9 research outputs found

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Statistical Image Classification for Image Steganographic Techniques

    Full text link

    Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography

    Get PDF
    The rapid advancements in digital communication technology and huge increase in computer power have generated an exponential growth in the use of the Internet for various commercial, governmental and social interactions that involve transmission of a variety of complex data and multimedia objects. Securing the content of sensitive as well as personal transactions over open networks while ensuring the privacy of information has become essential but increasingly challenging. Therefore, information and multimedia security research area attracts more and more interest, and its scope of applications expands significantly. Communication security mechanisms have been investigated and developed to protect information privacy with Encryption and Steganography providing the two most obvious solutions. Encrypting a secret message transforms it to a noise-like data which is observable but meaningless, while Steganography conceals the very existence of secret information by hiding in mundane communication that does not attract unwelcome snooping. Digital steganography is concerned with using images, videos and audio signals as cover objects for hiding secret bit-streams. Suitability of media files for such purposes is due to the high degree of redundancy as well as being the most widely exchanged digital data. Over the last two decades, there has been a plethora of research that aim to develop new hiding schemes to overcome the variety of challenges relating to imperceptibility of the hidden secrets, payload capacity, efficiency of embedding and robustness against steganalysis attacks. Most existing techniques treat secrets as random bit-streams even when dealing with non-random signals such as images that may add to the toughness of the challenges.This thesis is devoted to investigate and develop steganography schemes for embedding secret images in image files. While many existing schemes have been developed to perform well with respect to one or more of the above objectives, we aim to achieve optimal performance in terms of all these objectives. We shall only be concerned with embedding secret images in the spatial domain of cover images. The main difficulty in addressing the different challenges stems from the fact that the act of embedding results in changing cover image pixel values that cannot be avoided, although these changes may not be easy to detect by the human eye. These pixel changes is a consequence of dissimilarity between the cover LSB plane and the secretimage bit-stream, and result in changes to the statistical parameters of stego-image bit-planes as well as to local image features. Steganalysis tools exploit these effects to model targeted as well as blind attacks. These challenges are usually dealt with by randomising the changes to the LSB, using different/multiple bit-planes to embed one or more secret bits using elaborate schemes, or embedding in certain regions that are noise-tolerant. Our innovative approach to deal with these challenges is first to develop some image procedures and models that result in increasing similarity between the cover image LSB plane and the secret image bit-stream. This will be achieved in two novel steps involving manipulation of both the secret image and the cover image, prior to embedding, that result a higher 0:1 ratio in both the secret bit-stream and the cover pixels‘ LSB plane. For the secret images, we exploit the fact that image pixel values are in general neither uniformly distributed, as is the case of random secrets, nor spatially stationary. We shall develop three secret image pre-processing algorithms to transform the secret image bit-stream for increased 0:1 ratio. Two of these are similar, but one in the spatial domain and the other in the Wavelet domain. In both cases, the most frequent pixels are mapped onto bytes with more 0s. The third method, process blocks by subtracting their means from their pixel values and hence reducing the require number of bits to represent these blocks. In other words, this third algorithm also reduces the length of the secret image bit-stream without loss of information. We shall demonstrate that these algorithms yield a significant increase in the secret image bit-stream 0:1 ratio, the one that based on the Wavelet domain is the best-performing with 80% ratio.For the cover images, we exploit the fact that pixel value decomposition schemes, based on Fibonacci or other defining sequences that differ from the usual binary scheme, expand the number of bit-planes and thereby may help increase the 0:1 ratio in cover image LSB plane. We investigate some such existing techniques and demonstrate that these schemes indeed lead to increased 0:1 ratio in the corresponding cover image LSB plane. We also develop a new extension of the binary decomposition scheme that is the best-performing one with 77% ratio. We exploit the above two steps strategy to propose a bit-plane(s) mapping embedding technique, instead of bit-plane(s) replacement to make each cover pixel usable for secret embedding. This is motivated by the observation that non-binary pixel decomposition schemes also result in decreasing the number of possible patterns for the three first bit-planes to 4 or 5 instead of 8. We shall demonstrate that the combination of the mapping-based embedding scheme and the two steps strategy produces stego-images that have minimal distortion, i.e. reducing the number of the cover pixels changes after message embedding and increasing embedding efficiency. We shall also demonstrate that these schemes result in reasonable stego-image quality and are robust against all the targeted steganalysis tools but not against the blind SRM tool. We shall finally identify possible future work to achieve robustness against SRM at some payload rates and further improve stego-image quality

