11 research outputs found

    Generalized Data Automata and Fixpoint Logic

    Get PDF
    Data ω-words are ω-words where each position is additionally labelled by a data value from an infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’ and ‘next position with the same data value’. Based on this view, an extension of Data Automata called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of GDA is open, the decidability for a subclass class called Büchi GDA is shown using Multicounter Automata. Next a natural fixpoint logic is defined on the graphs of data ω-words and it is shown that the µ-fragment as well as the alternation-free fragment is undecidable. But the fragment which is defined by limiting the number of alternations between future and past formulas is shown to be decidable, by first converting the formulas to equivalent alternating Büchi automata and then to Büchi GDA

    A Robust Class of Data Languages and an Application to Learning

    Get PDF
    We introduce session automata, an automata model to process data words, i.e., words over an infinite alphabet. Session automata support the notion of fresh data values, which are well suited for modeling protocols in which sessions using fresh values are of major interest, like in security protocols or ad-hoc networks. Session automata have an expressiveness partly extending, partly reducing that of classical register automata. We show that, unlike register automata and their various extensions, session automata are robust: They (i) are closed under intersection, union, and (resource-sensitive) complementation, (ii) admit a symbolic regular representation, (iii) have a decidable inclusion problem (unlike register automata), and (iv) enjoy logical characterizations. Using these results, we establish a learning algorithm to infer session automata through membership and equivalence queries

    Logics with rigidly guarded data tests

    Get PDF
    The notion of orbit finite data monoid was recently introduced by Bojanczyk as an algebraic object for defining recognizable languages of data words. Following Buchi's approach, we introduce a variant of monadic second-order logic with data equality tests that captures precisely the data languages recognizable by orbit finite data monoids. We also establish, following this time the approach of Schutzenberger, McNaughton and Papert, that the first-order fragment of this logic defines exactly the data languages recognizable by aperiodic orbit finite data monoids. Finally, we consider another variant of the logic that can be interpreted over generic structures with data. The data languages defined in this variant are also recognized by unambiguous finite memory automata

    Regular Expressions for Data Words

    Get PDF
    Abstract. In data words, each position carries not only a letter form a finite alphabet, as the usual words do, but also a data value coming from an infinite domain. There has been a renewed interest in them due to applications in querying and reasoning about data models with complex structural properties, notably XML, and more recently, graph databases. Logical formalisms designed for querying such data often require concise and easily understandable presentations of regular languages over data words. Our goal, therefore, is to define and study regular expressions for data words. As the automaton model, we take register automata, which are a natural analog of NFAs for data words. We first equip standard regular expressions with limited memory, and show that they capture the class of data words defined by register automata. The complexity of the main decision problems for these expressions (nonemptiness, membership) also turns out to be the same as for register automata. We then look at a subclass of these regular expressions that can define many properties of interest in applications of data words, and show that the main decision problems can be solved efficiently for it.

    Logics with rigidly guarded data tests

    Full text link

    On the use of guards for logics with data

    No full text

    On the use of guards for logics with data

    No full text
    Abstract. The notion of orbit finite data monoid was recently introduced by Bojańczyk as an algebraic object for defining recognizable languages of data words. Following Büchi’s approach, we introduce the new logic ‘rigidly guarded MSO ’ and show that the data languages definable in this logic are exactly those recognizable by orbit finite data monoids. We also establish, following this time the approach of Schützenberger, McNaughton and Papert, that the first-order variant of this logic defines exactly the languages recognizable by aperiodic orbit finite data monoids. Finally, we give a variant of the logic that captures the larger class of languages recognized by non-deterministic finite memory automata.

    On the use of guards for logics with data

    No full text
    corecore