216 research outputs found

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    WiMAX ou l’évolution des réseaux sans-fil ?

    Full text link
    L'adoption des technologies de réseaux sans-fil de type WiFi a connu une croissance impressionnante ces dernières années. Cette vague de popularité ne semble pas vouloir s'estomper, il est estimé que 84 millions d’appareils seront vendus en 2007 totalisant des revenus de 3.7 milliards de dollars. Devant cette forte demande, les fabricants d’appareils de télécommunications ont songés à développer des produits encore plus performants. Appuyé par la norme IEEE 802.16, un consortium du nom de WiMAX Forum a regroupé 350 membres dans le but de promouvoir des produits standardisés portant la marque WiMAX. À l'inverse des premières versions du WiFi, le WiMAX sera doté de mécanismes de sécurité beaucoup plus fiables. L'avantage du WiMAX, comme pour plusieurs de ses concurrents, repose sur sa capacité d'opérer sur une large bande de fréquences, réglementées ou non. Sa portée théorique de 50 Km et son débit escompté de 75 Mbit/s a capté l'attention des fournisseurs de services qui cherchent à réduire leurs coûts d'exploitations mais également de divers organismes gouvernementaux qui espèrent améliorer les services de communications dans les communautés des régions éloignées. Grâce à l'appui du ministre des Affaires indiennes et du nord canadien, le territoire du Nunavut a mis sur pied un réseau à large bande qui dessert actuellement l’ensemble de ses 29 communautés sur tout son territoire. La possibilité de couvrir une superficie de plusieurs kilomètres ramène à la surface le concept d’omniprésence ou de « Pervasive computing ». Cette notion représente l’intégration des technologies dans notre entourage afin de rendre nos interactions avec celle-ci plus naturelles. Nos déplacements dans cet environnement pourraient être facilités puisque les ordinateurs seraient en mesure de détecter et réagir à notre présence pour nous offrir des solutions personnalisées. Les déploiements de réseaux de type WiMAX sont déjà en cours dans plusieurs pays, d'après la situation actuelle du marché, il est envisageable de voir une forte adoption de cette forme de diffusion d’informations dans les prochaines années. Le présent document trace un résumé des applications liées au WiMAX et discute de certaines problématiques engendrées par ce type de réseau.The adoption of WiFi wireless network technologies has undergone impressive growth in recent years. The wave of popularity shows no sign of slowing down, and it is estimated that 84 million devices will be sold in 2007 for a total of 3.7 billion dollars. Given the strong demand, telecommunications device manufacturers have developed even more powerful products. Supported by the IEEE 802.16 standard, the WiMAX Forum consortium has brought together 350 members in order to promote standardized products carrying the WiMAX brand. Unlike the first generation of WiFi, WiMAX will have highly reliable security mechanisms. WiMAX’s advantage, which is shared with many of its competitors, is based on its ability to operate on a wide band of frequencies, regulated or not. Its theoretical range of 50 km and speed of 75 Mbit/s has attracted the attention of service providers who are seeking to reduce their operating costs, as well as various government organizations hoping to improve communications services in remote areas. Thanks to support from Indian and Northern Affairs Canada, Nunavut has set up a broadband network that currently services 29 of the territory’s communities. The possibility of covering an area of several kilometres puts the spotlight on the concept of omnipresence, in other words, pervasive computing. This notion concerns the integration of technologies into our environment so as to make our interactions with them more natural. In such an environment, our movements could be facilitated because computers would be able to detect and react to our presence to offer personalized options. A number of countries are already using networks like WiMAX. Given today’s market, it is plausible that this form of information broadcasting will be adopted widely in coming years. The present article summarizes applications related to WiMAX and discusses some problems generated by such networks

    SPECTRUM AGGREGATION WITH OPTIMAL MULTI-BAND SCHEDULING

    Get PDF

    Optimization of the interoperability and dynamic spectrum management in mobile communications systems beyond 3G

    Get PDF
    The future wireless ecosystem will heterogeneously integrate a number of overlapped Radio Access Technologies (RATs) through a common platform. A major challenge arising from the heterogeneous network is the Radio Resource Management (RRM) strategy. A Common RRM (CRRM) module is needed in order to provide a step toward network convergence. This work aims at implementing HSDPA and IEEE 802.11e CRRM evaluation tools. Innovative enhancements to IEEE 802.11e have been pursued on the application of cross-layer signaling to improve Quality of Service (QoS) delivery, and provide more efficient usage of radio resources by adapting such parameters as arbitrary interframe spacing, a differentiated backoff procedure and transmission opportunities, as well as acknowledgment policies (where the most advised block size was found to be 12). Besides, the proposed cross-layer algorithm dynamically changes the size of the Arbitration Interframe Space (AIFS) and the Contention Window (CW) duration according to a periodically obtained fairness measure based on the Signal to Interference-plus-Noise Ratio (SINR) and transmission time, a delay constraint and the collision rate of a given machine. The throughput was increased in 2 Mb/s for all the values of the load that have been tested whilst satisfying more users than with the original standard. For the ad hoc mode an analytical model was proposed that allows for investigating collision free communications in a distributed environment. The addition of extra frequency spectrum bands and an integrated CRRM that enables spectrum aggregation was also addressed. RAT selection algorithms allow for determining the gains obtained by using WiFi as a backup network for HSDPA. The proposed RAT selection algorithm is based on the load of each system, without the need for a complex management system. Simulation results show that, in such scenario, for high system loads, exploiting localization while applying load suitability optimization based algorithm, can provide a marginal gain of up to 450 kb/s in the goodput. HSDPA was also studied in the context of cognitive radio, by considering two co-located BSs operating at different frequencies (in the 2 and 5 GHz bands) in the same cell. The system automatically chooses the frequency to serve each user with an optimal General Multi-Band Scheduling (GMBS) algorithm. It was shown that enabling the access to a secondary band, by using the proposed Integrated CRRM (iCRRM), an almost constant gain near 30 % was obtained in the throughput with the proposed optimal solution, compared to a system where users are first allocated in one of the two bands and later not able to handover between the bands. In this context, future cognitive radio scenarios where IEEE 802.11e ad hoc modes will be essential for giving access to the mobile users have been proposed

    Application of multiple-wireless to a visual localisation system for emergency services

    Get PDF
    Abstract—In this paper we discuss the application of multiplewireless technology to a practical context-enhanced service system called ViewNet. ViewNet develops technologies to support enhanced coordination and cooperation between operation teams in the emergency services and the police. Distributed localisation of users and mapping of environments implemented over a secure wireless network enables teams of operatives to search and map an incident area rapidly and in full coordination with each other and with a control centre. Sensing is based on fusing absolute positioning systems (UWB and GPS) with relative localisation and mapping from on-body or handheld vision and inertial sensors. This paper focuses on the case for multiple-wireless capabilities in such a system and the benefits it can provide. We describe our work of developing a software API to support both WLAN and TETRA in ViewNet. It also provides a basis for incorporating future wireless technologies into ViewNet. I
    • …
    corecore