1,779 research outputs found

    On the Use of Kernel Bypass Mechanisms for High-Performance Inter-container Communications

    Get PDF
    In this paper, we perform a comparison among a number of different virtual bridging and switching technologies, each widely available and commonly used on Linux, to provide network connectivity to co-located LXC containers for high-performance application scenarios

    A Framework for Comparative Evaluation of High-Performance Virtualized Networking Mechanisms

    Get PDF
    This paper presents an extension to a software framework designed to evaluate the efficiency of different software and hardware-accelerated virtual switches, each commonly adopted on Linux to provide virtual network connectivity to containers in high-performance scenarios, like in Network Function Virtualization (NFV). We present results from the use of our tools, showing the performance of multiple high-performance networking frameworks on a specific platform, comparing the collected data for various key metrics, namely throughput, latency and scalability, with respect to the required computational power

    Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

    Get PDF
    This work presents a framework for evaluating the performance of various virtual switching solutions, each widely adopted on Linux to provide virtual network connectivity to containers in high-performance scenarios, like in Network Function Virtualization (NFV). We present results from the use of this framework for the quantitative comparison of the performance of software-based and hardware-accelerated virtual switches on a real platform with respect to a number of key metrics, namely network throughput, latency and scalability

    Strong Temporal Isolation among Containers in OpenStack for NFV Services

    Get PDF
    In this paper, the problem of temporal isolation among containerized software components running in shared cloud infrastructures is tackled, proposing an approach based on hierarchical real-time CPU scheduling. This allows for reserving a precise share of the available computing power for each container deployed in a multi-core server, so to provide it with a stable performance, independently from the load of other co-located containers. The proposed technique enables the use of reliable modeling techniques for end-to-end service chains that are effective in controlling the application-level performance. An implementation of the technique within the well-known OpenStack cloud orchestration software is presented, focusing on a use-case framed in the context of network function virtualization. The modified OpenStack is capable of leveraging the special real-time scheduling features made available in the underlying Linux operating system through a patch to the in-kernel process scheduler. The effectiveness of the technique is validated by gathering performance data from two applications running in a real test-bed with the mentioned modifications to OpenStack and the Linux kernel. A performance model is developed that tightly models the application behavior under a variety of conditions. Extensive experimentation shows that the proposed mechanism is successful in guaranteeing isolation of individual containerized activities on the platform

    Ultra-reliable Low-latency, Energy-efficient and Computing-centric Software Data Plane for Network Softwarization

    Get PDF
    Network softwarization plays a significantly important role in the development and deployment of the latest communication system for 5G and beyond. A more flexible and intelligent network architecture can be enabled to provide support for agile network management, rapid launch of innovative network services with much reduction in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits, 5G system also raises unprecedented challenges as emerging machine-to-machine and human-to-machine communication use cases require Ultra-Reliable Low Latency Communication (URLLC). According to empirical measurements performed by the author of this dissertation on a practical testbed, State of the Art (STOA) technologies and systems are not able to achieve the one millisecond end-to-end latency requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This dissertation performs a comprehensive introduction to three innovative approaches that can be used to improve different aspects of the current software-driven network data plane. All three approaches are carefully designed, professionally implemented and rigorously evaluated. According to the measurement results, these novel approaches put forward the research in the design and implementation of ultra-reliable low-latency, energy-efficient and computing-first software data plane for 5G communication system and beyond
    corecore