211 research outputs found

    Automatic Parameterization of the Purine Metabolism Pathway through Discrete Event-based Simulation

    Get PDF
    Model development and analysis of metabolic networks is recognized as a key requirement for integrating in-vitro and in-vivo experimental data. In-silico simulation of a biochemical model allows one to test different experimental conditions, helping in the discovery of the dynamics that regulate the system. Although qualitative characterizations of such complex mechanisms are, at least partially, available, a fully-parametrized quantitative description is often miss- ing. On the other hand, several characteristics and issues to model biological systems are common to the electronics system modelling, such as concurrency, reactivity, abstraction levels, automatic reverse engineering, as well as design space explosion during validation. This work presents a methodology that applies languages, techniques, and tools well established in the context of electronic design automation (EDA) for modelling and simulation of metabolic networks through Petri nets. The paper presents the results obtained by applying the proposed methodology to model the purine metabolism starting from the metabolomics data obtained from naive lymphocytes and autoreactive T cells implicated in the induction of experimental autoimmune disorders

    Efficient Simulation and Parametrization of Stochastic Petri Nets in SystemC: A Case study from Systems Biology

    Get PDF
    Stochastic Petri nets (SPN) are a form of Petri net where the transitions fire after a probabilistic and randomly determined delay. They are adopted in a wide range of appli- cations thanks to their capability of incorporating randomness in the models and taking into account possible fluctuations and environmental noise. In Systems Biology, they are becoming a reference formalism to model metabolic networks, in which the noise due to molecule interactions in the environment plays a crucial role. Some frameworks have been proposed to implement and dynamically simulate SPN. Nevertheless, they do not allow for automatic model parametrization, which is a crucial task to identify the network configurations that lead the model to satisfy temporal properties of the model. This paper presents a framework that synthesizes the SPN models into SystemC code. The framework allows the user to formally define the network properties to be observed and to automatically extrapolate, thorough Assertion-based Verification (ABV), the parameter configurations that lead the network to satisfy such properties. We applied the framework to implement and simulate a complex biological network, i.e., the purine metabolism, with the aim of reproducing the metabolomics data obtained in-vitro from naive lymphocytes and autoreactive T cells implicated in the induction of experimental autoimmune disorders

    Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Get PDF
    As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science

    A Study of the PDGF Signaling Pathway with PRISM

    Get PDF
    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Petri Net modelling approach for analysing the behaviour of Wnt/[inline-formula removed] -catenin and Wnt/Ca 2+ signalling pathways in arrhythmogenic right ventricular cardiomyopathy.

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure and sudden death. The hallmark pathological findings are progressive myocyte loss and fibro fatty replacement, with a predilection for the right ventricle. This study focuses on the adipose tissue formation in cardiomyocyte by considering the signal transduction pathways including Wnt/[inline-formula removed]-catenin and Wnt/Ca2+ regulation system. These pathways are modelled and analysed using stochastic petri nets (SPN) in order to increase our comprehension of ARVC and in turn its treatment regimen. The Wnt/[inline-formula removed]-catenin model predicts that the dysregulation or absence of Wnt signalling, inhibition of dishevelled and elevation of glycogen synthase kinase 3 along with casein kinase I are key cytotoxic events resulting in apoptosis. Moreover, the Wnt/Ca2+ SPN model demonstrates that the Bcl2 gene inhibited by c-Jun N-terminal kinase protein in the event of endoplasmic reticulum stress due to action potential and increased amount of intracellular Ca2+ which recovers the Ca2+homeostasis by phospholipase C, this event positively regulates the Bcl2 to suppress the mitochondrial apoptosis which causes ARVC

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    corecore