
Towards private and robust machine
learning for information security

Jamie Hayes

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

November 30, 2021

2

I, Jamie Hayes, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.

3

Dedicated to my friend, Amar.

Abstract

Many problems in information security are pattern recognition problems. For ex-

ample, determining if a digital communication can be trusted amounts to certifying

that the communication does not carry malicious or secret content, which can be

distilled into the problem of recognising the difference between benign and mali-

cious content. At a high level, machine learning is the study of how patterns are

formed within data, and how learning these patterns generalises beyond the poten-

tially limited data pool at a practitioner’s disposal, and so has become a powerful

tool in information security.

In this work, we study the benefits machine learning can bring to two prob-

lems in information security. Firstly, we show that machine learning can be used to

detect which websites are visited by an internet user over an encrypted connection.

By analysing timing and packet size information of encrypted network traffic, we

train a machine learning model that predicts the target website given a stream of

encrypted network traffic, even if browsing is performed over an anonymous com-

munication network. Secondly, in addition to studying how machine learning can

be used to design attacks, we study how it can be used to solve the problem of hid-

ing information within a cover medium, such as an image or an audio recording,

which is commonly referred to as steganography. How well an algorithm can hide

information within a cover medium amounts to how well the algorithm models and

exploits areas of redundancy. This can again be reduced to a pattern recognition

problem, and so we apply machine learning to design a steganographic algorithm

that efficiently hides a secret message with an image.

Following this, we proceed with discussions surrounding why machine learn-

Abstract 5

ing is not a panacea for information security, and can be an attack vector in and of

itself. We show that machine learning can leak private and sensitive information

about the data it used to learn, and how malicious actors can exploit vulnerabili-

ties in these learning algorithms to compel them to exhibit adversarial behaviours.

Finally, we examine the problem of the disconnect between image recognition sys-

tems learned by humans and by machine learning models. While human classifi-

cation of an image is relatively robust to noise, machine learning models do not

possess this property. We show how an attacker can cause targeted misclassifica-

tions against an entire data distribution by exploiting this property, and go onto

introduce a mitigation that ameliorates this undesirable trait of machine learning.

Impact Statement

The work contained in part I will likely inform decisions about best practices with

respect to applications of machine learning to information security problems, and

contributed to the award of a Google PhD Fellowship. As part of an industry place-

ment in the Government Digital Services (GDS), research ideas contained within

this dissertation have been applied to the design of a UK government wide privacy-

preserving anomaly detection pipeline. This is currently live and assists UK civil

service analysts in the GDS with detecting fraudulent activity on the .gov.uk

verify scheme [2].

The research detailed in part II works as guide and provides cautionary ev-

idence for machine learning practitioners who work in privacy-sensitive environ-

ments, while the work in part III gives both theoretical and experimental evidence

of the limitations of machine learning. We expect these research findings to act

as warning of the limitations and dangers of applying machine learning blindly in

privacy and security sensitive environments, and work as a guide as to when it is

appropriate to trust decisions given by machine learning algorithms.

Where possible, data and code for work contained within this dissertation

has been made freely available. Research on website fingerprinting in chapter 3,

is freely available at https://github.com/jhayes14/k-FP and has be-

come a benchmark within this field. Likewise steganographic work in chapter 4

is available at https://github.com/jhayes14/advsteg, and work on

membership inference attacks in chapter 5 is available at https://github.

com/jhayes14/gen_mem_inf.

https://github.com/jhayes14/k-FP
https://github.com/jhayes14/advsteg
https://github.com/jhayes14/gen_mem_inf
https://github.com/jhayes14/gen_mem_inf

Acknowledgements

Firstly, I would like to thank my supervisor, George Danezis. He has been a constant

source of support, both professionally and personally. Upon matriculation, I was

elated to find I had a supervisor who is not only a world-leading researcher, but has

a constant appetite to learn. His willingness to learn and research new subjects and

ideas was positively infectious, and gave me the confidence to broaden the scope

of my research, which ultimately led to the work contained within this thesis. I am

truly honoured to be his first doctoral student.

Alongside George Danezis, I am indebted to all the fantastic researchers I have

had the opportunity to work with: Vasilios Mavroudis, Carmela Troncoso, Ania Pi-

otrowska, Tariq Elahi, Sebastian Meiser, Giovanni Cherubin, Marc Juarez, Emiliano

De Cristofaro, Nethanel Gelernter, Amir Herzberg, Olya Ohrimenko, Bogdan Ku-

lynych, Nikita Samarin, Krishnamurthy (Dj) Dvijotham, Borja Balle, Zico Kolter,

Chongli Qin, Andras Gyorgy, Kai Xiao, Sven Gowal, Pushmeet Kohli, Yutian Chen,

Sander Dieleman, and Norman Casagrande.

I have been fortunate to experience research in a variety of industry environ-

ments. My thanks to Howard Staples, who was my host at the Government Digital

Services, and gave me the opportunity to implement my research on production

environments. To Aaron Johnson who hosted my time at the US Naval Research

Laboratory, thank you for all the illuminating conversations and advice throughout

my time there, and for all the extra work it took to get a non-US citizen into the

building. Thank you to Olya Ohrimenko, Ian Fischer, and Pushmeet Kohli, who

were my hosts at Microsoft Research, Google Research, and Google DeepMind,

respectively, and gave me access to unique and exceptional research environments.

Acknowledgements 8

I am grateful to my funding sources that freed my mind from financial worries

and allowed me to concentrate fully on research throughout my doctoral studies.

From 2014 to 2017, I was funded by the UK Government Communications Head-

quarters (GCHQ), as part of University College London’s status as a recognised

Academic Centre of Excellence in Cyber Security Research. From 2017 to 2020, I

was funded through a Google PhD Fellowship in Machine Learning.

Thanks to my parents, Sally and Paul, my partner, Nyla, and my siblings, Mairi

and Tom. You all provided love, support, and guidance, even in times where I may

have been less than deserving.

Finally, to my closest friend, Amar. Our ten years of friendship will instruct

the way I live the rest of my life. You are greatly missed.

