171 research outputs found

    Performance analysis of maximally improper signaling for multiple-antenna systems

    Get PDF
    The transmission of improper Gaussian signals, instead of the conventional proper ones, has been shown to improve the performance in interference-limited networks. In this work we analyze the performance of a multiple-antenna user that transmits maximally improper signals and whose transmit covariance matrix satisfies a set of constraints that limit the harmfulness of the interference caused by this user. As opposed to the single-antenna case, there are different possible improper spatial signatures, which provide different performance. We first obtain new results for maximally improper random vectors based on majorization theory. We then apply these results to derive the improper spatial signatures that either maximize or minimize the performance. Numerical examples show that the performance difference between these two extreme cases can be surprisingly large.The work of C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under grants SCHR 1384/6-1 and LA 4107/1-1. The work of I. Santamaría was supported by the Ministerio de Economía y Competitividad (MINECO) and AEI/FEDER funds of the UE, Spain, under projects RACHEL (TEC2013-47141-C4-3-R) and CARMEN (TEC2016-75067-C4-4-R)

    Improper signaling for SISO two-user interference channels with additive asymmetric hardware distortion

    Get PDF
    Hardware non-idealities are among the main performance restrictions for upcoming wireless communication systems. Asymmetric hardware distortions (HWD) happen when the impairments of the I/Q branches are correlated or imbalanced, which in turn generate improper additive interference at the receiver side. When the interference is improper, as well as in other interference-limited scenarios, improper Gaussian signaling (IGS) has been shown to provide rate and/or power efficiency benefits. In this paper, we investigate the rate benefits of IGS in a two-user interference channel (IC) with additive asymmetric HWD when interference is treated as noise. We propose two iterative algorithms to optimize the parameters of the improper transmit signals. We first rewrite the rate region as an pseudo-signal-to-interference-plus-noiseratio (PSINR) region and employ majorization minimization and fractional programming to find a suboptimal solution for the achievable user rates. Then, we propose a simplified algorithm based on a separate optimization of the powers and complementary variances of the users, which exhibits lower computational complexity. We show that IGS can improve the performance of the two-user IC with additive HWD. Our proposed algorithms outperform proper Gaussian signaling and competing IGS algorithms in the literature that do not consider asymmetric HWD.The work of M. Soleymani, C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under grants LA 4107/1-1, SCHR 1384/7-1 and SCHR 1384/8-1. The work of I. Santamaria was supported by MINECO of Spain and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN)

    Maximally improper signaling in underlay MIMO cognitive radio networks

    Get PDF
    Improper Gaussian signaling is a well-known technique that has been shown to improve performance in different multi-user scenarios. In this paper, we analyze the benefit of improper signaling in underlay cognitive radio when users are equipped with multiple antennas. Specifically, we assume that the primary user is protected by the so-called interference temperature constraint, which guarantees a prescribed rate requirement. In this setting, we study how the maximum tolerable interference power changes when the interference is additionally constrained to be maximally improper (strictly noncircular, or rectilinear). We observe that the correlation structure of a maximally improper interference is an additional degree of freedom that can be exploited to improve the SU performance. Because of that, we propose two different protection strategies for the PU where this structure is either constrained or unconstrained, and derive the interference temperature threshold for both cases. We then focus on the secondary user and provide designs of the transmission parameters under the proposed protection strategies.The work of C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under Grants SCHR 1384/6-1 and LA 4107/1-1. The work of I. Santamaría was supported by the Ministerio de Economía y Competitividad and AEI/FEDER funds of the UE, Spain, under Project CARMEN (TEC2016-75067-C4-4-R)

    Robust improper signaling for two-user SISO interference channels

    Get PDF
    It has been shown that improper Gaussian signaling (IGS) can improve the performance of wireless interference-limited systems when perfect channel-state information (CSI) is available. In this paper, we investigate the robustness of IGS against imperfect CSI on the transmitter side in a two-user single-input single-output (SISO) interference channel (IC) as well as in a SISO Z-IC, when interference is treated as noise. We assume that the true channel coefficients belong to a known region around the channel estimates, which we call the uncertainty region. Following a worst-case robustness approach, we study the rate-region boundary of the IC for the worst channel in the uncertainty region. For the two-user IC, we derive a robust design in closed form, which is independent of the phase of the channels by allowing only one of the users to transmit IGS. For the Z-IC, we provide a closed-form design for the transmission parameters by considering an enlarged uncertainty region and allowing both users to employ IGS. In both cases, the IGS-based designs are ensured to perform no worse than proper Gaussian signaling. Furthermore, we show, through numerical examples, that the proposed robust designs significantly outperform non-robust solutions.The work of M. Soleymani, C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under grants LA 4107/1-1 and SCHR 1384/8-1. The work of I. Santamaria was supported by MINECO of Spain and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN)
    • …
    corecore