer equivalent in
the case of a non-monotonic consequence relation. In fact, as was shown there,
minimal satisfiability for sentential logic is compact, whereas minimal consequence
is not. Proposition 6.3 below shows that minimal satisfiability is also not compact,
for any of the notions of minimal satisfiability that we study in first order logic.

Proposition 6.3 (a) d-satisfiability is not compact, (b) p-satisfiability is not com¬

pact. (c) f-satisfiability is not compact.

Proof:



Chapter 4. Minimal Consequence in First Order Logic 93

(a) Let T = {El\i E u>}, where

En = 3x1...3xn /\ Xiy^Xj
1<i<j<n

r has only infinite models, but no d-minimal model, since from each of its
models we can construct a submodel by dropping any finite number of elements
of its domain. Any finite subset of T, however, will have some finite models, so it
will have d-minimal models. Thus, we have here an infinite theory which is not

d-satisfiable, but every finite subset of which is d-satisfiable. Since T is not
d-satisfiable it will d-minimally entail a sentence (for example, 3x(x ^ x)), which
will not be a consequence of any of its finite subsets, since they are all
d-satisfiable.

(b) Immediate from the non-compactness of d-satisfiability, by proposition 5.2.

(c) Immediate from the non-compactness of p-satisfiability, by proposition 5.1. □

A natural question that arises is whether minimal consequence might be com¬

pact in a slightly narrower sense, that is, with respect to minimally satisfiable
theories. This is not the case though. We will examine this question in the con¬

text of d-minimal consequence — it is clear that the argument generalizes to p-

and f-minimal consequence. The argument rests partly on an observation made
after example 2.3, namely that augmenting the language of a theory may change
its d-minimal consequences. We observed that the theory T = {3x\/y-^s(y) =
x,VxVy(s(x) = s(y) —>• x = y)} has no minimal models when thought of as a

theory in the language {s} (the language with only one function symbol, s), but
becomes d-satisfiable when the language is expanded to {3,0}. Similarly, T in the

proof of proposition 6.3, which we have implicitly assumed is in the language of
pure predicate calculus (the language contains no non-logical symbols) and which
is not d-satisfiable, becomes d-satisfiable when we introduce a constant symbol,

c, and a function symbol, /, to the language. This fact alone is quite surprising,
but what is rather striking is that, with this addition, all the minimal models that

now come into existence are isomorphic to the natural numbers with the usual

successor operation. The reason for this is that, by the addition of the new sym¬

bols to the language of T, some of the models of T, precisely the countable models
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isomorphic to the natural numbers with the successor operation, will be name-

able structures and thus d-minimal. Any other model (for example, structures in

which the interpretation of the constant symbol has a predecessor, or structures
with cycles) will not be nameable and will have proper submodels. Thus, all the
d-minimal models of T are the models isomorphic to the natural numbers, so we

have that T ^=<iVx-i/(x) = c. Now note that there are finite models of each of
the El which are not nameable, but are d-minimal. In particular, there are (fi¬

nite) minimal models of each of the Ei in which / is the identity function and
where, clearly, everything has a predecessor — itself — and, therefore, for each

E\ Ei ^dVx-i/(x) = c. So we "see that d-minimal consequence is not compact,
even restricted to d-satisfiable theories.

6.3 Complexity

So far in this chapter we have seen some properties of minimal consequence in first
order logic that suggest that it is considerably more "complicated" than ordinary

logical consequence in first order logic, or minimal consequence in sentential logic.
Minimal consequence in sentential logic, viewed as a relation between sets of sen¬
tences and a sentence is 11° and not £° (chapter 3, proposition 5.2 and corollary

5.1). Recall that in developing these results, we began with an upper bound of

IIj for minimal consequence, determined by the fact that minimal consequence
is definable by a V3 formula with quantifiers ranging over countable sets. This

upper bound was later found to be too loose, in proposition 5.2, where the strict
n° bound was given. The strict bound was reached by specific considerations on

the relation for sentential logic.

By considering a more sophisticated language than that of sentential logic,
it may appear that the complexity of minimal consequence will be considerably

higher. Note, however, that this is not necessarily the case; it is well known
that logical consequence is semi-decidable for both sentential logic and first order

logic. In other cases our intuition is confirmed. For example, for finite theories in
sentential logic, logical consequence is decidable — a decision procedure is given
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by the method of truth tables — and is known to be co-NP-complete. In the
case of finite first order theories the complexity of the logical consequence relation

is higher than that for sentential logic — although the consequences of a first
order theory can be effectively enumerated, there can be no decision procedure for

determining whether a sentence is a consequence of another — and is known to

be E^-complete.

The above considerations suggest that, for first order languages, it is useful to
also determine the complexity of minimal consequence for finite theories. Such an

investigation is pursued in [Schlipf 87]. Recall that the first, loose upper bound
for minimal consequence in sentential logic was given by its definition. As a first

attempt in this line, we can begin by considering the definition of a (general)
minimal consequence relation in first order logic,

r \=m<f> *=> VM(M K»r =* M H <t>)
and

M hnr 4=^ M\=Y and VA/"(Af (= T => M M).

