1,112 research outputs found

    COOPERATIVE QUERY ANSWERING FOR APPROXIMATE ANSWERS WITH NEARNESS MEASURE IN HIERARCHICAL STRUCTURE INFORMATION SYSTEMS

    Get PDF
    Cooperative query answering for approximate answers has been utilized in various problem domains. Many challenges in manufacturing information retrieval, such as: classifying parts into families in group technology implementation, choosing the closest alternatives or substitutions for an out-of-stock part, or finding similar existing parts for rapid prototyping, could be alleviated using the concept of cooperative query answering. Most cooperative query answering techniques proposed by researchers so far concentrate on simple queries or single table information retrieval. Query relaxations in searching for approximate answers are mostly limited to attribute value substitutions. Many hierarchical structure information systems, such as manufacturing information systems, store their data in multiple tables that are connected to each other using hierarchical relationships - "aggregation", "generalization/specialization", "classification", and "category". Due to the nature of hierarchical structure information systems, information retrieval in such domains usually involves nested or jointed queries. In addition, searching for approximate answers in hierarchical structure databases not only considers attribute value substitutions, but also must take into account attribute or relation substitutions (i.e., WIDTH to DIAMETER, HOLE to GROOVE). For example, shape transformations of parts or features are possible and commonly practiced. A bar could be transformed to a rod. Such characteristics of hierarchical information systems, simple query or single-relation query relaxation techniques used in most cooperative query answering systems are not adequate. In this research, we proposed techniques for neighbor knowledge constructions, and complex query relaxations. We enhanced the original Pattern-based Knowledge Induction (PKI) and Distribution Sensitive Clustering (DISC) so that they can be used in neighbor hierarchy constructions at both tuple and attribute levels. We developed a cooperative query answering model to facilitate the approximate answer searching for complex queries. Our cooperative query answering model is comprised of algorithms for determining the causes of null answer, expanding qualified tuple set, expanding intersected tuple set, and relaxing multiple condition simultaneously. To calculate the semantic nearness between exact-match answers and approximate answers, we also proposed a nearness measuring function, called "Block Nearness", that is appropriate for the query relaxation methods proposed in this research

    MetroNG: Computer-Aided Scheduling and Collision Detection

    Get PDF
    In this paper, we propose a formal model of the objects involved in a class of scheduling problems, namely in the classroom scheduling in universities which allow a certain degree of liberty in their curricula. Using the formal model, we present efficient algorithms for the detection of collisions of the involved objects and for the inference of a tree-like navigational structure in an interactive scheduling software allowing a selection of the most descriptive view of the scheduling objects. These algorithms were used in a real-world application called MetroNG; a visual interactive tool that is based on more than 10 years of experience we have in the field. It is currently used by the largest universities and colleges in the Czech Republic. The efficiency and usability of MetroNG suggests that our approach may be applied in many areas where multi-dimensionally structured data are presented in an interactive application

    Demand Side Management in the Smart Grid

    Get PDF

    A Constraint Enforcement Deep Reinforcement Learning Framework for Optimal Energy Storage Systems Dispatch

    Full text link
    The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to the uncertainty introduced by fluctuations in dynamic prices, demand consumption, and renewable-based energy generation. By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' stochastic nature. However, current DRL algorithms lack the capabilities to enforce operational constraints strictly, often even providing unfeasible control actions. To address this issue, we propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation. Firstly, the proposed framework trains an action-value function modeled using DNNs. Subsequently, this action-value function is formulated as a mixed-integer programming (MIP) formulation enabling the consideration of the environment's operational constraints. Comprehensive numerical simulations show the superior performance of the proposed MIP-DRL framework, effectively enforcing all constraints while delivering high-quality dispatch decisions when compared with state-of-the-art DRL algorithms and the optimal solution obtained with a perfect forecast of the stochastic variables.Comment: This paper has been submitted to a publication in a journal. This corresponds to the submitted version. After acceptance, it may be removed depending on the journal's requirements for copyrigh

    Robustness Against Read Committed for Transaction Templates with Functional Constraints

    Get PDF
    The popular isolation level Multiversion Read Committed (RC) trades some of the strong guarantees of serializability for increased transaction throughput. Sometimes, transaction workloads can be safely executed under RC obtaining serializability at the lower cost of RC. Such workloads are said to be robust against RC. Previous work has yielded a tractable procedure for deciding robustness against RC for workloads generated by transaction programs modeled as transaction templates. An important insight of that work is that, by more accurately modeling transaction programs, we are able to recognize larger sets of workloads as robust. In this work, we increase the modeling power of transaction templates by extending them with functional constraints, which are useful for capturing data dependencies like foreign keys. We show that the incorporation of functional constraints can identify more workloads as robust that otherwise would not be. Even though we establish that the robustness problem becomes undecidable in its most general form, we show that various restrictions on functional constraints lead to decidable and even tractable fragments that can be used to model and test for robustness against RC for realistic scenarios

    Acceleration control strategy for Battery Electric Vehicle based on Deep Reinforcement Learning in V2V driving

    Get PDF
    The transportation sector is seeing the flourishing of one of the most interesting technologies, autonomous driving (AD). In particular, Cooperative Adaptive Cruise Control (CACC) systems ensure higher levels both of safety and comfort, enhancing at the same time the reduction of energy consumption. In this framework a real-time velocity planner for a Battery Electric Vehicle, based on a Deep Reinforcement Learning algorithm called Deep Deterministic Policy Gradient (DDPG), has been developed, aiming at maximizing energy savings, and improving comfort, thanks to the exchange of information on distance, speed and acceleration through the exploitation of vehicle-to-vehicle technology (V2V). The aforementioned DDPG algorithm relies on a multi-objective reward function that is adaptive to different driving cycles. The simulation results show how the agent can obtain good results on standard cycles, such as WLTP, UDDS and AUDC, and on real-world driving cycles. Moreover, it displays great adaptability to driving cycles different from the training one

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Evaluating Stochastic Methods in Power System Operations with Wind Power

    Full text link
    Wind power is playing an increasingly important role in electricity markets. However, it's inherent variability and uncertainty cause operational challenges and costs as more operating reserves are needed to maintain system reliability. Several operational strategies have been proposed to address these challenges, including advanced probabilistic wind forecasting techniques, dynamic operating reserves, and various unit commitment (UC) and economic dispatch (ED) strategies under uncertainty. This paper presents a consistent framework to evaluate different operational strategies in power system operations with renewable energy. We use conditional Kernel Density Estimation (KDE) for probabilistic wind power forecasting. Forecast scenarios are generated considering spatio-temporal correlations, and further reduced to lower the computational burden. Scenario-based stochastic programming with different decomposition techniques and interval optimization are tested to examine economic, reliability, and computational performance compared to deterministic UC/ED benchmarks. We present numerical results for a modified IEEE-118 bus system with realistic system load and wind data
    • …
    corecore