
Computing and Informatics, Vol. 34, 2015, 277–304

METRO-NG: COMPUTER-AIDED
SCHEDULING AND COLLISION DETECTION

David Bednárek, Jakub Yaghob, Filip Zavoral

Charles University in Prague
Faculty of Mathematics and Physics
Malostranské nám. 25
118 00 Prague, Czech Republic
e-mail: {bednarek, yaghob, zavoral}@ksi.mff.cuni.cz

Abstract. In this paper, we propose a formal model of the objects involved in
a class of scheduling problems, namely in the classroom scheduling in universities
which allow a certain degree of liberty in their curricula. Using the formal model,
we present efficient algorithms for the detection of collisions of the involved objects
and for the inference of a tree-like navigational structure in an interactive scheduling
software allowing a selection of the most descriptive view of the scheduling objects.
These algorithms were used in a real-world application called MetroNG; a visual
interactive tool that is based on more than 10 years of experience we have in the
field. It is currently used by the largest universities and colleges in the Czech
Republic. The efficiency and usability of MetroNG suggests that our approach may
be applied in many areas where multi-dimensionally structured data are presented
in an interactive application.

Keywords: Scheduling tools, collision detection, visualization

1 INTRODUCTION

Every university is faced with the problem of creating an acceptable schedule of
their educational events within available resources of time, space, and personnel.

The main problem when creating a schedule of university lectures and seminars
lies in checking and preventing collisions – one teacher should not teach two lectures
at the same time, students should not visit more than one lesson at the same time,
etc. Moreover, there is a great number of soft or hard constraints, e.g. a teacher

278 D. Bednárek, J. Yaghob, F. Zavoral

cannot teach in a particular time period or students are not happy to have lessons
continually 12 hours in one day. Therefore, creating ‘good’ schedule is a difficult
task which requires some IT support.

The problem could be described as a constraint satisfaction problem (CSP) [14].
The formal constraints and the quality criteria or the objective functions should be
specified in order to use an appropriate solver [10].

Each CSP solver requires the exact formal specification of all constraints. Be-
sides individual constraints, the members of academia have their individual ideas of
‘good’ schedules; therefore, the cost or objective function shall be adjusted individu-
ally per each scheduling object. These constraints and objective functions are fuzzy
and unclear by nature and ordinary users of the system are not able to specify them
in the necessary formal manner. Thus, the use of the CSP solver requires skilled
personnel to formalize all requirements of the users into constraints and objective
functions.

An alternative approach to a complete formalization of the problem for a schedul-
ing algorithm is creating the schedule by humans, using a software application to
display and efficiently customize the (partial) schedule.

Although the manual schedule creation itself requires more human effort than
an algorithmic solution, the difference may be balanced or even outweighed by the
cost of formalization of the constraints. In addition, human-based scheduling offers
the following advantages:

• humans can effectively work with incompletely defined constraints

• humans can intuitively recognize erroneously entered constraints

• humans can communicate individually to the subjects in case of ambiguity or
to negotiate a relaxation of constraints

• in case of inevitably conflicted schedule, humans can find the ‘least bad’ solution
instead of giving-up completely

• in case of complaints, humans can explain the rationale behind the schedule.

The importance of individual advantages and disadvantages of automated and
manual approaches depends on many factors, including the organization structure
of the university, the work flow of the scheduling, the level of the academic liberty,
etc. According to our experience, the manual approach is still viable and favorable
in some universities, despite the recent progress in the CSP and other algorithmic
scheduling techniques.

A mixed approach is also possible: using a CSP solver with a weaker and smaller
set of constraints as the first step and then the manual adjustment for the final tuning
of the schedule.

Human-based scheduling requires strong software support capable at least of
these tasks:

• display several views of the schedule (e.g., a schedule of the lecture rooms, the
schedule of particular student groups, etc.)

MetroNG: Computer-Aided Scheduling and Collision Detection 279

• automatically or manually choose an appropriate level of detail of particular
views; in other words, the application must present some navigation structures
to allow efficient exploration of the scheduling space

• display all possible collisions (e.g., more lectures intended for the same student
group in overlaping time slots, a lecture of a particular teacher conflicting with
his constraints, etc.).

The article presents a formal model for the complex collision detection system
which is used to identify situations where a group of students should attend two
classes scheduled for the same time. Next, we present an incremental algorithm
used to extract the navigation structures from the formal model. Using this model,
we developed an application called MetroNG1 for supporting the whole process of
creating a complex university and curricula schedule. Besides the sophisticated
student collision detection, the application has other unique features such as the
combination of several views, handling of transfer collisions and various types of
scheduled events besides regular ‘once-a-week’ classes.

The rest of the article is organized as follows: Next section contains related
work, Section 3 describes the issues addressed in the article. The most crucial part
of the article is contained in Sections 4 and 5 that describe a theoretical model of
the entities and their collisions and the respective algorithms. Section 6 describes
the MetroNG application that is based on the previously proposed formal methods.
The final section summarizes and concludes the article.

2 RELATED WORK

There is a lot of research on classroom or curriculum scheduling (also called time-
tabling in some sources). The proposed solutions range from simple applications to
large automatic or semi-automatic CSP solvers.

The scheduling problems are NP-complete in general [42], as far as their com-
putational complexity is concerned. Therefore, various optimization methods have
been proposed for solving the scheduling problem [17, 18, 19, 20]. Other methods
are heuristic orderings [22], case-based reasoning [21], genetic/evolutionary algo-
rithms [25, 26, 27], ant systems [30], local search techniques [23, 24], particle swarm
optimization [28, 29], tabu search [31, 32], metaheuristics [33] and hyperheuris-
tics [34, 35].

Recent definitions of the course scheduling problem can be found in [33, 36].
Universities have increasingly relied upon the automation of this task to produce
efficient timetables that satisfy these constraints [36]. Many recent papers have
been published on specific techniques [37, 38, 39] dealing with the university course
scheduling problem.

1 https://www.erudio.cz/?stranka=sw.metrong

280 D. Bednárek, J. Yaghob, F. Zavoral

High school timetabling involves weekly scheduling for all lecturers of the high
school, where the schedule is regular, the number of events is quite small, there
are no collisions, the constraints are simple, etc. The problem consists in assigning
lectures to timeslots while other constraints of several different kinds are satisfied.
These constraints may include both hard constraints that must be respected and
soft constraints used to evaluate the solution’s quality [40].

Some recent papers have been published on these specific techniques [41, 42, 43,
11, 12, 13] and corresponding software solutions [6, 7, 8] oriented to high-school time-
tabling were described. These tools are not sufficient for most university environ-
ments, mostly because they are not capable to capture the more complex structure
of the groups of students.

The system [9] uses individual students as the subjects of scheduling. Of course,
this approach is viable only in environments where the set of individual students for
each lecture is known prior to the scheduling phase. In addition, this fine-grained
approach is extremely demanding in terms of computing resources.

Systems combining automatic scheduling with human interaction described as
interactive or semiautomatic scheduling were described in [15, 16].

The solution proposed in this paper is based on a strong theoretical background
defined in Section 4. The problem of modeling events and their visitors is similar
to some problems in the area of concept analysis – for instance, the role of test
context in the Contextual Attribute Logic [3, 4] is similar to our group base (see
Section 4.2). Nevertheless, our intent is visualization and not reasoning; therefore,
our formal model is different.