Thus, r \=m(f> can be expressed by the following formula:

\/M3M(M T or(V Cm M and Ji P) or jy[ f>)

In the case of sentential logic, this immediately yielded an upper bound on

the complexity of minimal consequence, because jd cf> in sentential logic is an

arithmetical relation and because the cardinality of models in sentential logic is de¬
termined by the cardinality of the language; the languages that we considered were

countable, which meant that the quantifiers in this formula were over countable
sets and the matrix contained only number quantification (since all the relations
are arithmetical). The difference in first order logic is that the cardinality of a

first order structure is arbitrarily high (since it has a domain that is an arbitrary
set, independent of the language). If we restrict attention to countable structures

(i.e., structures whose domains are countable), it is possible to proceed with the

computation of the upper bound, as before. Note that for countable first order

structures and theories, M V is a A] relation (i.e., both IIJ and Ej); J\f Cm M
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will, in general, be arithmetic — and definitely for the orderings considered in this
thesis. From these observations it follows that, restricted to countable structures,

the above formula is again (as in sentential logic) II2 — since the matrix is A\
and the leading quantifiers range over countable sets. This upper bound on the

complexity of minimal consequence restricted to countable models is not lowered

by a futher restriction to finite theories, since, even for sentences, M. (= (j) is Aj.

As with sentential logic, the next question to be addressed is whether minimal

consequence is indeed as uncomputable as its syntactic form suggests. By specific
model theoretic considerations on sentential logic we found that minimal conse¬

quence is a n" relation, i.e., definable by an V3 formula with quantifiers ranging
over numbers (rather than sets). In order to answer this question for first order

logic it is necessary to take into account specific model theoretic properties of the

particular notion of minimality under consideration. As a relation on numbers

(encoding sentences of the language), minimal consequence is recursive for senten¬
tial logic, but not so for first order logic; thus, before determining its complexity
for arbitrary theories, it is useful to first consider its complexity restricted to fi¬
nite theories. The outcome of this, however, makes it unnecessary to consider the

/■p \
case of arbitrary theories, since, restricted to countably infinite models, (=p and

are II\-complete relations on w x w, as shown in [Schlipf 87]; p-minimal and
f-minimal consequence are thus as complex as their definition allows them to be,
even in the case of finite theories.
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7 Discussion

The very high complexity of minimal consequence in first order logic can inspire
one of two kinds of reaction:

1. If minimal consequence is really that complicted, then there is no point in

considering it further.

2. All these results are obtained by very involved pathological constructions

which, we can rest assured, will never occur in practice.

The merits of minimal consequence, or any other notion that claims to capture

some aspect of human reasoning, lie in how well it performs this function and
should be kept separate from efficiency and effectiveness considerations. If minimal

consequence is an interesting notion in itself, or if it bears some relation to human

reasoning, then the study of various pathologies will lead to alternative definitions

excluding these, or further our insight into problems in modelling human reasoning.
For example, the theories of examples 2.3 (Section 2) and 3.5 (Section 3.3) have
no minimal models. We can exclude such theories from consideration since they
are not well founded — in fact, not universal — and, as has been observed with

non-well founded theories in general, they do not seem to conform with human
intuitions and so there can be no harm in excluding them. We can also argue that,

although theories which are not well founded do not occur "naturally" — and the
theories in question are prime examples — theories that express much the same

content can and do occur very naturally. After all, both of these theories describe
a very familiar structure, that of a linear ordering with a least element; this could,
for instance, be the natural numbers or an ancestral relation.

Clearly, we need a means to represent and reason about such structures, but

perhaps this is not done best in the form offered in these examples; a simple
addition to the vocabulary and a trivial extension to the theory (for the latter
theory), is enough to remedy the situation, as far as the existence of minimal
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models is concerned. In fact, as we show in propositions 2.1, 3.1, and 4.1 all
three notions of minimality that we consider enjoy this property — satisfiable

theories can always be extended to minimally satisfiable theories and, if the original

language is finite, its extension and the extension to the theory will also be finite.



Chapter 5

Related Work

1 Introduction

This thesis has explored the logical foundations of one approach to non-monotonic

reasoning through the notion of minimal consequence. In particular, we have

analysed a semantic approach to minimal consequence, paying little attention to

explicit syntactical questions about notions of provability for deriving the minimal

consequences of a given theory. As noted, however, our results on the complexity
of minimal consequence do bear crucially on such syntactic questions and imply
that further research needs to seek to identify highly expressive fragments of the

logical languages under consideration, for which inferring minimal consequences

(of certain classes of theories) is computationally feasible.

The present chapter discusses other research which bears on the main themes

of this thesis.

99
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2 Semantic Approaches to the Study of Cir¬

cumscription

There is a fast growing body of literature in AI and logic programming on non¬

monotonic reasoning, much of which deals with syntactic inference mechanisms
that (directly or indirectly) attempt to capture some aspect of minimal conse¬

quence. These are either tailored to specific applications or are not developed
and understood to the point where they may be useful. The most significant of
these elaborations were discussed in Chapter 2, since they undeniably attest to

the interest in minimal consequence and play a large part in motivating our work.