Contents

1 Introduction 23

1.1 Thesis Contributions . 24

1.2 Thesis Structure . 25

1.3 Publications & contributions in joint work 26

1.4 Further contributions . 27

1.5 Experience . 28

2 Background 30

2.1 Machine learning . 30

2.1.1 Random forests . 30

2.1.2 Neural networks . 30

2.1.3 Generative models . 31

2.2 Security of machine learning . 34

2.2.1 Membership inference attacks 34

2.2.2 Membership inference defences 36

2.2.3 Multi-party machine learning 37

2.2.4 Adversarial examples . 38

2.3 Website fingerprinting . 38

2.4 Steganography . 39

I Machine learning applications to information security 42

3 Robust & scalable website fingerprinting 44

Contents 10

3.1 k-fingerprints from random forests 46

3.2 The k-fingerprinting attack . 48

3.3 Experimental set-up . 49

3.4 Information leakage from network traffic features 51

3.5 Attack on hardened defences . 56

3.6 Attack on the Wang et al. [248] dataset 58

3.7 Attack evaluation on DSTor . 61

3.7.1 Alexa web pages monitored set 61

3.7.2 Hidden services monitored set 62

3.8 Attack evaluation on DSNorm . 64

3.8.1 Attack on encrypted browsing sessions 64

3.8.2 Attack without packet size features 67

3.9 Fine grained open-world false positives on Alexa monitored set of

DSTor . 68

3.10 Attack summary & discussion . 70

3.11 Has k-fingerprinting withstood the test of time? 73

4 Steganography guided by machine learning 76

4.1 Learning objectives . 78

4.2 Architecture . 81

4.3 Evaluation of the steganographic scheme 81

4.3.1 celebA dataset . 83

4.3.2 BOSS dataset . 84

4.3.3 Comparison with related work 85

4.3.4 Evaluating robust decryption 86

4.4 Discussion . 87

II Privacy and security in machine learning 89

5 Privacy in machine learning 91

5.1 Membership inference attacks against generative models 92

Contents 11

5.1.1 Roadmap . 93

5.2 Threat model . 94

5.3 White-box attack . 96

5.4 Black-box attack with no auxiliary knowledge 96

5.5 Black-box attack with limited auxiliary knowledge 98

5.6 Experimental setup . 99

5.7 Euclidean approaches . 102

5.8 White-box attack . 103

5.9 Black-box attack with no auxiliary knowledge 105

5.10 Black-box attack with limited auxiliary knowledge 106

5.11 Training performance . 110

5.12 Evaluation on Diabetic Retinopathy dataset 111

5.12.1 Summary of results . 112

5.13 Sensitivity to training set size and prediction ordering 113

5.14 Defences . 115

5.15 Cost of the attacks . 117

5.16 Summary . 118

6 Contamination attacks & mitigation in multi-party machine learning 120

6.1 Contamination attack . 123

6.2 Datasets, pre-processing & models 125

6.3 Contamination attack experiments 127

6.4 Defences . 129

6.5 Theoretical results . 130

6.6 Evaluation of adversarial training 132

6.7 Conclusion . 135

III Robustness in machine learning 137

7 Learning universal adversarial perturbations with generative models 139

7.1 Threat model . 140

Contents 12

7.2 Datasets . 140

7.3 Attack description . 141

7.4 Comparison with previous work 143

7.5 Transferability . 145

7.6 Generalisability . 147

7.7 Targeted attacks . 148

7.8 Importance of training set size . 150

7.9 Attacking adversarial training . 151

7.10 Summary . 152

8 Randomised smoothing: A provable defense against adversarial exam-

ples 153

8.1 Background on certified defenses 154

8.2 Certification via randomised smoothing 155

8.3 Certification guarantees against `2 perturbations for common diver-

gences . 158

8.4 Certification guarantees beyond `2 based perturbations 160

8.5 Discussion & experiments . 164

8.5.1 Comparison to related work 166

8.5.2 Robustness trade-offs between different `p norms. 166

8.5.3 Robustness guarantees as `p→∞. 168

8.5.4 How tight is the bound? 170

9 Conclusions 171

Bibliography 174

Appendices 202

A Robust & scalable website fingerprinting 202

A.1 Total feature importance . 202

A.2 Closed World Error Rates . 203

A.3 Attack on larger world size of DSNorm 205

Contents 13

B Membership inference attacks against generative models 208

B.1 Unsuccessful attacks . 208

B.2 Additional samples . 208

C Contamination attacks 213

C.1 Additional ADULT dataset experiments 213

C.2 Alternative mitigation strategies 214

C.3 Lemma 1 proof . 216

C.4 Multi-party attacker experiments on NEWS20 dataset 216

D Learning universal adversarial perturbations with generative models 218

D.1 A note on recent concurrent work 218

E Randomised smoothing: A provable defence against adversarial exam-

ples 225

E.1 Lower bounds for common divergences between multinomial dis-

tributions . 225

E.2 Visualisation of certified radius (for `2 perturbations) found by dα

and dχ2 . 233

E.3 Proof of proposition 2 . 233

E.4 KL divergence of the generalised Gaussian distribution 236

E.5 How does σ affect the certification radius? 238

E.6 Samples smoothed with different forms of generalised Gaussian noise239

E.7 An example of separability of optimal decision boundaries for dif-

ferent `p norms . 240

List of Figures

3.1 Accuracy of k-fingerprinting in a closed-world setting as the num-

ber of features is varied. 52

3.2 The 20 most important features. 53

3.3 Attack results for 1500 unmonitored training pages while varying

the number of fingerprints used for comparison, k, over 10 experi-

ments. 59

3.4 Accuracy of k-fingerprinting as we vary the number of trees in the

forest. 61

3.5 Attack accuracy on DSTor with Alexa monitored set. 65

3.6 Attack accuracy on DSTor with Tor hidden services monitored set. . 65

3.7 BDR for hidden services monitored set (above) and Alexa moni-

tored set (below). 66

3.8 Attack results for 2000 unmonitored training pages while varying

the number of fingerprints used for comparison, k, over 10 experi-

ments. 67

3.9 The fingerprints that lead to the most misclassifications and the cor-

rect classifications they contribute towards. Training on 2% of un-

monitored pages with k=3. 69

3.10 Rates for training on 1000 unmonitored pages, testing on 1000, and

comparison when training on the full 2000 unmonitored pages and

testing on the remaining 98000 unmonitored pages in DSTor, k=3. . 71

List of Figures 15

3.11 Rates for training on 8000 unmonitored pages, testing on 8000, and

comparison when training on the full 16000 unmonitored pages and

testing on the remaining 84000 unmonitored pages in DSTor, k=3. . 71

4.1 (a) Diagram of the training game. (b) How two parties, Carol and

David, use the scheme in practice: (1) Two parties establish a shared

key. (2) Carol trains the scheme on a set of images. Information

about model weights, architecture and the set of images used for

training is encrypted under the shared key and sent to David, who

decrypts to create a local copy of the models. (3) Carol then uses

the Alice model to embed a secret encrypted message, creating a

steganographic image. This is sent to David, who uses the Bob

model to decode the encrypted message and subsequently decrypt. . 78

4.2 Cover and steganographic images from the celebA dataset, with em-

bedding rates of 0.1bpp and 0.4bpp. 82

4.3 Results on celebA dataset at an embedding rate of 0.1bpp and 0.4bpp. 82

4.4 Results on BOSS dataset at an embedding rate of 0.1bpp. 85

5.1 High-level Outline of the White-Box Attack. 95

5.2 White-Box Prediction Method: The attacker inputs data-points to

the Discriminator D (1), extracts the output probabilities (2), and

sorts them (3). 96

5.3 High-level overview of the (a) black-box attack with no auxiliary

knowledge, and (b) Discriminative and (c) Generative black-box

attack with limited auxiliary attacker knowledge. 97

5.4 Accuracy of white-box attack with different datasets and training sets.101

5.5 Accuracy of black-box attack on different datasets and training sets. 103

5.6 Membership inference accuracy using a discriminative model,

when the attacker has knowledge of (i) 20% of the test set, or

(ii) 30% of both training and test sets. Random guess in (i) and (ii)