3 PROBLEM DESCRIPTION

The scheduling problem essentially consists of a set of events. Each event is asso-
ciated to a set of participants – teachers and students. While the teachers are easily
identified by their enumeration, the description of the associated set of students is
difficult: The enumeration of individual students is usually impossible because they
are not known at the moment of scheduling. Instead of the enumeration, the student
participants of an event are described in terms of student groups.

The schedule consists of the mapping of events to space and time, i.e. assigning
a room and time slot to each event. The time slots are usually but not necessarily
recurrent. The schedule shall satisfy a number of hard and soft constraints; most im-
portantly it shall avoid collisions. However, since finding a collision-free schedule is
not necessarily feasible, the system must be able to manipulate schedules containing
collisions.

The main purpose of the scheduling application is to display the schedule and
allow the users to modify it. The visualization part must cope with the huge amount
of information present in the schedule. An average schedule of a college or univer-
sity contains hundreds or thousands of events, spans several buildings with tens or
hundreds of lecture rooms, and handles hundreds of teachers and many thousands

MetroNG: Computer-Aided Scheduling and Collision Detection 281

of students. Since it is too much information to fit in one view, the visualization
must be highly interactive and provide the user with only that part of information
that he or she is interested in at the moment.

Although the modification of the schedule is basically a simple drag-and-drop
action, it is a part of a larger, very complex problem. While the whole decision
making is left to the user (the user picks the time and room for each event), it is
not sufficient to give the users the ability to schedule the events. To do the task
efficiently, they need a lot of information beyond “what, when and where”. The
most important piece of information is whether they are creating a collision-free
schedule.

3.1 Student Groups

In the physical world, student groups consist of individual students who, for what-
ever reason, visit a particular event. In our setting, we do not know the individual
students in the moment of scheduling; instead, the group must be described by using
the properties of the expected participants.

The set of students visiting a particular lecture may be characterized using at-
tributes like study program, specialization, year, etc. Some of them may be assigned
to the students by an authority, others (like proficiency level) may represent a fiction
created by the scheduling personnel.

For the collision checking, the system must be able to determine whether two
student groups intersect. This test conceptually corresponds to testing intersection
of two sets; however, these sets are not described by enumerating their contents.
Instead, the intersection test shall be based on the attributes of the student groups.

Moreover, the set of real students does not completely fill the space of all at-
tribute combinations. For instance, the group of ’second-year’ students may or may
not intersect with the group of ’beginners’, depending on the current (or estimated)
state of the student population. In our system, the student population is modeled
by a group base – a set of student prototypes.

3.2 Visualization of Groups

Student attributes form a multi-dimensional space which cannot be visualized di-
rectly. Some dimensions may be mutually dependent (e.g., study program and
specialization), other pairs are considered independent (e.g., language skills vs. spe-
cialization).

When creating a schedule, a portion of this multi-dimensional space must be
accessible in an appropriate level of detail. A straightforward approach to selecting
a portion of the space would be using a form to enter the filtering rules for each
attribute. However, to control such a form is tedious; moreover, the user is often
unable to predict whether a particular filter leads to a human-readable presentation.

To allow exploration of the attribute space, we propose using a navigational tree
to perform the navigation and level-of-detail setting by expanding and collapsing

282 D. Bednárek, J. Yaghob, F. Zavoral

a virtual tree. Besides avoiding annoying forms, this approach also allows to show
several portions of the space at once, using different levels of detail in different parts
of the space. In this sense, the tree replaces a filter in the form of disjunction of
conjunctive clauses.

While this idea is simple, creating the tree is not easy. First, the degree of
individual nodes of the tree shall be kept as low as possible in order to make the
navigation easy for the user. In other words, while the user must be able to reach
any desired view in the tree, the number of paths to the view shall be minimized.
Second, the size of the completely expanded tree is exponential with respect to the
size of group base; therefore, the tree shall be constructed incrementally.

3.3 Collisions

A collision is a state when two events are scheduled in such a way, that someone
who is supposed to attend both events would be unable to do so. The two classes
of participants – teachers and students – form two classes of collisions.

The collision may occur either directly, when two events intersect in time, or
by transfer, when the time distance between the two events is too short to allow
transfer between the two locations. In addition, two events may collide if scheduled
to the same room at the same time.

While room and teacher-related collisions are relatively easy to detect, the detec-
tion of student-related collision involves a complex determination of the intersection
of the groups, as described in Subsection 3.1. Also the visualization of the space
of students must be arranged so that the user can easily determine the danger of
collisions.

4 FORMAL MODEL

Instead of modeling individual students, the system works with prototypes ; each
prototype represents a group of students assumed to have the same preferences
and/or prescriptions with respect to the lectures/events visited. The set of proto-
types, called group base, is defined by human operators of the scheduling system, as
accurate as possible and/or necessary.

The group base concept is similar to the test context in the Contextual Attribute
Logic [3, 4] since the problem of modeling events and their visitors is similar to some
problems in the area of concept analysis [2].

Given a group base, the visitors of an event could be defined by using a set of
prototypes. However, it would be impractical for a human operator because such
sets may be quite large. Instead of enumerating prototypes, student groups may be
defined by using tuples of attributes as described in the following paragraphs.

Prototypes are distinguished by attributes carrying values (tags) from finite
domains. Some attributes correspond to properties defined in the real world and
assigned to real students, like the field of study, the year, or an administratively

MetroNG: Computer-Aided Scheduling and Collision Detection 283

assigned group number. Others are defined solely for the purpose of scheduling,
representing for instance assumed future specialization.

4.1 Attributes and Tuples

Each instance of the scheduling system defines a finite set A of attributes, divided
into single-valued As and multi-valued Am attributes. Each attribute a ∈ A is
associated to a finite domain Da; members of these domains are called tags. These
domains are specific for a particular school and they develop slowly over time to
reflect the changes in the curricula. For the simplicity of notation, we assume
that the attribute domains are pairwise disjoint; the union of domains is marked
D =

⋃{Da | a ∈ A}.

Example 1. Throughout this paper, we will show several examples based on the
following set of attributes:

As = {D,P,R},
Am = {S}.

The corresponding domains are:

DD = {B,N},
DP = {I,M},
DR = {1, 2, 4, 5},
DS = {IPR, IOI, ISS}.

Although our formalism distinguishes single-valued and multi-valued attributes,
many definitions become simplified when the values of both kinds of attributes are
viewed as sets. In this approach, the value of an attribute is a set of tags, i.e., a subset
of the associated attribute domain. For a single-valued attribute, the cardinality of
the attribute value is restricted to at most 1. The ability to assign the empty-set
value to an attribute loosely corresponds to the concept of null value in relational
databases; however, the treatment of empty values in predicates is different from
the treatment of null values in databases.

All tuples in our system have the same schema, i.e., all tuples contain all at-
tributes defined in the system (nevertheless, the value of an attribute may be empty
in a tuple).

Definition 1 (Tuple). A tuple is a mapping t : A → P(D) such that t(a) ⊆ Da

and a ∈ As ⇒ card(t(a)) ≤ 1. The universe of all such tuples is denoted T .