Thus, the goal of this thesis has been to provide a theoretical framework which
can serve as a basis for the development of robust systems for non-monotonic rea¬

soning across a range of domains. The main theme has been the development of
the semantics of a number of notions of minimal consequence based on notions

of minimality of structures derived from classical model theory, on the one hand,

and McCarthy's (and others') investigation of circumscription, on the other, to the

point where the results become relevant to the design of computational systems
for non-monotonic reasoning.

In the literature, there have been some other results reported which are rel¬

evant to this theme. As discussed in Chapter 4, the work of Schlipf provides
extensive information about the model theory of an interesting semantic formula¬
tion of McCarthy's predicate and formula circumscription for first order logic, and
develops surprising results about the complexity of these consequence relations

[Schlipf 87]. In Chapter 3 we undertake a similar study of the complexity of min¬
imal consequence relations in sentential logic. Although the results of Schlipf and
our complexity results are similar in nature, their impact is very different — the
former concerning the applicability of circumscription formalisms and, in general,
first order minimal consequence relations, the latter concerning the applicability
of closed world reasoning of the kind employed in logic programming, i.e., minimal
consequence relations restricted to Herbrand models.
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A few earlier semantic studies of circumscription-related notions in first or¬

der logic contributed to a better understanding of minimal consequence relations

[Davis 80], [Lifscbitz 86a], and [Etherington 86]. This work, which is also dis¬
cussed in earlier chapters, was primarily concerned with the existence of minimal
models and with finding ways to ensure it. Part of our work in sentential logic had
a similar motive: to characterize the class of theories that have unique minimal

models. The work of Schlipf, on the other hand, is instead aimed at exploiting
the "sparseness" of minimal models for certain theories, to prove strong properties
about minimal consequence. Another part of our work in sentential logic was in

the spirit of Schlipf's approach, exploiting the fact that there exist theories whose
minimal consequences comprise highly undecidable sets, to prove results about the

complexity of the minimal consequence relation.

The work of Etherington, which covers a broad range of themes in reason¬

ing with incomplete information, also includes some results about minimal con¬

sequence in first order logic [Etherington 86]. The main problems addressed by

Etherington, in this line, are: (1) the existence of minimal models; (2) the use of

p-minimal consequence in obtainining new ground sentences; (3) the relationship
between predicate and domain circumscription; and (4) the (semantic) formulation
of f-minimal consequence based on formula circumscription.

With respect to (1) and (2), Etherington introduces and studies the properties
of well founded theories1. Etherington does not give a characterization of well
founded theories, but shows that: (a) universal theories are well founded for do¬

main, predicate, and formula minimal consequence, and (b) every positive ground
literal of a circumscribed predicate is a p-minimal consequence of a well founded

theory iff it is a logical consequence of that theory; and every ground literal (pos¬
itive or negative) of any of the other predicates is a p-minimal consequence of a
well founded theory iff it is a logical consequence of that theory — thus p-minimal

consequence (and circumscription) does not produce any new positive ground in¬
stances of the circumscribed predicates or any new (positive or negative) ground

Recall that a theory is well founded iff each of its models have a minimal submodel.
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instances of the other predicates. This work was discussed in Chapter 4, where it
was compared with the results of our work on this subject. We discussed the sig¬
nificance of the language of the theory to the availability of names for the objects

in the domain or the extension of a relation in a structure. Our approach to (1)

(i.e., to ensuring the existence of minimal models for satisfiable theories) exploited
this fact to show that satisfiable theories can be extended to minimally satisfiable

theories in an extended language. The extensions make true the same sentences

in the original language as the original theory. We showed this for all three no¬

tions of minimality, but in the particular case of d-minimal consequence we indeed
have a stronger result: The extension to the language of a theory suffices — the
same (satisfiable) theory, now taken as a theory of the extended language, will be
d-satisfiable. With respect to (2), we gave examples of theories that establish the
converses of Etherington's results, namely: (a) a non-well founded theory which

yields new positive ground instances of the circumscribed predicate by p-minimal

consequence and (b) a non-well founded theory which yields new positive and

negative ground instances of other predicates (not among those circumscribed) by
p-minimal consequence.

With respect to (3), Etherington shows that d-minimal consequence is not sub¬
sumed by p-minimal consequence (as was claimed in [McCarthy SO]), by showing
that d-minimal consequence can be used to conjecture domain closure axioms2,
whereas p-minimal consequence cannot. In Chapter 4 we showed that, although
d-minimal consequence is not a special case of p-minimal consequence, there is a

definite connection between the two notions. We employed the model theoretic no¬

tions of inner models and relativizations to make this connection precise, namely,
to show that the relativization of a sentence ^ is a p-minimal consequence of the
relativization of a theory T iff <j> is a d-minimal consequence of I\ This type of

correspondence between d-minimal consequence and p-minimal consequence can

be exploited in further theoretical investigation of these notions. Indeed, later in

2See Chapter 2, Section 4.
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Chapter 4, it was used to show the non-compactness of p-minimal consequence
from the non-compactness of d-minimal consequence.