corresponds, respectively, to 14% and 12% accuracy. 108

List of Figures 16

5.7 Black-box attack results with 20% attacker training set knowledge

for DCGAN/DCGAN+VAE target models, trained on a random

10% subset of LFW, for different delays at which auxiliary knowl-

edge is introduced into the attacker model training. 108

5.8 Black-box results when the attacker has (a) knowledge of 20% of

the training set or (b) 30% of the training set and test set. The train-

ing set is a random 10% subset of the LFW or CIFAR-10 dataset,

and the target model is fixed as DCGAN. 109

5.9 Accuracy curves and samples at different stages of training on top

ten classes from the LFW dataset, showing a clear correlation be-

tween higher accuracy and better sample quality. 109

5.10 Accuracy curves of attacks against a DCGAN target model on the

Diabetic Retinopathy dataset. 111

5.11 Improvements over random guessing, in a black-box attack, as we

vary the size of the training set, and consider smaller subsets for

training set predictions. 112

5.12 Improvement over random guessing for Weight Normalisation and

Dropout defences against white-box attacks on models trained over

different number of classes with LFW. 116

5.13 Accuracy curve and samples for different privacy budgets on top ten

classes from the LFW dataset, showing a trade-off between samples

quality and privacy guarantees. 117

6.1 Contamination attack results as we vary the fraction of manipulated

data. Shaded and inner lines indicate the fluctuation and average

from several runs. 128

6.2 The effect of adversarial training on contamination attacks. 135

6.3 The effect of adversarial training on contamination attacks when an

attacker controls datasets of one to nine parties while contaminating

5% (left) and 10% (right) of the ADULT training set. 135

List of Figures 17

7.1 Overview of the attack. A random sample from a normal distribu-

tion is fed into a UAN. This outputs a perturbation, which is then

scaled and added to an image. The new image is then clipped and

fed into the target model. 140

7.2 UAPs generated by a UAN for ImageNet. 143

7.3 UAPs generated by a UAN for CIFAR-10. 144

7.4 CIFAR-10 `∞ targeted attack. Each figure shows the error rate as

the size of the adversarial perturbation is increased. This can be

interpreted as the success rate of fooling the target model into clas-

sifying any image in CIFAR-10 as the chosen class. 146

7.5 MSE and SSIM scores of UAPs throughout training a UAN against

VGG-19 for the ImageNet dataset. 146

7.6 Our `∞ attack against a DenseNet target model on the CIFAR-10

dataset, for every source/target pair. Displayed images were se-

lected at random. 148

7.7 Non-targeted `∞ attack against ResNet-101 on the CIFAR-10

dataset. We vary the number of samples the UAN is trained on,

and report results on the validation set. 150

7.8 A cat-and-mouse game of non-targeted `∞ attacks and adversarial

training for a VGG-19 target model on CIFAR-10. The upper green

points are the target model accuracies on adversarial images after

adversarial training, the lower red crosses are the target model ac-

curacies on adversarial images after the attack. The dotted line is

target model accuracy on source images. 150

8.1 Comparison of the certified radius against perturbations targeting

the `2 norm, for different divergences, as a function of the top pre-

dicted probability, p1, with σ = 1. 160

8.2 Certified accuracy against perturbations targeting the `1 and `2

norms. Given as a function of the certified radius, the radius around

which an input is robust. 161

List of Figures 18

8.3 Trade-off in adversarial robustness between different norms, as we

vary the noise scale, σ . We plot for a data dimensionality, d, equal

to 3× 32× 32 (the dimension for CIFAR-10 inputs), and mark the

region which gives valid certificates, assuming p̂1 = 0.99 and p̂2 =

1− p̂1. 165

8.4 Certified accuracy on 400 CIFAR-10 test set inputs and 400 Ima-

geNet test set inputs against perturbations targeting the `3, `4, and

`5 norms. Given as a function of the certified radius, the radius

around which an input is robust. Inputs were smoothed under a

generalised Gaussian distribution parameterised by G N (0,0.25, p). 167

8.5 The certified radius and size of adversarial perturbations for 400

CIFAR-10 test inputs using a PGD attack optimising the `2 norm.

As a guide to assess how close the certified radius is to adversarial

perturbation size, we also display 2× the certified radius of an input. 169

A.1 Feature importance score for all 150 features in order. The table

gives the description for the 20 least important features. 202

A.2 Confusion matrix for closed-world attack on Tor using DSNorm. F1

score = 0.913, Accuracy: 0.915, 550 items. 203

A.3 The global misclassification rate when considering different num-

bers of monitored pages from the Wang et al. [248] dataset. The

monitored pages are ordered in terms of smallest misclassification

rate to largest. 204

A.4 The global misclassification rate when considering different num-

bers of monitored pages from DSNorm. The monitored pages are

ordered in terms of smallest misclassification rate to largest. 205

A.5 Attack accuracy for 17,000 unmonitored web pages. Each line rep-

resents a different number of unmonitored web pages that were

trained, while varying k, the number of fingerprints used for classi-

fication. 206

List of Figures 19

A.6 Attack out-of-bag score while varying the number of monitored

training pages. 206

B.1 Euclidean attack results for DCGAN target model trained on a ran-

dom 10% subset of CIFAR-10 and LFW. 209

B.2 Black-box attack results with 10% auxiliary attacker training set

knowledge used to train a DCGAN shadow model for DCGAN tar-

get model trained on a random 10% subset of LFW. 209

B.3 Various samples from the real dataset, target model, and black-box

attack using the DCGAN target model on LFW, top ten classes. . . . 210

B.4 Real and generated diabetic retinopathy dataset samples. 210

B.5 Real samples. 210

B.6 Samples generated by DCGAN target model. 211

B.7 Samples generated by DCGAN+VAE target model. 211

B.8 Samples generated by BEGAN target model on LFW, top ten classes.211

B.9 Samples generated by BEGAN target model on LFW, random 10%

subset. 211

B.10 Samples generated by attacker model trained on samples from DC-

GAN target model on (a) LFW, top ten classes and (b) LFW, random

10% subset. 212

C.2 Validation precision for each class label for the ADULT dataset. . . . 214

D.1 Selection of successful adversarial examples (with target model

confidence) from non-targeted `∞ attacks on ImageNet. From left

to right: Source image, UAP, adversarial image. 219

D.2 MSE and SSIM scores of UAPs throughout training a UAN against

VGG-19 for the CIFAR-10 dataset. 220

D.3 Our `∞ attack against a VGG-19 target model on the CIFAR-10

dataset, for every source/target pair. Displayed images were se-

lected at random. 220

List of Figures 20

D.4 Our `∞ attack against a ResNet-101 target model on the CIFAR-10

dataset, for every source/target pair. Displayed images were se-

lected at random. 221

D.5 Selection of successful adversarial examples (with target model

confidence) for targeted `∞ attacks on ImageNet. The target class

was randomly chosen to be Golf ball. From left to right: Source

image, UAP, adversarial image. 222

D.6 Selection of successful adversarial examples (with target model

confidence) for targeted `∞ attacks on ImageNet. The target class

was randomly chosen to be Broccoli. From left to right: Source

image, UAP, adversarial image. 223

D.7 Selection of successful adversarial examples (with target model

confidence) for targeted `∞ attacks on ImageNet. The target class

was randomly chosen to be Stone wall. From left to right: Source

image, UAP, adversarial image. 224

E.1 Comparison of the certified radius against perturbations targeting

the `2 norm, for Rényi divergence (dα) and the chi-squared distance

(dχ2), as a function of the top predicted probability, p1, with σ = 1. 233

E.2 Certified accuracy against perturbations targeting the `2 norm for

CIFAR-10. Given as a function of the certified radius, the radius

around which an input is robust. 238

E.3 Two randomly chosen images from ImageNet (Top) and CIFAR-10

(Bottom). We give examples of noise from a generalised Gaus-

sian distribution with s = 1,2, and 3, and the maximum perturba-

tion size, ε , for which the classifier is certified to predict the correct

class under `1, `2, and `3 based attacks. 239

List of Tables

3.1 Attack comparison under various website fingerprinting defences. . 58

3.2 k-fingerprinting results for k=3 while varying the number of unmon-

itored training pages. 59

3.3 Attack results on top Alexa sites for k=2 while varying the number

of unmonitored training pages. 62

3.4 Attack results on Tor hidden services for k=2 while varying the

number of unmonitored training pages. 63

3.5 Attack results with packet size features for a varying number of

unmonitored training pages. 66

3.6 Attack results without packet size features for a varying number of

unmonitored training pages. 67

4.1 Accuracy of distinguishing between cover and steganographic im-

ages for the steganalysers, Eve and ATS, on the BOSS and celebA

datasets at an embedding rate of 0.4bpp. 87

5.1 Accuracy of the best attacks on random 10% training set for LFW

and CIFAR-10, and for diabetic retinopathy (DR). 113

6.1 Left: Attacker’s procedure for contaminating b records from its dataset

Dtrain. Right: Server’s code for training a multi-party model f∗ and releas-

ing to each party either f∗ or its local model fi. 122

7.1 Details of UAN model architecture and hyperparameters. 143

List of Tables 22

7.2 Comparison of error rates for UAN against Moosavi-Dezfooli et al.

[173] and Mopuri et al. [174]. Note that the Mopuri et al. [174]

method for crafting UAPs is only optimised under the `∞ metric.

We set ζp = 0.04, this is equivalent to ε = 2000 for an `2 attack and

ε = 10 for an `∞ attack. 144

7.3 Error rates for non-targeted CIFAR-10 attack, under the `∞ met-

ric. UAPs are constructed using row models and tested against pre-

trained column models. 145

7.4 Error rates for `∞ attacks on CIFAR-10. We compare between a

UAN trained on fixed noise vectors and a UAN trained on non-fixed

noise vectors. 148

8.1 `2 certified radius when using different divergences. 155

8.2 Examples of the KL divergence between G N (µ1,σ ,s) and

G N (µ2,σ ,s) for small s. 163

D.1 Error rates for non-targeted `∞ attacks on ImageNet. 219

Chapter 1

Introduction

Machine Learning models are increasingly relied upon for safety and business crit-

ical tasks such as in medicine [182, 215, 259], robotics and automotive [209, 221,

250], security [29, 139, 233] and financial [127, 150, 232] applications. However in

environments and problems that necessitate secure solutions, questions have arisen

around the pertinence of applying machine learning [188]. The success of a ma-

chine learning algorithm lies in its ability to generalise to unseen data. The standard

assumption made in machine learning is that the data the algorithm learns on, is

from the same distribution as any data it may observe in the future. The occurrence

of an inconsistency in the distribution of data is called concept drift (also referred

to as covariate shift or data nonstationarity), and is a real concern in production sys-

tems that cannot tolerate mistakes [51, 77]. Errors can also be the consequence of

other underlying issues. If the machine learning algorithm does not receive a suf-

ficient amount of data during training, it may be unable to generalise to new data;

this often referred to as overfitting, where the algorithm is only accurate on the data

it has observed when learning. Underparameterised, or excessively simple algo-

rithms, can also lead to underfitting, where the algorithm cannot adequately capture

the underlying structure of the data. For example, a linear model cannot adequately

fit a non-linear function, and so using such a model will lead to poor performance.