    Towards private and robust machine learning for information security

    Get PDF
    Many problems in information security are pattern recognition problems. For example, determining if a digital communication can be trusted amounts to certifying that the communication does not carry malicious or secret content, which can be distilled into the problem of recognising the difference between benign and malicious content. At a high level, machine learning is the study of how patterns are formed within data, and how learning these patterns generalises beyond the potentially limited data pool at a practitioner’s disposal, and so has become a powerful tool in information security. In this work, we study the benefits machine learning can bring to two problems in information security. Firstly, we show that machine learning can be used to detect which websites are visited by an internet user over an encrypted connection. By analysing timing and packet size information of encrypted network traffic, we train a machine learning model that predicts the target website given a stream of encrypted network traffic, even if browsing is performed over an anonymous communication network. Secondly, in addition to studying how machine learning can be used to design attacks, we study how it can be used to solve the problem of hiding information within a cover medium, such as an image or an audio recording, which is commonly referred to as steganography. How well an algorithm can hide information within a cover medium amounts to how well the algorithm models and exploits areas of redundancy. This can again be reduced to a pattern recognition problem, and so we apply machine learning to design a steganographic algorithm that efficiently hides a secret message with an image. Following this, we proceed with discussions surrounding why machine learning is not a panacea for information security, and can be an attack vector in and of itself. We show that machine learning can leak private and sensitive information about the data it used to learn, and how malicious actors can exploit vulnerabilities in these learning algorithms to compel them to exhibit adversarial behaviours. Finally, we examine the problem of the disconnect between image recognition systems learned by humans and by machine learning models. While human classification of an image is relatively robust to noise, machine learning models do not possess this property. We show how an attacker can cause targeted misclassifications against an entire data distribution by exploiting this property, and go onto introduce a mitigation that ameliorates this undesirable trait of machine learning

    Steganalytic Methods for 3D Objects

    Get PDF
    This PhD thesis provides new research results in the area of using 3D features for steganalysis. The research study presented in the thesis proposes new sets of 3D features, greatly extending the previously proposed features. The proposed steganlytic feature set includes features representing the vertex normal, curvature ratio, Gaussian curvature, the edge and vertex position of the 3D objects in the spherical coordinate system. Through a second contribution, this thesis presents a 3D wavelet multiresolution analysis-based steganalytic method. The proposed method extracts the 3D steganalytic features from meshes of different resolutions. The third contribution proposes a robustness and relevance-based feature selection method for solving the cover-source mismatch problem in 3D steganalysis. This method selects those 3D features that are robust to the variation of the cover source, while preserving the relevance of such features to the class label. All the proposed methods are applied for identifying stego-meshes produced by several steganographic algorithms

    An improved image steganography scheme based on distinction grade value and secret message encryption

    Get PDF
    Steganography is an emerging and greatly demanding technique for secure information communication over the internet using a secret cover object. It can be used for a wide range of applications such as safe circulation of secret data in intelligence, industry, health care, habitat, online voting, mobile banking and military. Commonly, digital images are used as covers for the steganography owing to their redundancy in the representation, making them hidden to the intruders, hackers, adversaries, unauthorized users. Still, any steganography system launched over the Internet can be cracked upon recognizing the stego cover. Thus, the undetectability that involves data imperceptibility or concealment and security is the significant trait of any steganography system. Presently, the design and development of an effective image steganography system are facing several challenges including low capacity, poor robustness and imperceptibility. To surmount such limitations, it is important to improve the capacity and security of the steganography system while maintaining a high signal-to-noise ratio (PSNR). Based on these factors, this study is aimed to design and develop a distinction grade value (DGV) method to effectively embed the secret data into a cover image for achieving a robust steganography scheme. The design and implementation of the proposed scheme involved three phases. First, a new encryption method called the shuffle the segments of secret message (SSSM) was incorporated with an enhanced Huffman compression algorithm to improve the text security and payload capacity of the scheme. Second, the Fibonacci-based image transformation decomposition method was used to extend the pixel's bit from 8 to 12 for improving the robustness of the scheme. Third, an improved embedding method was utilized by integrating a random block/pixel selection with the DGV and implicit secret key generation for enhancing the imperceptibility of the scheme. The performance of the proposed scheme was assessed experimentally to determine the imperceptibility, security, robustness and capacity. The standard USC-SIPI images dataset were used as the benchmarking for the performance evaluation and comparison of the proposed scheme with the previous works. The resistance of the proposed scheme was tested against the statistical, X2 , Histogram and non-structural steganalysis detection attacks. The obtained PSNR values revealed the accomplishment of higher imperceptibility and security by the proposed DGV scheme while a higher capacity compared to previous works. In short, the proposed steganography scheme outperformed the commercially available data hiding schemes, thereby resolved the existing issues

    Statistical pattern recognition for audio-forensics : empirical investigations on the application scenarios audio steganalysis and microphone forensics

    Get PDF
    Magdeburg, Univ., Fak. fĂŒr Informatik, Diss., 2013von Christian KrĂ€tze

    Challenges and Open Questions of Machine Learning in Computer Security

    Get PDF
    This habilitation thesis presents advancements in machine learning for computer security, arising from problems in network intrusion detection and steganography. The thesis put an emphasis on explanation of traits shared by steganalysis, network intrusion detection, and other security domains, which makes these domains different from computer vision, speech recognition, and other fields where machine learning is typically studied. Then, the thesis presents methods developed to at least partially solve the identified problems with an overall goal to make machine learning based intrusion detection system viable. Most of them are general in the sense that they can be used outside intrusion detection and steganalysis on problems with similar constraints. A common feature of all methods is that they are generally simple, yet surprisingly effective. According to large-scale experiments they almost always improve the prior art, which is likely caused by being tailored to security problems and designed for large volumes of data. Specifically, the thesis addresses following problems: anomaly detection with low computational and memory complexity such that efficient processing of large data is possible; multiple-instance anomaly detection improving signal-to-noise ration by classifying larger group of samples; supervised classification of tree-structured data simplifying their encoding in neural networks; clustering of structured data; supervised training with the emphasis on the precision in top p% of returned data; and finally explanation of anomalies to help humans understand the nature of anomaly and speed-up their decision. Many algorithms and method presented in this thesis are deployed in the real intrusion detection system protecting millions of computers around the globe
    corecore