With respect to (4), Etherington formulates f-minimal consequence, based on

McCarthy's formula circumscription [McCarthy 84]. The definition that we used in

Chapter 4 is different, although as we observed (and as Etherington also observes)
they are equivalent. Formula circumscription and formula minimal consequence

are, by definition, extensions of predicate circumscription and predicate minimal

consequence, respectively. In Chapter 4 we showed a stronger connection, namely
that the p-minimal consequences of a theory with respect to a set of predicates R
are exactly those sentences which, for every set of predicates U are the f-minimal

consequences of that theory with respect to R and U. Using this, later in Chapter

4, we established the non-compactness of f-minimal consequence from the non-

compactness of p-minimal consequence.

In this thesis we have pointed out the distinction among two notions of com¬

pactness in logic: compactness of satisfiability and compactness of consequence.

While in classical logic these notions are interchangeable, the distinction is very

significant in the study of non-monotonic consequence relations (see Chapter 2).
Thus, although from the fact that every satisfiable sentential theory is minimally
satisfiable it follows immediately that minimal satisfiability is compact in senten¬

tial logic, it is still possible that minimal consequence is not compact, as indeed
we showed in Chapter 3.

It should be pointed out that our results on non-compactness can also be
obtained (more directly) as corollaries to complexity results — those given in

Chapter 3, for minimal consequence in sentential logic, and Schlipf's results, on the

complexity of first order minimal consequence relations. The interest of our proofs
of non-compactness, however, lies in exhibiting a particular (infinite) theory and a

particular sentence, in each case, such that the sentence is a minimal consequence

of the theory, but not a minimal consequence of any of its finite subsets.
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3 Alternative Notions of Minimality and Ap¬

plications

As noted several times in the course of this thesis, the notion of minimal con¬

sequence is sensitive to the notion of minimality of structures in terms of which
it is defined. This fact has also been observed by other researchers (see e.g.,

[McCarthy 84], [Lifschitz 84], [Etherington 86], and [Shoham 87]) and it suggests
that the investigation of other notions of minimality — that is, notions based on

orderings of structures different from those we consider — might provide valuable

approaches to non-monotonic reasoning in certain application domains.

Shoham casts existing notions in non-monotonic reasoning in this framework
and draws comparisons between them. Since he considers orderings among struc¬

tures that are not readily seen as relations of "size," he terms these preferen¬

tial orderings, and their suprema preferred models. For example, we can express

d-minimal consequence in Shoham's terminology by defining a preference order¬

ing among structures such that At is preferred over Af iff Ad is a submodel of

Af; then, we see that a structure is a d-minimal model of a theory T iff it is a

most preferred model of T, i.e., it is a supremum with respect to the preference

ordering3. Shoham's framework is indeed very general and is, in fact, what in
this thesis has been laid out as background in Chapter 2 (in other works also,

e.g., [Etherington 86], [Lifschitz 84], [Kautz 86], etc). As we have seen, at this
level of generality, very little can be said about non-monotonic consequence rela¬

tions, except for some simple properties that we discuss in Chapter 4, Section 6.1.

Shoham's work is rather directed at showing how this framework can be used to

compare some seemingly different approaches to non-monotonic reasoning, such as

3Note that there is a reversal in the direction of the ordering here, but since we are

dealing with dual notions this is insignificant.
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autoepistemic reasoning (in particular, the non-monotonic modal logic developed
in [Halpern & Moses 85]) and circumscription.

Motivated by McCarthy's minimization ideas, several researchers have striven

to define new orderings among structures that give rise to consequence relations
that are more appropriate for particular aspects of common sense reasoning. Ex¬

amples of this type of work are [Lifschitz 86b], [Kautz 86], and [Hintikka 88].

In the first of these, Lifschitz defines a notion of pointwise circumscription,
which is a generalization of formula circumscription, based on the following idea:

predicate extensions are minimized and a model is said to be minimal iff no single
element can be dropped from the extension of the minimized predicate while still

satisfying the theory. This idea is adapted as a generalization of formula circum¬

scription, where several predicates are jointly minimized while others are allowed
to vary. The difference between a minimal model in this sense and a p-minimal

model, say, can be seen from a simple example. Let T = {P(a) P(b)}. The
model where the extension of P contains two distinct interpretations of a and b

is a pointwise minimal model of T (since no single element can be dropped from
the extension of P), but is not p-minimal (because both elements may be dropped
from the extension of P). Lifschitz discusses the application of pointwise circum¬

scription to problems that arise in common sense reasoning and argues for the

flexibility of his approach.

The work of Kautz concerns one particular application ofminimal consequence,
to temporal reasoning, which provides a solution to the "persistence problem" —

given that no relevant action, or perhaps no action at all, occurred over a stretch

of time, one may need to infer that certain facts do not change their truth values
over that time.