If not addressed, all of these concerns can have devastating consequences on

the accuracy of an algorithm, rendering it unsuitable for use in production. Threat

modelling and a clear evaluation of the requirements of machine learning in pro-

1.1. Thesis Contributions 24

duction can alleviate these problems, however, there are additionally security vul-

nerabilities that appear to be inherent to the set of machine learning algorithms that

are commonly used today. Firstly, errors in prediction can be intentionally induced

through data poisoning, where an attacker can manipulate the data on which the

algorithm learns. By replacing benign data with malicious data, an attacker can

shift the underlying learned distribution. For example, clustering is often used in

malware detection, where the goal is to distinguish between clusters of benign and

malicious software. If an attacker can mislabel malware as benign and give this

to the algorithm to learn on, this will reduce the efficacy of the algorithm when it

is launched in production [21, 22, 41]. Secondly, even if an algorithm learns on

entirely uncorrupted data, errors can be induced through corrupted data at predic-

tion time. Adversarial perturbations can be added to benign inputs, that appear to

be non-malicious to an oracle classifier, such as a human in vision tasks, but cause

catastrophic failures in the algorithm [227].

In this dissertation, we discuss all of these failure cases. Our broad goal is to

answer the following research questions:

1. Can machine learning be applied to well established problems in infor-

mation security, and reach parity or improve upon standard techniques?

2. What are the inherent risks and dangers of using machine learning in

information security? Are these risks fundamental in nature, or due

to the threat model, problem assumptions, and implementation of the

algorithms?

1.1 Thesis Contributions
This work presented in this dissertation make the following contributions to the

fields of information security and machine learning:

1. In part I, we firstly present a website fingerprinting attack that leverages well

established machine learning algorithms to design robust fingerprints of net-

work traffic that are used to distinguish encrypted website traffic [97]. Sec-

1.2. Thesis Structure 25

ondly, we design a robust steganographic scheme for images, based on ad-

versarial training of neural networks [83, 98]. The scheme approaches parity

with established techniques in this space.

2. In part II, we propose attacks on generative machine learning models (i.e.

machine learning models that attempt to learn the joint distribution of data and

label p(x,y) as opposed to discriminative models that learn the conditional

p(y|x).) that are designed to uncover information about the data used to train

the model [102]. We also introduce a simple attack in the multi-party machine

learning setting, that is designed to reduce to utility of a model. We show that

a malicious party can introduce corrupted data into the pool of data that the

model trains on, and consequently leads to unwanted behaviour when the

model is used. Furthermore, we show this behaviour is difficult to observe

using standard metrics such as validation accuracy on a hold-out dataset. We

subsequently investigate defences to such an attack [100].

3. In part III, we first introduce a new method to design a universal adversarial

perturbation. This perturbation can be applied to any data input to cause a

misclassification by a machine learning model trained on similar data, with

high likelihood [99]. Secondly, we introduce a defence to the general problem

of adversarial examples in machine learning. Given a classifier, we show

how to find a ball around an input with radius ε with respect to an `p norm,

such that the classifier is guaranteed to return the same decision for any input

within this ball with high likelihood.

1.2 Thesis Structure
The remainder of this dissertation is organised as follows. Chapter 2 gives an

overview of the main research topics and related work that are used and referenced

throughout this dissertation. Specifically, we survey research on website fingerprint-

ing, steganography, and private and robust machine learning. Part I covers work on

how machine learning can be applied to information security problems, designing

a website fingerprinting attack, and designing a data hiding scheme. Part II details

1.3. Publications & contributions in joint work 26

work on two problems of secure and private machine learning, membership infer-

ence attacks on generative machine learning models and contamination attacks in

multi-party machine learning. Part III presents work on robust machine learning;

we study the machine learning phenomenon commonly referred to as adversar-

ial examples, in terms of designing effective attacks, and designing defences that

provide robustness guarantees. Finally, Chapter 9 discusses and summarises the

contributions presented in this dissertation.

1.3 Publications & contributions in joint work
The work presented in this dissertation has been published in several venues. Part I

contains research from the following published works:

• ‘k-fingerprinting: A robust scalable website fingerprinting technique’ was

published in USENIX Security Symposium 2016 [97].

• ‘Generating steganographic images via adversarial training’ was publish in

Advances in Neural Information Processing Systems 2017 [98].

These works were both co-authored with my supervisor, George Danezis.

Part II contains findings from:

• ‘LOGAN: evaluating privacy leakage of generative models using generative

adversarial networks’ was published in Proceedings on Privacy Enhancing

Technologies 2019 [102]. This work was jointly lead by myself and Luca

Melis, with co-authors Emiliano De Cristofaro and George Danezis. Both

Luca Melis and I, contributed equally to the attack and experimental design,

while I lead experimental evaluation on the CIFAR-10 and Diabetic Retinopa-

thy datasets.

• ‘Contamination attacks and mitigation in multi-party machine learning’ was

published in Advances in Neural Information Processing Systems 2018 [100].

This work was co-authored by my internship supervisor at Microsoft Re-

search, Olya Ohrimenko.

1.4. Further contributions 27

Part II contains the following publish works:

• ‘Learning universal adversarial perturbations with generative models’ was

published in IEEE Security and Privacy Workshop on Deep Learning and

Security 2018 [99]. I was the principal investigator and my co-author was

George Danezis.

• ‘Extensions and limitations of randomised smoothing for robustness guaran-

tees’ was published in CVPR 2020 Workshop on Adversarial Machine Learn-

ing in Computer Vision [95] and I was the sole investigator.

1.4 Further contributions
In addition to the work presented in this dissertation, we have made further con-

tributions in several areas in information security and machine learning. On the

information security side we have made the following contributions:

1. Research on the Tor anonymity network routing protocol was presented in

Proceedings on Privacy Enhancing Technologies 2015 in collaboration with

George Danezis [96].

2. End-to-end traffic analysis attacks were presented in the NDSS Workshop

track 2016 [93].

3. A new anonymous notification service was presented in Proceedings of

the Workshop on Privacy in the Electronic Society 2017 in collabora-

tion with Ania Piotrowska, Nethanel Gelernter, George Danezis, and Amir

Herzberg [199].

4. Work on intersection attacks in anonymous communication systems was pre-

sented in Proceedings of the Workshop on Privacy in the Electronic Society

2016 in collaboration with Carmela Troncoso and George Danezis [101].

5. A new anonymous communication network was published in USENIX Se-

curity Symposium 2017 in collaboration with Ania Piotrowska, Tariq Elahi,

Sebastian Meiser, and George Danezis [198].

1.5. Experience 28

6. Application layer defences to website fingerprinting attacks were published in

Proceedings on Privacy Enhancing Technologies 2017 in collaboration with

Giovanni Cherubin and Marc Juarez [46].

On the machine learning side, we published work on:

1. Designing defences to visible adversarial perturbations in the Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Work-

shops 2018 [94].

2. Provable defences to adversarial examples in International Conference on

Learning Representation 2020 in collaboration with Krishnamurthy (Dj) Dvi-

jotham, Borja Balle, Zico Kolter, Chongli Qin, Andras Gyorgy, Kai Xiao,

Sven Gowal, and Pushmeet Kohli [62].

3. Designing watermarking schemes, done in collaboration with Krishnamurthy

(Dj) Dvijotham, Yutian Chen, Sander Dieleman, Pushmeet Kohli, and Nor-

man Casagrande [103].

4. Evading classifiers in discrete domains with provable optimality guarantees,

done in collaboration with Bogdan Kulynych, Nikita Samarin, and Carmela

Troncoso [134].

1.5 Experience
During my doctoral studies I was fortunate enough to be awarded a Google PhD

Fellowship, and I spent time at the following institutions:

• From March to June, 2017, I interned with UK Government Digital Ser-

vices, developing and implementing a privacy-preserving machine learning

pipeline to aid threat analysis and improve Transaction Monitoring (TxM) on

the .gov.uk verify system [2].

• From August to October, 2017, I interned at the US Naval Research Labora-

tory under Paul Syverson and Aaron Johnson, developing a project on using

1.5. Experience 29

machine learning techniques to perform privacy-preserving experiments on

live traffic analysis attacks on Tor.

• From February to May, 2018, I interned with Olya Ohrimenko at Microsoft

Research, where we researched attacks in multi-party machine learning.