Each tuple associates a value (a set of tags) to each attribute. In most cases,
a tuple serves as a means to define a set of certain individuals by declaring which
tags shall be present in these individuals. The more tags a tuple contains, the less
individuals fit to the tuple; if an attribute of a tuple has the empty value, it does

284 D. Bednárek, J. Yaghob, F. Zavoral

not restrict the set of individuals anyhow. This approach, reflected in the definitions
below (and different from traditional null-value handling in relational systems), is
motivated by the required conservative-approximation rule: “Possible collision is
a collision.”

Definition 2 (Tuple meet). The meet (denoted t1u t2) of a pair of tuples t1, t2 ∈ T
is the mapping t3 such that t3(a) = t1(a) ∪ t2(a) for each a ∈ A, provided t3 is
a correct tuple, i.e. t3 ∈ T .

The name “meet” was borrowed from the lattice theory; however, it should be
stressed that the tuple meet is not a semilattice because the meet may not exist.
Also note that the sense of the operation is reverted with respect to the lattice of
tag sets; i.e. tuple meet corresponds to union of tag sets. This reversion corresponds
to the fact that adding attributes diminishes the set of individuals conforming to
these attributes. Similarly to lattice theory, the tuple meet operation is associated
with a partial ordering, named tuple inclusion.

Definition 3 (Tuple inclusion). A tuple t1 ∈ T is considered included in a tuple
t2 ∈ T (denoted t1 v t2), if for each attribute a ∈ A, t2(a) ⊆ t1(a).

The rationale behind this definition is that a tuple defines a set of individuals
by defining a set of required tags of these individuals. The tuple inclusion relation
corresponds to the set inclusion relation on the associated sets of individuals. If t1
requires more tags than t2, then any individual satisfying t1 also satisfies t2. Note
that tuple inclusion is a partial order on T .

Example 2. The following mapping

t1 = {D 7→ {B}, P 7→ ∅, R 7→ {1}, S 7→ {IPR, IOI}}

is a correct tuple with respect to the attribute set defined in the previous exam-
ple. In the following examples, we will use the traditional positional notation; in
addition, we will omit braces containing a single tag. Thus, t1 will be written as
(B, ∅, 1, {IPR, IOI}). For example,

t1 u (B, I, ∅, ISS) = (B, I, 1, {IPR, IOI, ISS})

while t1 u (B, ∅, 2, ISS) is not defined because the attribute R is single-valued.
Furthermore,

(B, I, 1, {IPR, IOI, ISS}) v t1

while (B, I, ∅, ISS) and t1 are incomparable.

Definition 4 (Tuple collision). A pair of tuples t1, t2 ∈ T are said to collide (de-
noted t14t2), if there exists a tuple t3 ∈ T such that t3 v t1 and t3 v t2.

MetroNG: Computer-Aided Scheduling and Collision Detection 285

Such a tuple t3 must satisfy the condition t1(a) ∪ t2(a) ⊆ t3(a) for each a ∈
A. The existence of such a tuple may be prevented by the condition a ∈ As ⇒
card(t(a)) ≤ 1 from the definition of tuple. If such tuples exists, the tuple meet
t1 u t2 is one of them. Therefore, the following lemma holds:

Lemma 1 (Tuple collision). A pair of tuples t1, t2 ∈ T collides (t14t2) if and only
if

t1(a) 6= ∅ ∧ t2(a) 6= ∅ ⇒ t1(a) = t2(a)

for each single-valued attribute a ∈ As.

Example 3. The tuples (B, I, ∅, ∅) and (∅, I, 4, ∅) collide while (B,M, ∅, ∅) and
(∅, I, 4, ∅) do not.

4.2 Group Base

Group base is the device used to specify which individuals exist by the means of
prototypes. Each prototype is modeled by a tuple; a group base is simply a set of
tuples, as shown in the following definition.

Definition 5 (Group base). A group base is a set G ⊆ T . A group base G is well-
formed if t14t2 ⇒ t1 = t2 for each t1, t2 ∈ G.

Each scheduling problem defines a group base and all (student-based) scheduling
constraints are related to this group base. We assume that there are no other
individuals than those corresponding to the prototypes enumerated in the group
base. Consequently, any group of individuals is completely described by a set of
prototypes from the group base. Instead of enumerating these prototypes directly,
a tuple inclusion offers the ability to define a set of prototypes using a single tuple,
as shown in the following definition of trace. Of course, not every set of prototypes
is a trace of a tuple; however, every set of prototypes may be defined as a union of
traces, i.e., any group of individuals may be described using a set of tuples. In real-
life cases, these tuples offer a significantly shorter description than the enumeration
of prototypes.

Definition 6 (Trace). The set

TG(t) = {g ∈ G | g v t}

is called the trace of a tuple t with respect to a group base G.

The following lemma shows how the tuple meet operation corresponds to oper-
ations on prototype sets.

Lemma 2 (Trace of tuple meet). For each pair of tuples t1, t2 ∈ T such that t1u t2
exists, TG(t1 u t2) = TG(t1) ∩ TG(t2).

286 D. Bednárek, J. Yaghob, F. Zavoral

The following important notions are defined with respect to a given group base G:
G-relative inclusion and collision. In these definitions, a group base functions as
a restriction on the set of individuals existing in the system; thus, the inclusion
relation is weakened and the collision relation strengthened by the G-relativization,
as shown in Lemma 3.

Definition 7 (Relative inclusion). For a pair of tuples t1, t2 ∈ T , t1 is considered
G-included in t2 with respect to a group base G (denoted t1 vG t2), if TG(t1) ⊆ TG(t2).

Definition 8 (Relative collision). Tuples t1, t2 ∈ T are said to G-collide with re-
spect to a group base G (denoted t14Gt2), if TG(t1) ∩ TG(t2) 6= ∅.

Lemma 3. For each pair of tuples t1, t2 ∈ T

t1 v t2 ⇒ t1 vG t2, t14Gt2 ⇒ t14t2.

D P R S
B I 1 IPR
B I 1 IOI
B I 1 ISS
B I 2 IPR
B I 2 IOI
B M 1
B M 2
N I 4
N I 5

Table 1. Example: A group base

Example 4. Let G be the group base shown in Table 1. Let t3 = (N, ∅, 4, ∅),
t4 = (N, I, ∅, ∅). Their traces with respect to G are

TG(t3) = {(N, I, 4, ∅)};TG(t4) = {(N, I, 4, ∅), (N, I, 5, ∅)}

and they are, by definition, ordered by G-inclusion (t3 vG t4) although they are in-
comparable by inclusion (t3 6v t4). Furthermore, the tuples (B, I, ∅, ∅) and (∅, I, 4, ∅)
do not G-collide although they do collide (see Example 3).

4.3 Normalization

The relativization with respect to a group base may cause that two different tuples
correspond to the same group of individuals, which means that the two tuples are
equivalent with respect to the group base.

Definition 9 (Relative equivalence). Tuples t1, t2 ∈ T are considered G-equivalent
(denoted t1 ≈G t2), if t1 vG t2 ∧ t2 vG t1.

MetroNG: Computer-Aided Scheduling and Collision Detection 287

The G-inclusion is induced by set-inclusion on traces; therefore, it is a partial
order on T . Consequently, the G-equivalence is an equivalence.

We will show that G-equivalence classes on tuples can be uniquely represented
by normalized tuples.