Unlike Lifschitz, who adds some sophistication to the familiar methods of defin¬

ing minimal models, and Kautz, who shows how these methods can be applied to

give a satisfactory solution to a particular problem in common sense reasoning,
Hintikka proposes a new approach to minimal consequence (restricted to the case of
theories with finite models) that employs his notion of an m-automorphism. Hin¬
tikka argues that his approach captures McCarthy's idea of "small models" better
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than circumscription and yields conclusions that are more natural. It would ap¬

pear that his proposal attempts to combine d-minimal and p-minimal consequence
to produce a consequence relation that is superior to both (in the sense of being
more natural), but no serious comparison is drawn in the paper. Moreover, the
exposition of the main technical notion'— that of an m-automorphism — is too

fragmentary to allow such a comparison.

Another piece of research concerned with an application of minimal conse¬

quence is [Papalaskari & Bundy 84]. This work shows how the use of predicate
circumscription in (natural language) question answering can be guided by con¬

textual information, in order to produce conjectures that accord with the maxims
of cooperative conversation [Grice 75]. In particular, the topic of a question may

be used to choose the predicate which is to be circumscribed, and the conjectures
thus produced conform with Grice's quantity maxims.

4 Logic Programming and Databases

This thesis has not directly dealt with any first order minimal consequence rela¬
tions restricted to Herbrand structures (such as those of concern to logic program¬

ming or databases), relying on the fact that interesting issues about these can be
accomodated via the study of minimality for sentential theories. We maintain the

superiority of this approach, because it isolates the important features of minimal

consequence of this kind, but we also acknowledge the limitations of our particular

undertaking. First, it is necessary to make explicit the connection of our results
to real issues encountered in logic programming. In some cases this is not triv¬
ial and requires further research.4 Second, our study of minimal consequence in

sentential logic covers only one type of minimality of structures. Recent research

4An example of a trivial connection is between Proposition 3.1 (Chapter 3, Section

3), which shows that every satisfiable theory is minimally satisfiable, and the well known
result that states that every positive disjunctive database has a minimal Herbrand model.
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in logic programming has introduced new orderings of the Herbrand models of
databases [Przymusinski 87]. These aim to capture the "intended semantics" of
logic programs and arose out of work in stratification (see e.g., [Apt et al 86] and
[Van Gelder 86]). Przymusinski refers to these as preference orderings5 and to
models such that no other models are preferred to them as perfect models. The

objective in defining perfect models is to "choose" among the minimal Herbrand
models of the database those that are most likely to reflect the intended inter¬

pretation of the database — perfect models are always minimal, although not all
minimal models are perfect, preference orderings and perfect models are depen¬
dent on the syntax of the database. This represents a radical departure from all the

orderings considered so far in this thesis and elsewhere. The intuition behind such
a proposal has its source in a hypothesis that what the database designer chooses
to represent as the head of a clause depends on the intended interpretation of the
database. Indeed, Przymusinski argues that perfect models semantics leads to the
"correct" (intuitive) interpretation of a database. A study of the recursion theo¬
retic complexity of the perfect (Herbrand) models of stratified logic programs is

given in [Apt & Blair 88]. In this very interesting paper, Apt and Blair show that
these models lie arbitrarily high in the arithmetic hierarchy, but, under certain
strict syntactic restrictions on the form of theories, the set of consequences can be

recursively enumerable.

Viewed in a different light, perfect models represent an approach to completing
a database ("more" than is afforded by the method of minimal Herbrand mod¬

els). Our concerns with respect to completion of databases centered in specifying

necessary and sufficient conditions for their completion via minimal models (i.e.,
conditions under which databases have unique minimal models). A careful study
of alternative notions of minimality in sentential logic, such as those suggested

by Przymusinski's perfect models, would thus address concerns complementary to
those explored in this thesis.

°Note that this is totally unrelated to Shoham's use of the same term.
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Further Work

1 Introduction

The main theme of this thesis has been the development of the semantics of min¬
imal consequence relations as an approach to reasoning with incomplete informa¬
tion. Minimal consequence relations have been the subject of considerable at¬

tention in recent years as an approach to reasoning with incomplete information.

Although most often they are introduced syntactically, in retrospect it has been
observed that there are serious difficulties in formalizing the underlying intuitive
notions which are clearly and precisely articulated in semantic terms. The notions
of minimality of structures that we studied were chosen for their model theoretic

simplicity, their applicability to problems in Logic Programming, and because of
a generally held belief that they, in some sense, reflect important aspects of hu¬
man reasoning. Apart from the immediate contribution to the understanding of
these consequence relations, this work identifies questions that are pertinent to
the evaluation of alternative proposals for minimal consequence relations and in

fact suggests alternative proposals that avoid certain shortcomings of the conse¬

quence relations that we have studied. This chapter discusses directions for future
work on minimal consequence and reasoning with incomplete information, roughly

falling under the following topics:
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1. Alternative formulations of minimality.
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2. Connections with Logic Programming.

3. Polynomial time complexity of decidable problems.

Interesting technical problems arise under all of the above topics. These are

discussed in Section 2 below. Next, in Section 3, we propose a broader perspective
for further research which touches on some of these topics and engages notions of

learnability.