• From July to September, 2018, I interned with Ian Fischer at Google Re-

search. We developed new techniques for unsupervised style transfer, and

probabilistic conditioning methods for generative models.

• From May to September, 2019, I interned with Pushmeet Kohli at Google

DeepMind. We developed zero-bit watermarking techniques that resist vari-

ous distortion attacks.

Chapter 2

Background

In this chapter, we cover background material necessary to understand and contex-

tualise research contributions made within this thesis. In section 2.1, we survey

machine learning techniques used throughout subsequent chapters. Following this,

in section 2.2, section 2.3, and section 2.4, we give an overview of sub-fields in-

tersecting machine learning, privacy, and security, that are the topics studied in the

remaining chapters.

2.1 Machine learning

2.1.1 Random forests

Random forests are a classification technique consisting of an ensemble of decision

trees, taking a consensus vote of how to classify a new object. They have been

shown to perform well in classification, regression [28, 148] and anomaly detection

[153]. Each tree in the forest is trained using labelled objects represented as feature

vectors of a fixed size. Training includes some randomness to prevent overfitting;

this is referred to as bootstrap aggregation, or bagging, where the training set for

each tree is sampled from the entire available training set with replacement. We use

random forests in chapter 3 to develop a robust website fingerprinting attack.

2.1.2 Neural networks

Neural networks and stochastic gradient descent (SGD) are the core work horses

behind the “deep learning revolution” [82]. Given access to data, X , with label set

2.1. Machine learning 31

Y , the goal of supervised machine learning is to learn the conditional distribution

p(Y |X). Neural networks define a parameterised function fw : X → Y that when

trained with SGD attempt to approximate the conditional p(Y |X). A neural net-

work is a composition of one or layers of neurons: an operation that takes it’s input,

multiplies it by a weight vector and then passes the sum through an activation func-

tion to the other neurons. Given an input x, to layer i, the input to layer i+1 is given

by

σ(wT
i · x+bi)

where wi, a model weights that govern the strength of a connection between two

neurons, bi is a bias vector, and σ is a non-linear activation function. Popular

choices of non-linear activation functions are ReLU(x) = max(0, x) and the sig-

moid function. One can interpret the final layer as a probability vector by applying

the softmax function to outputs (sometimes referred to as logits). Given an in-

put x, logits fw(x), where fw(x)k is the logit value of the kth class, and true label

y, a loss function is defined that outputs a scalar based on how strongly an input

would be assigned the true class label. The most common loss function to use in

classification-based supervised neural network training is the log-loss defined by

−y log(fw(x)y). Model weights are then updated based on ∂−y log(fw(x)y)
∂w ; averag-

ing this loss over batches of inputs, computing the derivative with respect to model

weights, and updating these weights in the opposite direction to this derivative is

what is known as SGD and has produced state-of-the-art results on classification

problems in a large number of fields (cf. Goodfellow et al. [82]).

2.1.3 Generative models

Given a supervised learning task, and given the features x of a data-point and the

corresponding label y, discriminative models attempt to predict y on future x by

learning a discriminative function f from (x,y); the function takes in input x and

outputs the most likely label y. By contrast, generative models describe how data

2.1. Machine learning 32

is generated by learning the joint probability distribution of p(X ,Y). Generative

models based on deep neural networks, such as Generative Adversarial Networks

(GAN) [81] (introduced below) and Variational Auto-encoders (VAE) [130] are

considered the state-of-the-art for producing samples of realistic images [124].

Generative Adversarial Networks (GANs) [81] are neural networks trained in an

adversarial manner to generate data mimicking some distribution. One network

takes noise as input and generates data samples – and so is called the generator.

The other model, the discriminator, receives samples from both the generator and

the training data, and has to be able to distinguish between the two sources. The

two networks play a continuous game where the generator is learning to produce

more and more realistic samples, and the discriminator is learning to get better and

better at distinguishing generated data from real data.

More formally, to learn the generator’s output distribution over data-points x,

we define a prior on input noise variables pz(z), then represent a mapping to data

space as G(z;θg), where G is a generative deep neural network with parameters θg.

We also define a discriminator D(x;θd) that outputs D(x) ∈ [0,1], representing the

probability that x was taken from the training set rather than from the generator G.

D is trained to maximise the probability of assigning the correct label to both real

training examples and fake samples from G. We simultaneously train G to minimise

log(1−D(G(z))). The final optimisation problem solved by the two networks D and

G follows a two-player minimax game as:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

First, gradients of D are computed to discriminate fake samples from training data,

then G is updated to generate samples that are more likely to be classified as data.

GANs represent a zero-sum game between two networks, while using first-order

optimisation techniques often fail to converge to a stable solution, if G and D have

enough capacity and a Nash equilibrium is achieved, they will reach a point at which

both cannot improve [81].

Work by Lucic et al. [158] showed that, despite a large number of proposed

2.1. Machine learning 33

changes to the original GAN model [12, 19, 87] it is still difficult to assess if one per-

forms better than another. They also show that the original GAN performs equally

well against other state-of-the-art GANs, concluding that any improvements are due

to computational budgets and hyper-parameter tuning, rather than scientific break-

throughs.

Variational Auto-encoders (VAE) [130] VAEs [130] consist of two neural networks

(an encoder and a decoder) and a loss function. The encoder compresses data into

a latent space z while the decoder reconstructs the data given the hidden represen-

tation. Rather than attempting to maximise the likelihood, one could maximise a

lower bound of the likelihood, thus, if the lower bound increases to a given level,

the likelihood must be at least as high. More formally, let x be a random vector

of observed variables, which are either discrete or continuous. Let z be a random

vector of latent continuous variables.

The probability distribution between x and z assumes the form pθ (x,z) =

pθ (z)pθ (x | z), where θ indicates that p is parameterised by θ . Also, let qφ (z | x) be

a recognition model whose goal is to approximate the true and intractable posterior

distribution pθ (z | x). We can then define a lower-bound on the log-likelihood of

x as follows: L (x) = −DKL(qφ (z | x) || pθ (z))+Eqφ (z|x)[log pθ (x | z)]. The first

term pushes qφ (z | x) to be similar to pθ (z) ensuring that, while training, the VAE

learns a decoder that, at generation time, will be able to process samples from the

prior distribution such they resemble the training data. The second term can be seen

as a form of reconstruction cost, and needs to be approximated by sampling from

qφ (z | x). In VAEs, the gradient signal is propagated through the sampling process

and through qφ (z | x), using the so-called re-parameterisation trick. This is done

by making z a deterministic function of φ and some noise ε , i.e., z = f (φ ,ε). For

instance, sampling from a normal distribution can be done as z = µ +σε , where

ε ∼ N (0, I). VAEs are trained using stochastic gradient descent to optimise the

loss w.r.t. the parameters of the encoder and decoder θ and φ . For an in-depth

discussion of VAEs, we refer the reader to Doersch [58].

Larsen et al. [140] combine VAEs and GANs into an unsupervised genera-

2.2. Security of machine learning 34

tive model that simultaneously learns to encode and generate new samples, which

contain more details, sampled from the training data-points.

2.2 Security of machine learning

2.2.1 Membership inference attacks

In chapter 5, we study membership inference attacks against generative models.

That is, given access to a generative model and an individual data record, can an

attacker tell if a specific record was used to train the model? Membership inference

on generative models is likely to be more challenging than on discriminative ones

(see, e.g., [57]). The latter attempt to predict a label given a data input, and an

attacker can use the confidence the model places on an input belonging to a label to

perform the attack. In generative models, there is no such signal, thus, it is difficult

to both detect overfitting and infer membership.

Specific to membership inference are attacks against supervised models

by Shokri et al. [218]. Their approach exploits differences in the model’s response

to inputs that were or were not seen during training. For each class of the targeted

black-box model, they train a shadow model, with the same machine learning tech-

nique. Whereas, our approach targets generative models and relies on GANs to

provide a general framework for measuring the information leakage. Performing

a membership inference attack amounts to detecting overfitting in generative mod-

els, which is regarded as one of the most important research problems in machine

learning [255].

Additional membership inference attacks focus on genomic research stud-

ies [16, 113], whereby an attacker aims to infer the presence of a particular indi-

vidual’s data within an aggregate genomic dataset, or aggregate locations [202].