Definition 10 (Implied attribute). An attribute a ∈ A is called implied with re-
spect to a tuple t ∈ T and a group base G (denoted t `G a), if there exists a tag
v ∈ Da such that t ≈G (tu {a 7→ {v}}). The attribute is called non-trivially implied
if v /∈ t(a).

Definition 11 (Normalized tuple). A tuple t ∈ T is called normalized with respect
to a group base G, if TG(t) 6= ∅ and there exists no attribute being non-trivially
implied with respect to t.

Lemma 4 (Tuple equivalence). If tuples t1, t2 ∈ T are normalized with respect to
a group base G then

t1 ≈G t2 ⇒ t1 = t2.

Each tuple whose trace is non-empty can be normalized by adding implied at-
tributes and their values until a normalized tuple is reached. In addition, the lemma
essentially states that normalized tuples are unique representatives of equivalence
classes induced by the G-equivalence, with the exception of the class of tuples whose
trace is empty.

Normalized tuples are also representatives of their traces. Not every subset of
a group base G is a trace of a tuple; however, every subset of G can be represented by
a union of traces of some set of tuples. Thus, sets of normalized tuples can represent
subsets of G.

4.4 Events and Visitors

In our scheduling problem, a subset of G represents the visitors of an event. How-
ever, this subset may be quite large for human perception; therefore, an alternative
representation using normalized tuples is understood more easily because it can be
usually significantly smaller. On the other hand, for processing in software, the
traces can be stored in bitmaps and handled using Boolean operators.

In addition, representation by tuples usually works in better accordance with
reality when the group base G is changed due to evolution of curricula. Therefore,
tuples are more suitable for persistent representation than subsets of G.

These observations led to the following design principles:

• When presented to users, representation using normalized tuples is always used.

• In the database and in SQL-based applications (web interface), normalized tu-
ples are used.

• In C++ applications, tuples are converted to bitmaps representing traces and
handled using vectorized bit operations.

288 D. Bednárek, J. Yaghob, F. Zavoral

Definition 12 (Events). Let G be a group base; E be a set of events. A mapping β :
E → P(T) is called event binding. An event binding is called normalized if, for each
event e ∈ E , each tuple in β(e) is normalized with respect to G and t1 vG t2 ⇒ t1 = t2
for each t1, t2 ∈ β(e).

The visualization algorithm uses a precomputed relation MG ⊆ E × G stored as
a binary matrix according to the following definition.

Definition 13 (Concern matrix).

MG = {〈e, t〉 | (∃te ∈ β(e)) t ∈ TG(te)}.

Definition 14 (Event collision). Events e1, e2 ∈ E are said to G-collide if there are
tuples t1 ∈ β(e1) and t2 ∈ β(e2) such that t14Gt2.

4.5 Visualization of the Tuple Hierarchy

As mentioned in Section 3.1, the partially-ordered set of groups is displayed using
a tree. In this section, we will define the tree more formally.

Definition 15 (Attribute tree). Attribute tree is a labeled unranked rooted tree

U = (Vm, Vp, r, π, Lm, Lp, τ)

whose nodes are of three kinds – meta-nodes Vm, plain nodes Vp and the root node r.
The mapping

π : (Vm → (Vp ∪ {r})) ∪ (Vp → Vm)

defines the structure of the tree by defining the parent π(n) of every node n 6= r.
The mapping

Lm : Vm → A

assigns attributes to meta-nodes and the mapping

Lp : Vp → D

assigns tags to plain nodes. Each node n is also assigned a tuple τ(n) defined
recursively as

τ(r) = ∅,
(∀n ∈ Vm) τ(n) = τ(π(n)),

(∀n ∈ Vp) τ(n) = τ(π(n)) u {Lm(π(n)) 7→ {Lp(n)}}.

Definition 16 (Distinctive attribute tree). An attribute tree is called distinctive
with respect to a group base G if

(∀n ∈ Vp) TG(τ(n)) 6= ∅ ∧ τ(n) 6≈G τ(π(n)).

MetroNG: Computer-Aided Scheduling and Collision Detection 289

Definition 17 (Functional dependency). An attribute b ∈ A is called functionally
dependent on an attribute a ∈ A with respect to a tuple t ∈ T and a group base G
(denoted t `G a; b), if, for each tag v ∈ Da, the attribute b is implied with respect
to the tuple (t u {a 7→ {v}}) and the group base G. The functional dependency is
called non-trivial if b 6= a and t(b) = ∅.

Definition 18 (Non-skipping attribute tree). An attribute tree is called non-skip-
ping with respect to a group base G if

(∀n ∈ Vm) τ(π(n)) `G a; Lm(n)⇒ a = Lm(n).

An attribute tree is used to display (a part of) the partial order defined by the
G-inclusion on the set of normalized tuples. In this sense, the role of the attribute
tree is similar to Hasse diagrams [5]; however, the interactive environment allows to
incrementally unroll the lattice DAG to a tree. Note that the completely unrolled
tree may have an exponential number of nodes with respect to the original DAG;
therefore, the interactive incremental approach is crucial.

Attribute trees are constructed incrementally from the group base G, whenever
the user expands a node n. The construction algorithm scans the trace TG(τ(n))
to determine which attributes are functionally dependent on τ(n). These attributes
are excluded; in addition, the application may exclude some attributes based on
site-specific configuration. The remaining attributes, if any, generate a meta-node
children of n. When expanding a meta-node, all corresponding attribute values in
TG(τ(n)) are used.

An attribute tree contains interleaved layers of meta-nodes and value nodes; each
pair of layers corresponds to adding an attribute/value pair to the corresponding
tuple. The two layers allow the user to select the required attribute first; then,
values from the corresponding domain are selected. In a distinctive attribute tree,
the children of a meta-node nm correspond to a disjoint (in the sense of G-collision)
cover of the parent value node π(nm). Consequently, a sibling of nm contains the
same set of groups; arranged, however, in a different manner.

4.6 Visualization of Event Binding

When displaying the schedule relevant to a tuple t, concern relations are used to
determine the associated set of events. Covering concern collects all events which are
bound to all individuals from t (i.e. all basic tuples included in t) while intersecting
concern contains events bound to some individuals from t. Naturally, the covering
concern is a subset of the intersecting concern.

Definition 19 (Concern relations). The mappings coverG, intersectG : T → P(E)
are called covering concern and intersecting concern and defined as

coverG(t) = {e ∈ E | (∃te ∈ β(e)) t vG te},
intersectG(t) = {e ∈ E | (∃te ∈ β(e)) t4Gte}.

290 D. Bednárek, J. Yaghob, F. Zavoral

For each node n of the attribute tree, the application displays all events from
the covering concern which are not in the covering concern of the parent, i.e., the
event set coverG(τ(n)) \ coverG(τ(π(n))), horizontally positioned at their scheduled
time. Note that for an internal node a covering event is displayed using a rectangle
whose height corresponds to the visual height of the node. In addition, events
from intersectG(τ(n)) \ coverG(τ(n)) are displayed as grayed areas to indicate their
presence.

When two covering events e1, e2 ∈ coverG(τ(n)) intersect at the time axis, it
is obvious that there is a collision and the intersecting area of their rectangles is
painted in red to indicate the problem. Similarly, if a covering event intersects with
an intersecting event, it also means a collision; however, this kind of collision is
weaker because it affects only a part of individuals from τ(n). On the other hand,
if two intersecting events e1, e2 ∈ intersectG(τ(n)) intersect at the time axis, it may
or may not indicate a problem – in this case, the pair of events must be examined
using the definition of event collision (see Section 4.4).