2 Mathematical Development ofMinimal Con¬

sequence Relations

2.1 Alternative Formulations of Minimality

One of the views that we take of minimal consequence here, is that of a method of

completing a theory, by selecting a subclass of models that seem more "natural"
than the class of all models of that theory. In Chapter 4, we discussed problems

arising from the fact that the definitions of minimal models in first order logic that
we consider do not ensure the existence of minimal models for every satisfiable

theory. Although our work indicates that this is not as serious a problem as

it appears, it would be useful to study similar types of orderings of structures
that are well founded. Alternative definitions of minimal consequence could then
be advanced that are similar to" the ones studied in this thesis, but which more

accurately conform to the above description of selecting a non-empty class of
"natural" models. Consider the theory T of example 2.3 (Chapter 4, Section 2),
which is intended as a theory of natural numbers with the usual successor function.

Recall that every model of P contains a standard chain and possibly any number
of finite cycles and z-chains (chains unbounded in both directions); every model
of P contains a proper d-submodel isomorphic to the natural numbers and thus
F has no d-minimal model. Now, all these isomorphic standard chains are, in a
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sense, the "same" model, and we might like to say, the minimal model of I\ We
could thus modify the definition of minimal consequence to view structures in an

isomorphic chain as minimal. For example, for d-minimality we would have:

M KF <*=» M h r & WV(W C dM =k Af = M)

where = denotes isomorphism — similarly for p-minimality and f-minimality. Un¬
der this definition, the models of T that consist of a standard chain would be d-

minimal, but none of those containing non-standard elements would be d-minimal.

Although it works for this example, this idea does not accomplish our objective,
which is to ensure that every satisiable theory is minimally satisfiable1, but illus¬
trates the sort of approach that may be of interest to a further investigation of

this question.

Research of this character could similarly aim to "correct" other shortcomings
of the minimal consequence relations that we studied, although we feel that the

complexity aspects would be better served by an approach that instead seeks to

identify highly expressive fragments of the languages under consideration for which
minimal consequence is tractable.

2.2 Connections with Logic Programming

In Logic Programming we encounter a fragment, the class of universal Horn the¬
ories (or Horn clauses), which has certain nice properties. In this thesis we have
studied Horn theories in sentential logic and have shown how to extend this class
while retaining at least one of its nice properties, i.e., the uniqueness of minimal

models. Interesting and useful work in this area would aim to lift this type of
result to first order languages, exploiting connections with sentential logic offered

by Herbrand's theorem. We feel that an approach similar to that taken in Chapter

3, via preservation theorems, would be most fruitful.

1The theory T = {3x /\™=0 L{(x)\ = Pi or L{ — ->Pi} is satisfiable, but has no d-
minimal model, even with this definition. Moreover, each finite subset of T is satisfiable,
so this notion of minimal satisfiability (and minimal consequence) is not compact.
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In Chapter 2, it was briefly noted that a form of what we might call "minimal
Herbrand consequence" is employed in Logic Programming to handle negation
and the closed world assumption. It would be interesting to study this relation in

isolation and connect it to d-minimal and p-minimal consequence. For example,

we can define a combination of the above by looking at models that are both
d-minimal and p-minimal (for all the relation symbols in the language) and then
compare this relation to minimal Herbrand consequence.

2.3 Complexity of Decidable Problems

We have emphasised the importance of our complexity results and noted that the
fact that they were obtained in connection to infinite theories in no way makes
them irrelevant to Computer Science. Once clear connections are made to frag¬
ments of first order logic that are relevant to logic programming, it would also be
fruitful to settle questions of tractability for the decidable problems. The ques¬

tions considered in Chapter 3 for unrestricted sentential theories or unrestricted

sub conditional theories become decidable when restricted to finite theories. Their

placement in the polynomial time hierarchy would involve very interesting math¬
ematical work. It would, perhaps, be difficult to argue that this type of research
would be of great practical use, since the high complexity of the unrestricted prob¬
lems suggests a high degree of intractability for the finite cases. The interest is

more theoretical: the polynomial time hierarchy is barely explored beyond the first
two levels (P and NP-co-NP) and, as is well known, it is not even "established"

(a positive answer to P=NP would collapse it)2. Of course, no clear connection
has been made to date between the polynomial time complexity of a problem re¬

stricted to finite objects and the complexity of the unrestricted problem (in the
arithmetical hierarchy). Nevertheless, there is much evidence indicating such a

connection, so it is very likely that the complexity of some of the problems that
we study in this thesis can be placed in one of the higher levels of the polynomial

2See [Stockmeyer 87] for an excellent survey of work on the polynomial time hierarchy.
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time hierarchy (i.e., beyond NP and co-NP). Such questions, which are naturally
occuring (in the sense that they are not conceived for the purpose of being highly
intractable) and are located in the higher levels of the polynomial time hierarchy,
are few and can yield valuable insights that would further the understanding of
the polynomial time hierarchy.

As mentioned in the discussion of alternative notions ofminimality, tractability

considerations should play an important role in formulating alternative notions of

minimality or fragments.