Tangentially related are model inversion attacks [74], where an adversary ex-

tracts training data from outputted model predictions. Fredrikson et al. [73] show

how an attacker can rely on outputs from a model to infer sensitive features used

as inputs to the model itself: given the model and some demographic information

about a patient whose records are used for training, an attacker predicts sensitive at-

2.2. Security of machine learning 35

tributes of the patient. However, the attack does not generalise on inputs not seen at

training time, thus, the attacker relies on statistical inference about the total popula-

tion [166]. The record extracted by the attacker is not an actual training record, but

an average representation of the inputs that are classified in a particular class. Long

et al. [155] and Yeom et al. [261] investigate connections between membership

inference and model inversion attacks against machine learning classifiers. In par-

ticular, Yeom et al. [261] assumes that the adversary knows the distribution from

which the training set was drawn and its size, and that the adversary colludes with

the training algorithm. Their attacks are close in performance to Shokri et al. [218],

and show that, besides overfitting, the influence of target attributes on model’s out-

puts also correlates with successful attacks. Then, Tramèr et al. [233] present a

model extraction attack to infer the parameters from a trained classifier, however, it

only applies to scenarios where the attacker has access to the probabilities returned

for each class.

Song et al. [222] develop attacks that force a machine learning model to mem-

orise the training data in such a way that an adversary can later extract training

inputs with only black-box access to the model. Carlini et al. [38] show that deep

learning-based language models trained on text data can unintentionally memorise

specific training inputs, which can then be extracted with black-box access, how-

ever, demonstrating it only for simple sequences of digits artificially introduced into

the text. Ateniese et al. [13] present a few attacks against SVM and HMM classi-

fiers aimed to reconstruct properties about training sets, by exploiting knowledge of

model parameters.

Recent work [11, 109, 167] present inference attacks against distributed deep

learning [164]. In particular, Aono et al. [11] target the collaborative privacy-

preserving deep learning protocol of Shokri and Shmatikov [217], and show that

an honest-but-curious server can partially recover participants’ data points from the

shared gradient updates. However, they operate on a simplified setting where the

batch consists of a single data point. Also, Hitaj et al. [109] introduce a white-box

attack against Shokri and Shmatikov [217], which relies on GAN models to gener-

2.2. Security of machine learning 36

ate valid samples of a particular class from a targeted private training set, however,

it cannot be extended to black-box scenarios. Furthermore, evaluation of the at-

tack is limited to the MNIST dataset of handwritten digits where all samples in a

class look very similar, and the AT&T dataset of Faces, which consists of only 400

grayscale images of faces. By contrast, our evaluation in chapter 5 is performed on

13,233, 60,000, and 88,702 images for the LFW, CIFAR-10, and Diabetic Retinopa-

thy datasets, respectively.

Finally, Truex et al. [236] show how membership inference attacks are data-

driven and largely transferable, while Melis et al. [167] demonstrate how an ad-

versarial participant can successfully perform membership inference in distributed

learning [164, 217], as well as inferring sensitive properties that hold only for a

subset of the participants’ training data.

2.2.2 Membership inference defences

Privacy-enhancing tools based on secure multiparty computation and homomorphic

encryption have been proposed to securely train supervised machine learning mod-

els, such as decision trees [151], linear regressors [60], and neural networks [26, 59].

However, these mechanisms do not prevent an attacker from running inference at-

tacks on the privately trained models as the final parameters are left unchanged.

Differential Privacy [63] can be used to mitigate inference attacks, and it has

been widely applied to various machine learning models [8, 137, 190, 217, 242,

253]. Shokri and Shmatikov [217] support distributed training of deep learning net-

works in a privacy-preserving way, where independent entities collaboratively build

a model without sharing their training data, but selectively share subsets of noisy

model parameters during training. Abadi et al. [8] show how to train deep neural

networks (DNNs) with non-convex objectives with an acceptable privacy budget,

while Rahman et al. [205] show that the Abadi et al. [8] proposal partially mitigates

the effects of the Shokri et al. [218] membership inference attack.

Papernot et al. [190, 192] combine multiple models trained with disjoint

datasets without exposing the models, while, Papernot et al. [189] present “defen-

sive distillation” to reduce the effectiveness of adversarial samples on DNNs.

2.2. Security of machine learning 37

Then, Beaulieu-Jones et al. [17] apply the noisy gradient descent from Abadi

et al. [8] to train the discriminator of a Generative Adversarial Network with dif-

ferential privacy. The resulting model is then used to generate synthetic subjects

based on the population of clinical trial data. Finally, Jia and Gong [120] use adver-

sarial machine learning to defend against attribute inference attacks, in the setting

where an attacker trains a classifier to infer a target user’s sensitive attributes from

their public data, while Nasr et al. [178] leverage adversarial regularisers to design a

privacy-preserving training mechanism with provable protections against member-

ship inference attacks against discriminative models.

2.2.3 Multi-party machine learning

Multi-party machine learning allows several parties (e.g., hospitals, banks, govern-

ment agencies) to combine their datasets and run algorithms on their joint data in

order to get insights that may not be present in their individual datasets. As there

could be competitive and regulatory restrictions as well as privacy concerns about

sharing datasets, there has been extensive research on developing techniques to per-

form secure multi-party machine learning. The main guarantee of secure multi-

party computation (MPC) is to allow each party to obtain only the output of their

mutually agreed-upon computation without seeing each others data nor trusting a

third-party to combine their data for them.

Secure MPC can be enabled with cryptographic techniques [26, 79, 107, 171,

180], and systems based on trusted processors such as Intel SGX [10, 24, 183]. In

the latter, a (untrusted) cloud service collects encrypted data from multiple parties

who decide on an algorithm and access control policies of the model, and runs

the code inside of a Trusted Execution Environment (TEE) protected by hardware

guarantees of the trusted processor. The data is decrypted with the TEE and stays

encrypted in memory. This ensures that nothing except the output is revealed to

the parties, while no one else (including the cloud provider) learns neither the data

nor the output, and any tampering with the data during the computation is detected.

Additionally, it allows parties to outsource potentially expensive computation and

guarantees that they do not see model parameters during training that have to be

2.3. Website fingerprinting 38

shared, for example, in distributed settings [91, 163, 194, 206, 217].

Multi-party machine learning raises concerns regarding what parties can learn

about each others data through model outputs as well as how much a malicious

party can influence training. The number of parties and how much data each one of

them contributes influences the extent of their malicious behaviour. For example,

the influence of each party is limited in the case where a model is trained from

hundreds or thousands of parties (e.g., users of an email service) where each party

owns a small portion of training data. As a result, differential privacy guarantees at a

per-party level have shown to be successful [8, 165]. Indeed, such techniques make

an explicit assumption that adding or removing one party’s data does not change the

output significantly.

2.2.4 Adversarial examples

Szegedy et al. [227] casts the construction of adversarial examples as an optimi-

sation problem. Given a target model, f , and a source input x, which is classified

correctly by f as c, the attacker aims to find a perturbation, δ , such that x+ δ is

perceptually identical to x but f (x+δ) 6= c. The attacker tries to minimise the dis-

tance between the source input and adversarial input under an appropriate measure.

The problem space can be framed to find a specific misclassification in a targeted

attack, or any misclassification, referred to as a non-targeted attack.

In the absence of a distance measure that accurately captures the perceptual

differences between a source and adversarial input, the `p metric is commonly

used [227]. Related work commonly uses the `2 and `∞ metrics [34, 35, 54, 105,

132, 136, 173, 172, 264]. The `2 metric measures the Euclidean distance between

two inputs, while the `∞ metric measures the largest pixel-wise difference between

two inputs (Chebyshev distance).

2.3 Website fingerprinting
Traditional encryption obscures only the content of communications and does not

hide metadata such as the size and direction of traffic over time. Anonymous com-

munication systems obscure both content and metadata, preventing a passive at-

2.4. Steganography 39

tacker from observing the source or destination of communication. Anonymous

communications tools, such as Tor [57], route traffic through relays to hide its ulti-

mate destination. Tor is designed to be a low-latency system to support interactive

activities such as instant messaging and web browsing, and does not significantly

alter the shape of network traffic. This allows an attacker to exploit information

leaked via the order, timing and volume of resources requested from a website. As

a result, many works have shown that website fingerprinting attacks are possible

even when a client is browsing with encryption or using an anonymity tool such as

Tor [31, 86, 138, 185, 216, 247]. Website fingerprinting is commonly formulated as

a classification problem. An attacker wishes to know whether a client browses one

of n web pages. The attacker first collects many examples of traffic traces from each

of the n web pages by performing web-requests through the protection mechanism

under attack; features are extracted and a machine learning algorithm is trained to

classify the website using those features. When a client browses a web page, the

attacker passively collects the traffic, passes it in to their classifier and checks if

the client visited one of the n web pages. In the literature this is referred to as the

closed-world setting – a client is restricted to browse a limited number of web pages,

monitored by the attacker. However, the closed-world model has been criticised for

being unrealistic [121, 196] since a client is unlikely to adhere to such a constraint.