Covering events may be computed using bit-vector operations on columns MT
G(t)

of the concern matrix, according to the following lemma.

Lemma 5 (Concern relations).

coverG(tn) =
⋂{

MT
G(t) | t ∈ TG(tn)

}
,

intersectG(tn) =
⋃{

MT
G(t) | t ∈ TG(tn)

}
.

Events found using the bit-vector arithmetics are then ordered by their position
on the time axis and their mutual collisions are checked during a single scan along
the time axis, as shown in the following section.

5 ALGORITHMS

In order to use the formal model practically, we have developed three algorithms
that compute the useful knowledge from the underlying data. The most important
algorithm is the detection of collisions among events in a given context. Other two
tightly coupled algorithms, the extraction algorithm and the generator of functional
dependencies, are used for user navigation in the attribute trees. The algorithms
were then used in the application MetroNG [1], see Section 6 for its description.

5.1 Collision Detection

The basic task solved by the collision detector is the enumeration of all collisions
among all events in a given context, i.e., all events in the intersecting concern
intersectG(tC) (see Definition 19) of a given tuple tC ∈ T . The corresponding algo-
rithm is shown in Algorithm 1.

The collision detection algorithm starts by the enumeration of all events in the
intersecting concern (line 2) – based on the Lemma 5, this can be done in O(|E| · |G|)

MetroNG: Computer-Aided Scheduling and Collision Detection 291

Algorithm 1 Collision Detection Algorithm
Input: tC ∈ T
Output: C ⊂ P(E) – the set of collisions
1: A := ∅
2: for all e ∈ intersectG(tC) do
3: A := A ∪ {〈e.Tbegin, 0, e〉, 〈e.Tend, 1, e〉}
4: end for
5: sort A using lexicographical order on triplets
6: E := ∅
7: for all 〈T, f, e〉 ∈ A do
8: if f = 0 then
9: for all e1 ∈ E do

10: if MG(e) ∩MG(e1) 6= ∅ then
11: C := C ∪ {{e, e1}}
12: end if
13: end for
14: E := E ∪ {e}
15: else
16: E := E \ {e}
17: end if
18: end for

time. For every event, its begin and end times e.Tbegin, e.Tend are added to the time
axis A and later sorted (line 3 and 5).

The core part of the algorithm examines all intervals on the time axis (line 7),
keeping track of active events E at each moment of time. Whenever a new event e
starts, it is compared to every previous event e1 (line 10), using bit operations on
rows of the concern to detect event collision according to Definition 14. The worst-
case time complexity of the core part is O(|E| · |E| · |G|) because |A| ≤ 2|E| and
|E| ≤ |E|.

Although the time complexity of the algorithm is, in principle, cubic, its real
performance cost is negligible even for an interactive application, because the above-
mentioned worst-case limits for the sizes |A| and |E| are highly overestimated with
respect to real data. Furthermore, the bit operations may be computed extremely
quickly in current computer architectures.

5.2 Extraction Algorithm

The non-skipping attribute trees defined in Definition 18) are used for navigation
in structures of event visitors, namely student groups and teachers. When the user
selects the appropriate level-of-detail, he/she incrementally expands the branches
from the root of the tree until the desired nodes are reached.

292 D. Bednárek, J. Yaghob, F. Zavoral

Unfortunately, the trees may be very large for a common user (hundreds or
thousands of nodes); their presentation in a fully expanded tree is unacceptable.
In order to expand only the proper parts of the tree, the extraction algorithm is
used.

When a leaf of a non-skipping attribute tree is expanded (by the user), the
extraction algorithm computes the set of children of the selected node. If the set is
non-empty, the node is no longer a leaf but an internal node – from the theoretical
point of view, the previously displayed non-skipping attribute tree is replaced by
a new, larger one. In each step, the extraction algorithm computes all feasible
nodes, i.e., all possible expansions of the trace.

The algorithm takes the whole tuple set and the expanded tree branch as an in-
put; it incrementally computes a set of successors (attribute types) for the branch.
Two principal data structures are used within this algorithm:

• G: a group base defined by an instance administrator.

• fD: boolean matrix indexed by attribute types containing functional dependen-
cies between pairs of attributes with respect to the tree branch tB being currently
unrolled. fD(x, y) = true ⇔ tB ` y ; x. This matrix is computed on each run
of the algorithm when the next tree level is incrementally unrolled.

The algorithm is divided into two main parts – computing next level and gene-
rating functional dependencies.

5.2.1 Next Level

The Algorithm 2 contains the main NextLevel function. The idea is that based
on a functional dependency matrix computed from the tree branch all dependent
attribute types are excluded from the set of candidates.

Algorithm 2 NextLevel function
Input: tB ∈ T
Output: AR ⊆ A
1: AC := {a ∈ A | tB(a) = ∅}
2: fD := GenFunDep(tB,AC)
3: AR := AC

4: for all x ∈ AC do
5: if fD(x, x) then
6: AR := AR \ {x}
7: end if
8: for all y ∈ AC | fD(x, y) do
9: AR := AR \ {y}

10: end for
11: end for

MetroNG: Computer-Aided Scheduling and Collision Detection 293

Detailed description:

• 1: AC is a set containing all possible candidates for the next tree level, initialized
by all unused attributes, i.e., the attributes that are not contained in the tree
branch.

• 2: The functional dependency of all attribute pairs is computed.

• 4–11: All unused functionally dependent attributes are removed.

• 5–7: Empty and constant attributes effectively behave like functionally self-
dependent, they are removed from AC .

• 8–10: Each attribute y that is functionally dependent on any unused attribute x
is removed since x must be unrolled prior to y.

The remaining attributes in AC define the set of possible attributes for the next
level.

5.2.2 Functional Dependencies

The key operation of the NextLevel function is the computation of functional de-
pendencies. The corresponding Algorithm 3 works as follows:

• 1–5: The lv and ch maps indexed by A are used for constantness detection, their
elements contain last attribute values and number of distinct values respectively.
Initially, no attribute values exist, no attribute shall be displayed (it will be
changed later).

• 3–4: First, the dependency matrix is filled. The diagonal true values represent
self dependence, i.e., the absence of values of such attribute.

• 6–21: Each matching tuple in the tuple set is detected for constantness, non-
emptiness and potential functional dependency.

• 6–8: Within each tuple in the tuple set matching the tree branch, all attributes
that were not used in the tree branch are tested.

• 9–10: Number of distinct values of such attribute (or, more exactly, value
changes) within the matching tuple set is detected.

• 12–13: If the unused attribute is contained in the tuple, the functional self-
dependency is cleared.

• 14–18: Now we have one particular attribute in one tuple; each distinct non-
empty unused (not contained in the tree branch) attribute is set to be a function-
ally dependent candidate since there may be a relation between these attributes.
These relations will be checked later. The dependency cannot be detected in
one pass since there may be independent attributes (x1y1, x1y2, x2y1, x2y2); in
this case all possible combinations should be generated.

• 22–26: Each constant attribute (its value was never changed in the set of match-
ing tuples) is excluded from candidates – there is nothing to select from.