3 Learnability Considerations

In formulating a good approach to reasoning with incomplete information, as with
most problems in AI, there are two competing objectives. One of these tends
towards Cognitive Science and concerns the modelling of human reasoning in the

presence of incomplete information. The other tends more towards Computer
Science and concerns the development of computational systems that successfully
reason with incomplete information. Often these two objectives can be pursued

simultaneously, and in AI it has often been the case that they are identified;
for clearly, modelling the way people solve a problem may in fact result in a

successful computational system that solves that problem, and vice versa. The
case of visual perception is an obvious example where much was learned about

human and animal perception and this knowledge was used to develop successful
visual information processing algorithms. For the problem of signature verification,
on the other hand, this identification has not yet proved to be useful — the most

successful computer security systems are not signature verifiers, but public key

encryption systems.

The study of minimal consequence undertaken in this thesis has been moti¬

vated by both of these objectives. Modelling the type of reasoning performed
by people when faced with incomplete information relates to the first objective.
Logic programming, which is founded on a closely related methodology, represents
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a stride towards accomplishing the second objective. Examples and speculations
on the use of minimal consequence in human reasoning, on the one hand, and the

successful use of minimal consequence in logic programming, on the other, sug¬

gest that a common approach to reasoning with incomplete information, based on

minimal consequence, can be viable.

The main topic for further research issuing from this thesis is the investigation
of alternative notions of minimality. In the previous section, we have discussed
certain guidelines for the formulation and evaluation of alternative minimal conse¬

quence relations. The criteria that emerge are of two general types — naturalness
and complexity. Naturalness can only be assessed in rudimentary terms, by means

of examples or through very general (and often untestable) observations; the ex¬

amples given in the AI literature to support the use of circumscription and the

proposal in the previous section for alternative orderings of structures that are

well founded can be seen as striving for naturalness. Note, however, that neither
of these criteria addresses the problem of evaluating the success of a system for

reasoning with incomplete information. We propose that this is the most crucial

point to be addressed in future reasearch on this subject. To this end it will be
most useful to consider reasoning with incomplete information (in both the human
and machine case) as embedded in a dynamic process of knowledge acquisition. Al¬

though it is difficult to say whether the conjectures generated by a system in the

presence of incomplete information are natural, there is certainly much to be said
about the behaviour of that system over time. In particular, a clear measure of
success for such a system is its "learning capacity." This suggests embedding the

study and evaluation of proposals for reasoning with incomplete information in
the context of machine inductive inference.

The earliest paradigm for machine inductive inference is that of identification
in the limit, introduced by [Gold 67] and extended to the context of relational
structures by [Osherson & Weinstein 86]. Under this paradigm, a minimal conse¬
quence relation can be construed as a learning function; the space of possibilities
is a collection of structures; information about one of these structures is input to
the learning function in a piecemeal fashion; at every stage the learning function
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conjectures a structure. Such a learning function would then be said to identify
a collection of structures in the limit if and only if its output is eventually stable

(after a finite number of stages) and its conjecture is in fact the structure that
gives rise to its input.

Another paradigm for machine-inductive inference, polynomial learnability, was
introduced more recently by [Valiant 84], Polynomial learnability represents a sig¬
nificant refinement of the ideas of machine inductive inference, by, first, imposing

explicit polynomial complexity limits on the learning function, second, by accept¬

ing a stable conjecture that is "close" to the right answer, and, third, by taking
into account a measure of how well the information was presented to the learner.
Such refinements can be (and, in fact, have been) proposed for identification in
the limit, but polynomial learnability, in addition, relates these to one another

explicitly.

Viewing minimal consequence relations as learning functions in either of these

paradigms immediately broadens their scope. Interesting representation issues
arise and we are urged to rethink certain intuitions that led to the development of
minimal consequence. In completing a theory, our intuitions tell us that we would
choose among the "small" and "simple" models. Consider how one might, in

general, go about completing a theory in sentential logic. Suppose that the input

so far has been {p2,P4}- The minimal consequence relation studied in Chapter 3
would select the model that in this case is the same as the input. This model is

certainly the smallest, in terms of cardinality. Suppose now that after a while, the

input is {p2, Pi, P6, Ps, Pio, P12}■ Most people, by this stage, will begin conjecturing

{p2i\i G w}. If this is in fact the model giving rise to this information, however,
our notion of minimal consequence (now viewed as a learning function) will not
identify it in the limit. This simple example suggests that the notion of "small
model" could be better interpreted by considering additional representation issues,
such as the size of a description of a model, rather than the size of the model itself.