The open-world setting attempts to model a more realistic setting where the attacker

monitors a small number of web pages, but allows a client to additionally browse to

a large world size of unmonitored web pages [186, 244].

2.4 Steganography

Steganography research can be split into two subfields: the construction of stegano-

graphic algorithms and the study of steganalysis. Research into steganographic al-

gorithms concentrates on finding methods to embed undetected information within

a medium while minimising the perturbations of the added information within that

medium. Steganalysis research seeks to discover methods to detect such perturba-

tions. Steganalysis is a binary classification task: discovering whether or not secret

2.4. Steganography 40

information is present with a message, and so machine learning classifiers are com-

monly used in this field.

Least significant bit (LSB) [169] is a simple steganographic algorithm used

to embed a secret message within a cover image. Each pixel in an image is made

up of three RGB colour channels (or one for grayscale images), and each colour

channel is represented by a number of bits. For example, it is common to represent

a pixel in a grayscale image with an 8-bit binary sequence. The LSB technique

then replaces the least significant bits of the cover image by the bits of the secret

message. By only manipulating the least significant bits of the cover image, the

variation in colour of the original image is minimised. However, information from

the original image is always lost when using the LSB technique, and is known to be

vulnerable to steganalysis [75].

Most steganographic schemes for images use a distortion function that forces

the embedding process to be localised to parts of the image that are considered

noisy. Steganographic algorithms attempt to minimise the distortion function be-

tween a cover image, C, and a steganographic image, C′,

d(C,C′) = f (C,C′) · |C−C′|

It is the choice of the function f , the cost of distorting a pixel, which changes

for different steganographic algorithms. State-of-the-art embedding algorithm,

HUGO [197], is considered to be one of the most secure steganographic tech-

niques [39]. It defines a distortion function domain by assigning costs to pixels

based on the effect of embedding some information within a pixel, the space of

pixels is condensed into a feature space using a weighted norm function. WOW

(Wavelet Obtained Weights) [111] is another advanced steganographic method that

embeds information into a cover image according to regions of complexity. If a

region of an image is more textually complex than another, the more pixel values

within that region will be modified. Finally, S-UNIWARD [112] proposes a univer-

sal distortion function that is agnostic to the embedding domain. However, the end

goal is much the same: to minimise this distortion function, and embed information

2.4. Steganography 41

in noisy regions or complex textures, avoiding smooth regions of the cover images.

In terms of steganalysis, we measure our work in chapter 4 against the ATS [145]

steganalysis tool. ATS uses labelled data to build artificial training sets of cover and

steganographic images, and is trained using an SVM with a Gaussian kernel. The

authors show that this technique outperforms other popular steganalysis tools.

Part I

Machine learning applications to

information security

42

43

In chapter 2, we introduced two problems in information security; website

fingerprinting and the problem of designing a secure steganographic algorithm for

digital media. We saw that machine learning has been extensively applied to the

problem of website fingerprinting. Indeed, the challenge of website fingerprinting

is to design a function that accepts a network traffic flow as input and a website

label as output, and therefore standard classification techniques in machine learning

are suited to such a problem. While machine learning techniques have been applied

to the problem of steganalysis, there is a dearth of research into how machine learn-

ing techniques can be used for steganography. This is perhaps surprising, since the

success of both steganography and steganalysis depend on the ability of the tech-

nique to model the cover medium, a task that is again suited to machine learning

techniques. In chapter 3 and chapter 4, we show how machine learning can be used

to tackle both of these problems.

Chapter 3

Robust & scalable website

fingerprinting

Website fingerprinting has been studied extensively in previous works. Early work

by Wagner and Schneier [241], and Cheng and Avnur [45] exposed the possibility

that encrypted HTTP GET requests may leak information about the URL, conduct-

ing preliminary experiments on a small number of websites. They asked clients in

a lab setting to browse a website for 5-10 minutes, pausing two seconds between

page loading. With caching disabled they were able to correctly identify 88 pages

out of 92 using simple packet features. Early website fingerprinting defences were

usually designed to safeguard against highly specific attacks. In 2009, Wright et al.

[252] designed ‘traffic morphing’ that allowed a client to shape their traffic to look

as if it was generated from a different website. They were able to show that this de-

fence does well at defeating early website fingerprinting attacks that heavily relied

on exploiting unique packet length features [149, 226].

A simple defence instantiated by Tor is to pad all packets to a fixed-size cells

of 512 bytes. Tor also implemented randomised ordering of HTTP pipelines [195]

in response to the attack by Panchenko et al. [185], who used packet ordering fea-

tures to train an SVM classifier. This attack on Tor achieved an accuracy of 55%,

compared to a previous attack that did not use such fine grained features achieving

3% accuracy on the same dataset using a Naive-Bayes classifier [106]. Other de-

fences such as the decoy defence [185] loads a camouflage website in parallel to

45

a legitimate website, adding a layer of background noise. They were able to show

using this defence attack accuracy of the SVM again dropped down to 3%.

Luo et al. [159] designed the HTTPOS fingerprinting defence at the application

layer. HTTPOS acts as a proxy accepting HTTP requests and obfuscating them

before allowing them to be sent. It modifies network features on the TCP and HTTP

layer such as packet size, packet time and payload size, along with using HTTP

pipelining to obfuscate the number of outgoing packets. They showed that HTTPOS

was successful in defending against a number of classifiers [23, 42, 149, 226].

More recently Dyer et al. [67] created a defence, BuFLO, that combines many

previous countermeasures, such as fixed packet sizes and constant rate traffic, and

showed this defence improved upon others at the expense of a high bandwidth over-

head. Cai et al. [32] made modifications to the BuFLO defence based on rate adapta-

tion again at the expense of a high bandwidth overhead. Following this Nithyanand

et al. [181] proposed Glove, that groups website traffic into clusters that cannot be

distinguished from any other website in the set. This provides information theoretic

privacy guarantees and reduces the bandwidth overhead by intelligently grouping

web traffic in to similar sets.

Cai et al. [31] modified the kernel in Panchenko et al. [185] SVM to improve

an attack on Tor, and was further improved in an open-world setting by Wang and

Goldberg [245], achieving a true positive rate (TPR) of over 0.95 and a false positive

rate (FPR) of 0.002 when monitoring one web page. Wang et al. [248] conducted

attacks on Tor using large open-world sets. Using a k-nearest neighbour classifier

they achieved a TPR of 0.85 and FPR of 0.006 when monitoring 100 web pages

out of 5100 web pages. More recently Wang and Goldberg [243] suggested a de-

fence using a browser in half-duplex mode – meaning a client cannot send multiple

requests to servers in parallel. In addition to this simple modification they add ran-

dom padding and show they can even foil an attacker with perfect classification ac-

curacy with a comparatively (to other defences) small bandwidth overhead. Wang

and Goldberg [247] then investigated the practical deployment of website finger-

printing attacks on Tor. By maintaining an up-to-date training set and splitting a

3.1. k-fingerprints from random forests 46

full packet sequence in to components comprising of different web page load traces

they show that practical website fingerprinting attacks are possible. By considering

a time gap of 1.5 seconds between web page loads, their splitting algorithm can

successfully parse a single packet sequence in to multiple packet sequences with no

loss in website fingerprinting accuracy. Gu et al. [86] studied website fingerprinting

in multi-tab browsing setting. Using a Naive Bayes classifier on the 50 top-ranked

websites in Alexa, they show when tabs are opened with a delay of 2 seconds, they

can classify the first tab with 75.9% accuracy, and the background tab with 40.5%.

More recently, Kwon et al. [138] showed that website fingerprinting attacks can be

applied to Tor hidden services, and due to the long lived structure of hidden services,

attacks can be even more accurate than when compared to non-hidden pages. They

correctly de-anonymise 50 monitored hidden service servers with TPR of 88% and

FPR of 7.8% in an open world setting. In concurrent work to ours, Panchenko et al.