294 D. Bednárek, J. Yaghob, F. Zavoral

Algorithm 3 Function GenFunDep
Input: G ⊆ T ; tB ∈ T
Output: fD : A×A → Boolean
1: lv : A → D ; lv := ∅
2: ch : A → N ; (∀a) ch(a) := 0
3: for all 〈x, y〉 ∈ A ×A do
4: fD(x, y) := (x = y)
5: end for
6: for all i ∈ TG(tB) do
7: for all x ∈ A \ dom(tB) do
8: if i(ax) 6= lv(x) then
9: ch(x) := ch(x) + 1

10: lv(x) := i(x)
11: end if
12: if x ∈ dom(i) then
13: fD(x, x) := false
14: for all y ∈ A \ dom(tB) do
15: if x 6= y ∧ y ∈ dom(i) then
16: fD(x, y) := true
17: end if
18: end for
19: end if
20: end for
21: end for
22: for all x ∈ A do
23: if ch(x) ≤ 1 then
24: fD(x, x) := true
25: end if
26: end for
27: for all i ∈ TG(tB) do
28: for all j ∈ TG(tB) ∧ j < i do
29: for all x ∈ A \ dom(tB) do
30: if x ∈ dom(i) ∧ x ∈ dom(j) ∧ i(x) = j(x) then
31: for all y ∈ A \ dom(tB) do
32: if x 6= y ∧ (y /∈ dom(i) ∨ y /∈ dom(j) ∨ i(y) 6= j(y)) then
33: fD(y, x) := false
34: end if
35: end for
36: end if
37: end for
38: end for
39: end for

MetroNG: Computer-Aided Scheduling and Collision Detection 295

• 27–39: The main part of the functional dependency detection – dependency
candidates are checked.

• 27–29: Each pair of the matching tuples is compared and functional dependency
disablers are detected.

• 30: Each unused attribute x having equal value in both tuples is considered.

• 31–32: If another unused attribute y is either empty in one of the tuples or their
values are different . . .

• 33–. . . : then x is not functionally dependent on y since there exist distinct values
of y for one value of x.

5.2.3 Examples

This section contains examples of particular data and their processing. The examples
use the group base defined in Table 1. This data set is a very simplified real-world
excerpt. Nevertheless, using this data the important properties of the extraction
algorithm can be demonstrated.

There are 4 attributes used – ‘D’, ‘P’, ‘R’ and ‘S’. Their real-world meaning is
the education level (Bachelor/Master), the field of study (Informatics/Mathemat-
ics), the year of study and specialization (Programming/Computer Science/Software
Systems), although it is irrelevant for the algorithm.

Example 5. Branch tree = {B, –, –, –}

D P R S D P R S
D 1 0 0 0 D 1 0 0 0
P 0 0 1 1 P 0 0 0 1
R 0 1 0 1 R 0 0 0 0
S 0 1 1 0 S 0 0 0 0

Table 2. Dependency matrix for {B, –, –, –}

Table 2 contains the computed dependency matrix in two versions – the left
matrix is produced by the initialization phase of the algorithm, the right matrix is
a final output of the algorithm.

In this example the branch tree consists of one attribute D with value of ‘B’.
The first phase detects the following facts:

• D is excluded since it is already contained in the branch tree

• P, R and S attributes are not used and nonempty; they may have functional
dependencies

The second phase erases those functional dependency candidates that have no
data dependency in matching tuples. E.g., the tuple pair i = {B, I, 1, –}, j =
{B, I, –, –} and attribute pair ax = P, ay = R induce that P is not functionally
dependent on R since there exist distinct values of R for one value of P, so that

296 D. Bednárek, J. Yaghob, F. Zavoral

dp[P,R] is erased. Similarly the tuple pair i = {B, I, 1, IPR}, j = {B, I, –, –} induces
that P is not functionally dependent on S.

Finally, S ; P, D ; D, the D and S attributes are excluded from the next level;
the resultset (set of allowed attributes) = {P,R}.

Example 6. Branch tree = {N, –, –, –}
Table 3 displays the result of using another value of the attrubute D. There

are no ‘M’ values of the attribute P and no values of the attribute S at all in the
matching tuple set. It excludes the S attribute from the resultset in the first phase
and the dependecy R ; P in the second phase. Since the attribute P is constant
within the matching tuple set, the final resultset = {R}.

D P R S D P R S
D 1 0 0 0 D 1 0 0 0
P 0 0 1 0 P 0 0 1 0
R 0 1 0 0 R 0 0 0 0
S 0 1 1 1 S 0 0 0 1

Table 3. Dependency matrix for {N, –, –, –}

Example 7. Branch tree = {–, –, –, –}
If the branch tree is empty, the whole tuple set is processed for detection of the

first level attributes. During the first phase, all diagonal values are erased since no
attribute is used. All nondiagonal values are set since all pairs of attributes have
a nonempty value in at least one tuple; all attributes are functional dependency
candidates.

The second phase removes all dependency disablers. The resulting matrix shows
three remaining dependencies: R ; D, S ; D, S ; P. The final resultset is {D,P};
these attributes may be used at the first level.

D P R S D P R S
D 0 1 1 1 D 0 0 1 1
P 1 0 1 1 P 0 0 0 1
R 1 1 0 1 R 0 0 0 0
S 1 1 1 0 S 0 0 0 0

Table 4. Dependency matrix for the empty tree

6 VISUALIZATION

The theoretical background and the algorithms described in the previous sections
have been implemented in the MetroNG system, which consists of two complimen-
tary applications. The web interface offers access to the schedule namely for students
and teachers; this web application will not be discussed further in this article. The

MetroNG: Computer-Aided Scheduling and Collision Detection 297

second application is the MetroNG client application intended for creators of the
schedule.

6.1 Application Modes

MetroNG supports several application modes; each mode de facto displays several
dimensions of the data and it is tailored for a specific class of events. The most
common type of events is a regular event being held every week of the semester at
the same time. The regular modes display these regular events using a days-of-the-
week time dimension as the X axis. These modes are used most of the time and an
example is displayed in Figure 1. Week-oriented modes are used for irregular events.
These modes allow the users to display schedule for each week individually.

Another type of events are block-oriented lectures; all working days in one week
are dedicated to a single lecture for a particular group of students. This type of
events is commonly used for practices and clinical education. The block mode
supports this type of events by using the weeks of the semester as the X axis; while
each week is displayed as a single column.

Moreover, there are three special-purpose application modes used for mainte-
nance work and a lot of other events in the system, e.g., room reservations not
related to lectures, students’ busy time, teachers’ preferences, etc.

6.2 Display Areas and Axes

Figure 1 displays the principal areas of the main application window. The text-
oriented part on the left contains a sorted and filtered list of events together with
their most important data fields. It is possible to directly schedule or reschedule
these events by dragging them to the graphical grid.

The graphical part displays events in a grid-like way. All views share the same
horizontal axis, but each view has a different vertical axis, usually rooms, student
groups, and teachers. Although these areas are used in all regular modes, their
content is dependent on the horizontal axis bound to a particular mode. These
grid areas are complemented by a detail area at the bottom that displays additional
information on any object including overlapping or colliding events.

The areas are bound to vertical and horizontal axes; there are 10 different linear
and tree-shaped axes in MetroNG and their combinations make possible to display
the data in the most useful way for particular tasks.