We can also reconsider other aspects of minimal consequence. For example,
minimal consequence treats positive and negative information differently. This is
also related to representation issues. As we saw in Chapter 4, language consid-
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erations play a much larger role with respect to minimal consequence than with

ordinary logical consequence. Taking an even broader perspective, we may ask
why minimal models in general should be favoured over other models of an incom¬

plete theory. Apart from being small, they reflect a systematic way of completing
(or partially completing) a theory. In addition, they give weight to the positive
information present. Now we may ask, why is this a good thing to do. The answer

to this would probably take us back to representation issues. Our intuitions tell us
that we choose the way of representing and communicating information by making
a preliminary judgement of what is important. Consider again the example given

above, where the input has been {p2,P4}- There are many simple ways to complete
this theory. For instance, we could choose the model {pi\i G cu}, but somehow this
seems to be missing the point. Moreover, the problem seems unrelated to the size
of description of the model as discussed above. It appears, instead, that this has
more to do with loss of information. Nevertheless, in the dual situation, where

the information given consists of {-IP2,-IP4}) the unique minimal model is 0. Are
we to consider this problematic as well? Note that we are, in a sense, free to

choose what we represent by the letters p2 and p4. For instance, p2 could stand
for the sentence "it is sunny" so that ->p2 would stand for "it is not sunny" (or
"it is overcast"), or conversely, and the kind of input would depend on this (i.e.,
whether the input is positive or negative), and similarly for p4. Future research
should aim to clarify questions such as these.

Summarizing, we conclude that learnability considerations are of primary im¬

portance to further research on reasoning with incomplete information, since these
constitute the only means through which we can rigorously tackle the question of
naturalness — to which this thesis and all past research on this subject frequently
alludes.



Chapter 7

Conclusions

This thesis has presented a study of minimal consequence as a semantic approach
to reasoning with incomplete information. Minimal consequence is a semantic no¬

tion implicit in past attempts to deal with the problem of incomplete information,
in domains as disparate as common sense reasoning and logic programming. Our

objectives have been twofold:

1. to formulate minimal consequence for sentential logic and provide a complete
and detailed study of its model theoretic and recursion theoretic properties
that bear on practical applications.

2. to investigate properties of minimal consequence for first order languages
where these have a direct impact on the applicability and power of circum¬

scription formalisms.

1 Sentential Logic

Regarding the first, we introduced minimal consequence in sentential logic and
showed that the minimal consequence relation is not compact and is 11° and not E°.
The failure of compactness for minimal consequence, even in the case of sentential

logic, rules out the possibility of elaborating a deductive calculus that captures
this consequence relation. In this, we also observed that there is a break in the
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notions of compactness with respect to satisfiability and consequence. Although
there is a definitional distinction between compactness of the consequence relation

versus compactness of satisfiability in classical logic, the two can be shown to be

equivalent and are, in fact, both true. This equivalence derives partly from the

monotonicity of classical logic and naturally does not hold for a non-monotonic

consequence relation such as minimal consequence. In our study of sentential logic
we observe that minimal satisfiability is compact, whereas minimal consequence

is not. For first order languages, however, neither relation is compact — for any
reasonable construslof minimality.

The recursion theoretic results indicate that minimal consequence, even in the

simplest case offered by sentential logic, is a rather complex relation: it is as hard as

deciding whether a given program (in a Turing equivalent programming language)
terminates on every input (a standard Ilj-complete problem). We thus conclude
that for practical purposes it is essential to look at specific fragments where this

difficulty does not arise. One such fragment, extensively studied in the literature, is

provided by the Horn theories. Horn theories have unique minimal models and can

be completed by the addition of every sentence that is not provable by the theory

(negation as failure). We introduce another such fragment, th subconditional
theories and show that it is the largest set of theories, up to 1 gical equivalence,
that has this property. We thus give a complete characteriza ion of the class of

theories in sentential logic that can be completed by negation as failure. We also
show that the class of theories consistently completable by negation as failure is
n° and not E°.

2 First Order Logic

In first order logic, minimal consequence is the semantic notion underlying cir¬
cumscription formalisms, d-minimal, p-minimal, and f-minimal consequence are

obtained by varying the type of minimization involved and correspond to domain,
predicate, and formula circumscription, respectively. The results, again, are model
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theoretic and serve to clarify properties of minimal consequence in the predicate
calculus which have an impact on the usefulness and applicability of circumscri¬

ption formalisms (in fulfilment of the second objective above). The principal theme
in the study of minimal consequence for first order languages presented here cen¬

tres on yet another divergence between classical logical consequence and minimal

consequence, namely, unusual phenomena which arise when considering the min¬
imal consequences of a theory in an extended language. As was the case for the
distinction between compactness of satisfiability and compactness of consequence,

the minimal consequence relation differentiates between a theory in a language C

and the same theory in an extension of C, whereas in classical logic if the theory
does not use any of the additional symbols, it is a conservative extension of the

theory with respect to the original language. Using this fact, we were able to

show that, although it is well known that there are satisfiable theories which are

not minimally satisfiable, every satisfiable theory can be extended to a minimally
satisfiable theory in an extended language. This may be a trivial extension, as in
the case where the theory is already minimally satisfiable, or it may involve adding
a finite number of symbols to the language and (in the case of p- and f-minimal

consequence) a finite number of sentences to the theory.

By approaching non-monotonic reasoning semantically, specifically circumscri¬

ption, we were able to clarify other questions in the recent literature of the sub¬

ject, regarding subsumption relationships among the various circumscription for¬
malisms. Using the notion of relativization, we established precise connections
between domain, predicate, and formula circumscription.
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