The tree axes hierarchically organize the main scheduling entities – e.g. rooms,
students, teachers, and courses. The extraction algorithm (Section 5.2) is useful
especially in the students’ axis since the structure is often very complex, irregular and
the data are too extensive to be displayed at once in an unstructured or regular way.
A small slice of the real-world students’ axis is depicted in Figure 2. Nevertheless,
the algorithms are used for other tree axes in the same way; there is no special
adjustment for student groups. The most valuable data (e.g., a classroom for the

298 D. Bednárek, J. Yaghob, F. Zavoral

Figure 1. Principal MetroNG Areas

students in particular time, possible conflicts of location, etc.) during the whole
scheduling process is then displayed in the intersections of these axes.

6.3 Collisions and Decorators

One of the most valuable feature of MetroNG is the detection of collisions and the
prevention of collisions during the scheduling process. Both types of the collisions
are implemented using the Collision Detection algorithm (Section 5.1). Existing
collisions are displayed as hatched rectangles, so that the user can immediately

MetroNG: Computer-Aided Scheduling and Collision Detection 299

Figure 2. Students’ axis

see an existing collisions (see Figure 3 and Figure 4). The figure also shows other
decorators used to display important information about the events (e.g., status flags,
event lock, etc).

Figure 3. Event Decorators

Other important decorator is the color used as the background of the rectan-
gle. Its meaning depends on the area where the rectangle is displayed. In the
students area, the color of the rectangles is the same as the color of the build-
ing they are scheduled to. In the room area, there is the same color as the stu-
dent groups that attend the event. Note that in Figure 1 in the top (room) sec-
tion of the view the color of the background (color of the building) very often

300 D. Bednárek, J. Yaghob, F. Zavoral

Figure 4. Collisions

matches the color of the rectangle. This is an intentional side effect of this princi-
ple.

So far, we described graphical elements that help the user see the current state
of the schedule. However, there is another important group – features that allow the
user to see possible effects of his or her actions (of changing the schedule). For an
example see Figure 4. When an event is selected, some parts of the view are covered
with hatching. It displays the areas where there is a potential collision between the
selected event and other events – that is, if the event is scheduled to that time and
room, it would create a particular collision.

7 CONCLUSIONS

The main contributions of this paper can be summed up as follows:

• formal model of events and visitors

• algorithms that efficiently detect event collisions and compute a structure of
user navigation in such multidimensional data without explicit specification of
the navigation structure

• the MetroNG application that implements the formal model and proposed al-
gorithms; the application supports the whole process of creating a complex uni-
versity and curricula schedule.

The formal model for the complex collision detection system is used to iden-
tify situations where a group of students should attend two classes scheduled for
the same time. Using the model and algorithms, there is no need for the users
to explicitly describe the navigation structure of the underlying data; the struc-
ture is computed automatically from the used data-set (group base) and its current
state (tuple traces). The algorithms are successfully implemented in the MetroNG
scheduling tool which is currently used in real-life by some of the largest universities
in the Czech Republic for modeling complicated large-size schedules – e.g., at the
Charles University in Prague, there are 53 000 students, 6 000 teachers, 650 study
programs and 40 000 scheduling events. The real-life experience of the users shows
that the presented methods are able to solve their task efficiently.

In our future work, we intend to formalize the user requirements and the quality
of the resulting output and compare our solution to automatic schedulers.

MetroNG: Computer-Aided Scheduling and Collision Detection 301

Acknowledgment

This work was supported by the Grant Agency of the Czech Republic, grant number
SVV-2013-267312, GACR 204/13/08195 and PRVOUK P46.

REFERENCES

[1] Bednarek, D.—Dokulil, J.—Yaghob, J.—Zavoral, F.: MetroNG: Multi-
modal Interactive Scheduling Interface. Proceedings of the International Conference
on Advanced Visual Interfaces, ACM, 2010, pp. 317–320.

[2] Carpineto, C.—Romano, G.: Concept Data Analysis: Theory and Applications.
Wiley, 2004, ISBN 978–0–470–85055–8.

[3] Ganter, B.—Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre, W.
(Eds.): Conceptual Structures: Standards and Practices. LNAI, 1999, Vol. 1640,
pp. 377–388.

[4] Ganter, B.: Contextual Attribute Logic of Many-Valued Attributes. In: Car-
bonell, J. G., Siekmann, J. (Eds.): Formal Concept Analysis. LNCS, 2005, Vol. 3626,
pp. 101–103.

[5] Birkhoff, G.: Lattice Theory. American Mathematical Soc., 1984.

[6] Sehwan, Y.—Jongdae, J.—Dae Ryong, K.: Self Conflict Resolving Interac-
tive Web-Based Class Scheduling System. Academy of Information and Management
Sciences Journal, Vol. 8, 2005, No. 2, pp. 69–78.

[7] Visual Classroom Scheduler, Visual Scheduling Systems, 2001, http://www.vss.

com.au/index.asp.

[8] Class Scheduler, Cyber Matrix, 2009, http://www.cybermatrix.com/class_

scheduler.html.

[9] Lantiv Timetabler, Lantiv, 2009, http://www.lantiv.com/.

[10] Pothitos, N.—Stamatopoulos, P.—Zervoudakis, K.: Course Scheduling in
an Adjustable Constraint Propagation Schema. 2012 IEEE 24th International Con-
ference on Tools with Artificial Intelligence (ICTAI), 2012, Vol. 1, pp. 335–343, DOI:
10.1109/ICTAI.2012.53.

[11] Dasgupta, P.—Khazanchi, D.: Adaptive Decision Support for Academic Course
Scheduling Using Intelligent Software Agents. International Journal of Technology in
Teaching and Learning, Vol. 1, 2005, No. 2, pp. 63–78.

[12] Saltzman, R.: An Optimization Model for Scheduling Classes in a Business School
Department. Journal of Operations Management, Vol. 7, 2009, No. 1, pp. 84–92.

[13] Kingston, J. H.: The KTS High School Timetabling System. The 6th Interna-
tional Conference on Practice and Theory of Automated Timetabling (PATAT), 2006,
pp. 181–195.

[14] Tsang, E.: A Glimpse of Constraint Satisfaction. Artificial Intelligence Review,
Vol. 13, 1999, No. 3, pp. 215–227.

302 D. Bednárek, J. Yaghob, F. Zavoral

[15] Carter, M. W.: A Comprehensive Course Timetabling and Student Scheduling
System at the University of Waterloo. Practice and Theory of Automated Timetabling
III. LNCS, 2001, Vol. 2079, pp. 64–82.

[16] Mathaisel, D. F. X.—Comm, C. L.: Course and Classroom Scheduling: An Inter-
active Computer Graphics Approach. Journal of Systems and Software, Vol. 15, 1991,
Issue 2, pp. 149–157, ISSN 0164–1212.

[17] Abdennadher, S.—Marte, M.: University Course Timetabling Using Constraint
Handling Rules. Applied Artificial Intelligence, Vol. 14, 2000, No. 4, pp. 311–325.

[18] Burke, E.—Bykov, Y.—Petrovic, S.: A Multicriteria Approach to Examination
Timetabling. LNCS, 2001, Vol. 2079, pp. 118–131.

[19] Dimopoulou, M.—Miliotis, P.: Implementation of a University Course and Exa-
mination Timetabling System. European Journal of Operational Research, Vol. 130,
2001, No. 1, pp. 202–213.

[20] Rudová, H.—Murray, K.: University Course Timetabling with Soft Constraints.
LNCS, 2003, Vol. 2740, pp. 310–328.

[21] Burke, E. K.—MacCarthy, B.—Petrovic, S.—Qu, R.: Case-Based Reason-
ing in Course Timetabling: An Attribute Graph Approach. LNCS, 2001, Vol. 2080,
pp. 90–104.

[22] Burke, E. K.—Newall, J. P.: Solving Examination Timetabling Problems
Through Adaption of Heuristic Orderings. Annals of Operations Research, Vol. 129,
2004, No. 1-4, pp. 107–134.

[23] Schaerf, A.—Meisels, A.: Solving Employee Timetabling Problems by General-
ized Local Search. LNCS, 2000, Vol. 1792, pp. 380–389.

[24] Burke, E.—Bykov, Y.—Newall, J.—Petrovic, S.: A Time-Predefined Local
Search Approach to Exam Timetabling Problems. IIE Transactions, Vol. 36, 2004,
No. 6, pp. 509–528.

[25] Ross, P.—Hart, E.—Corne, D.: Genetic Algorithms and Timetabling. Natural
Computing Series, Advances in Evolutionary Computing: Theory and Applications,
2003, pp. 755–777.

[26] Beligiannis, G. N.—Moschopoulos, C. N.—Kaperonis, G. P.—Likotha-
nassis, S. D.: Applying Evolutionary Computation to the School Timetabling Prob-
lem: The Greek Case. Computers and Operations Research, Vol. 35, 2008, No. 4,
pp. 1265–1280.

[27] Nedjah, N.—de Macedo Mourelle, L.: Evolutionary Time Scheduling. Inter-
national Conference on Information Technology, Coding and Computing (ITCC ’04),
Vol. 2, 2004, pp. 357–361.

[28] Qarouni-Fard, D.—Najafi-Ardabili, A.—Moeinzadeh, M.-H.: Finding Fea-
sible Timetables with Particle Swarm Optimization. 4th International Conference on
Innovations in Information Technology, 2007, pp. 387–391.

[29] Chu, S.-C.—Chen, Y.-T.—Ho, J.-H.: Timetabling Scheduling Using Particle
Swarm Optimization. 1st International Conference on Innovative Computing, Infor-
mation and Control, 2006, pp. 324–327.

[30] Socha, K.—Knowles, J.—Sampels, M.: A MAX-MIN Ant System for the Uni-
versity Course Timetabling Problem. LNCS, 2002, Vol. 2463, pp. 1–13.

MetroNG: Computer-Aided Scheduling and Collision Detection 303

[31] di Gaspero, L.—Schaerf, A.: Tabu Search Techniques for Examination Time-
tabling. LNCS, 2001, Vol. 2079, pp. 104–117.

[32] Burke, E. K.—Kendall, G.—Soubeiga, E.: A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, Vol. 9, 2003, No. 6, pp. 451–470.

[33] Rossi-Doria, O.—Sampels, M.—Birattari, M.—Chiarandini, M.—
Dorigo, M.—Gambardella, L. M. et al.: A Comparison of the Performance
of Different Metaheuristics on the Timetabling Problem. LNCS, 2003, Vol. 2740,
pp. 329–351.

[34] Bilgin, B.—Özcan, E.—Korkmaz, E. E.: An Experimental Study on Hyper-
Heuristics and Exam Timetabling. 6th International Conference on the Practice and
Theory of Automated Timetabling, 2006, pp. 123–140.

[35] Burke, E. K.—McCollum, B.—Meisels, A.—Petrovic, S.—Qu, R.:
A Graph-Based Hyper Heuristic for Educational Timetabling Problems. European
Journal of Operational Research, Vol. 176, 2007, pp. 177–192.

[36] Burke, E. K.—Petrovic, S.: Recent Research Directions in Automated Time-
tabling. European Journal of Operational Research, Vol. 140, 2002, pp. 266–280.

[37] Adriaen, M.—de Causmaecker, P.—Demeester, P.—Berghe, G. V.: Tack-
ling the University Course Timetabling Problem with an Aggregation Approach.
6th International Conference on the Practice and Theory of Automated Timetabling,
2006, pp. 330–335.

[38] Malim, M. R.—Khader, A. T.—-Mustafa, A.: Artificial Immune Algorithms for
University Timetabling. 6th International Conference on the Practice and Theory of
Automated Timetabling, 2006, pp. 234–245.

[39] Perzina, R.: Solving the University Timetabling Problem with Optimized Enrol-
ment of Students by a Parallel Self-Adaptive Genetic Algorithm. 6th International
Conference on the Practice and Theory of Automated Timetabling, 2006, pp. 264–280.

[40] Ten Eikelder, H. M. M.—Willemen, R. J.: Some Complexity Aspects of Se-
condary School Timetabling Problems. LNCS, 2001, Vol. 2079, pp. 18–27.

[41] de Haan, P.—Landman, R.—Post, G.—Ruizenaar, H.: A Four-Phase Ap-
proach to a Timetabling Problem in Secondary Schools. 6th International Conference
on the Practice and Theory of Automated Timetabling, 2006, pp. 423–425.

[42] Jacobsen, F.—Bortfeldt, A.—Gehring, H.: Timetabling at German Second-
ary Schools: Tabu Search Versus Constraint Programming. 6th International Confer-
ence on the Practice and Theory of Automated Timetabling, 2006, pp. 439–442.

[43] Kingston, J. H.: The KTS School Timetabling System. 6th International Conference
on the Practice and Theory of Automated Timetabling, 2006, pp. 181–195.

[44] Cooper, T. B.—Kingston, J. H.: The Complexity of Timetable Construction
Problems. TR No. 495, Basser Department of Computer Science, The University
of Sidney, 1995.

304 D. Bednárek, J. Yaghob, F. Zavoral

David Bedn�arek received his Ph. D. in informatics from Char-
les University in Prague in 2009. His research interests in-
clude programming languages, compiler construction, parallel
programming, and database systems. He was involved in many
national and international research projects. He served as mem-
ber of the program committee of several international confer-
ences.

Jakub Yaghob is currently associated with the Charles Univer-
sity in Prague, Faculty of Mathematics and Physics. He gradu-
ated consequently at the Charles University in Prague (1991 –
M.Sc., 2003 – Ph.D.). He is responsible supervisor for numerous
development grants of the Ministry of Education and FRV grants
(e.g. Environment for teaching parallel programming). He was
also working on numerous GAR grants (Highly Scalable Par-
allel and Distributed Methods of Data Processing in e-Science
amongst the others). He is a member of a few international pro-
gram committees of various conferences and workshops taking

the role of the program or organization committee chair several times.

Filip Zavoral is the vice-head of the Department of Software
Engineering, Charles University in Prague, Czech Republic. His
research interests include distributed and parallel technologies,
cloud computing and efficient data processing. He was involved
in many national and international research projects. He has
co-authored more than 60 research publications such as: journal
papers, conference proceedings papers, book chapters, and ed-
itorials of journal special issues. He is member of the editorial
board of several international journals and served as member
of the program or organizing committee of many international
conferences.