[186] have experimented with large datasets. Using a mix of different sources they

produced two datasets, one of 34,580 unique websites (118,884 unique web pages)

and another of 65,409 unique websites (211,148 unique web pages). Using a varia-

tion of a sequence of cumulative summations of packet sizes in a traffic trace they

show their attack, CUMUL, was of similar accuracy to k-NN [248] under normal

browsing conditions.

3.1 k-fingerprints from random forests

We consider an attacker that can passively collect a client’s encrypted or

anonymised web traffic, and aims to infer which web resource is being requested.

Dealing with an open-world (as defined in section 2.3), makes approaches based

purely on classifying previously seen websites inapplicable. Our technique, k-

fingerprinting, aims to define a distance-based classifier. It automatically manages

unbalanced sized classes and assigns meaningful distances between packet se-

quences, where close-by ‘fingerprints’ denote requests likely to be for the same

resources.

Our technique, k-fingerprinting, is based on random forests, which are used to

3.1. k-fingerprints from random forests 47

extract a fingerprint for each traffic instance1, instead of directly using the classi-

fication decision of the random forest. We define a distance metric between two

traces based on the output of the forest like so: given a feature vector each tree in

the forest associates a leaf identifier with it, forming a vector of leaf identifiers for

the input, which we refer to as the fingerprint.

Once fingerprint vectors are extracted for two traces, we use the Hamming

distance2 to calculate the distance between these fingerprints3. We classify a test

instance as the label of the closest k training instances via the Hamming distance

of fingerprints – assuming all labels agree. We evaluate the effect of varying k,

the number of fingerprints used for comparison, in section 3.6, section 3.7, and

section 3.8.

The vector output by the random forest represents a robust fingerprint: we

expect similar traffic sequences are more likely to fall on the same leaves than dis-

similar traffic sequences. Since the forest has been trained on a classification task,

traces from the same websites are preferentially aggregated in the same leaf nodes,

and those from different websites kept apart. We can vary the number of training

instances, k, a fingerprint should match, to allow an attacker to trade the true pos-

itive rate (TPR) for false positive rate (FPR). This is not possible using the direct

classification of the random forest. By using a k-closest fingerprint technique for

classification, the attacker can choose how they wish to decide upon final classifi-

cation4. For the closed-world setting we do not need the additional fingerprint layer

for classification, we can simply use the classification output of the random forest

since all classes are balanced and our attack does not have to differentiate between

false positives and false negatives. For the closed-world setting we measure the

mean accuracy of the random forest.

1We define a traffic instance as the network traffic generated via a web page load.
2We experimented with using the Hamming, Euclidean, Mahalanobis and Manhattan distance

functions and found Hamming to provide the best results.
3For example, given the Hamming distance function d : V ×V → R, where V is the space of

leaf symbols, we expect given two packet sequences generated from loading https://google.
com, with fingerprints vectors f1, f2 and a packet sequence generated from loading https://
facebook.com with fingerprint f3, that d(f1, f2)< d(f1, f3) and d(f1, f2)< d(f2, f3).

4We chose to classify a traffic instance as a monitored page if all k fingerprints agree on the label,
but an attacker could choose some other metric such as majority label out of the k fingerprints.

https://google.com
https://google.com
https://facebook.com
https://facebook.com

3.2. The k-fingerprinting attack 48

3.2 The k-fingerprinting attack
Our k-fingerprinting attack proceeds in two phases: The attacker chooses which

web pages they wish to monitor and captures network traffic generated via loading

the monitored web pages and a large number of unmonitored web pages. These

target traces for monitored websites, along with some traces for unmonitored web-

sites, are used to train a random forest for classification. Given a packet sequence

representing each training instance of a monitored web page, it is converted to a

fixed length fingerprint as described in section 3.1 and stored.

The attacker then passively collects instances of web page loads from a client’s

browsing session. A fingerprint is extracted from the newly collected packet se-

quence. The attacker then computes the Hamming distance of this new fingerprint

against the corpus of fingerprints collected during training and is classified as a

monitored page if and only if all k fingerprints agree on classification, as described

in section 3.1, otherwise it is classified as an unmonitored page.

We define the following performance measures for the attack:

• True Positive Rate (TPR). The probability that a monitored page is classified

as the correct monitored page.

• False Positive Rate (FPR). The probability that an unmonitored page is in-

correctly classified as a monitored page.

• Bayesian Detection Rate (BDR). The probability that a page corresponds

to the correct monitored page given that the classifier recognised it as that

monitored page. Assuming a uniform distribution of pages BDR can be found

from TPR and FPR using the formula

T PR.Pr(M)

(T PR.Pr(M)+FPR.Pr(U))

where

Pr(M) =
|Monitored Pages|
|Total Pages|

, Pr(U) = 1−P(M).

Ultimately BDR indicates the practical feasibility of the attack as it measures the

3.3. Experimental set-up 49

main concern of the attacker, the probability that the classifier made a correct pre-

diction.

3.3 Experimental set-up
We collect two datasets: one via Tor5 DSTor, and another via a standard web

browser, DSNorm. DSNorm consists of 30 instances from each of 55 monitored

web pages, along with 7,000 unmonitored web pages chosen from Alexa’s top

20,000 web sites [1]. We collected DSNorm using a number of Amazon EC2

instances6, Selenium7 and the headless browser PhantomJS8. We used

tcpdump9 to collect network traces for 20 seconds with 2 seconds between each

web page load. Monitored pages were collected in batches of 30 and unmonitored

web pages were collected successively. Page loading was performed with no caches

and time gaps between multiple loads of the same web page, as recommended

by Wang and Goldberg [245]. We chose to monitor web pages from Alexa’s top

100 web sites [1] to provide a comparison with the real world censored web pages

used in the Wang et al. [248] data set10. DSTor was collected in a similar manner

to DSNorm but was collected via the Tor browser. DSTor consists of two subsets of

monitored web pages: (i) 100 instances from each of the 55 top Alexa monitored

web pages and (ii) 80 instances from each of 30 popular Tor hidden services. A Tor

hidden service is a website that is hosted behind a Tor client’s Onion Proxy, which

serves as the interface between application and network. Tor hidden services allow

both a client accessing the website and the server hosting the website to remain

anonymous to one another and any external observers. We chose hidden services

to fingerprint based on popularity as listed by the .onion search engine Ahmia11.

The unmonitored set is comprised of the top 100,000 Alexa web pages, excluding

5The most recent version at the time of collection was used, Tor Browser 5.0.6.
6https://aws.amazon.com/ec2/
7http://www.seleniumhq.org/
8http://phantomjs.org/
9http://www.tcpdump.org/

10We used TCP/IP packets for final classification over abstracting to the Tor cell layer [245],
preliminary experiments showed no consistent improvements from using one data layer for classifi-
cation over the other.

11http://www.ahmia.fi/

https://aws.amazon.com/ec2/
http://www.seleniumhq.org/
http://phantomjs.org/
http://www.tcpdump.org/
http://www.ahmia.fi/

3.3. Experimental set-up 50

the top 55. We chose to fingerprint web pages as listed by Alexa as these consti-

tute the most popular web pages in the world over extended periods of time, and

hence provide a more realistic dataset than choosing pages at random and/or using

transiently popular website links as included in recent work from Panchenko et al.

[186]. By including website visits to trending topics we argue that this diminishes

the ability to properly measure how effective a website fingerprinting attack will

perform in general.

For comparison to previous work, we evaluated our attack on one of the previ-

ous largest website fingerprinting datasets [248], which collected 90 instances from

each of 100 monitored sites, along with 5000 unmonitored web pages. The Wang

et al. [248] monitored web pages are various real-world censored websites from

UK, Saudi Arabia and China providing a realistic set of web pages an attacker may

wish to monitor. The unmonitored web pages are chosen at random from Alexa’s

top 10,000 websites – with no intersection between monitored and unmonitored

web pages.

This allows us to validate k-fingerprinting on two different datasets while al-

lowing for direct comparison against the state-of-the-art k-nearest neighbour at-

tack [248]. We can also infer how well the attack works on censored web pages

which may not have small landing pages or be set up for caching like websites in

the top Alexa list. Testing k-fingerprinting on both real-world censored websites

and top Alexa websites indicates how the attack performs across a wide range of

websites.

For the sake of comparison, according to a study by research firm Nielsen [3]

the number of unique websites visited per month by an average client in 2010 was

89. Another study [121, 184] collected web site statistics from 80 volunteers in a

virtual office environment. Traffic was collected from each volunteer for a total of

40 hours. The mean unique number of websites visited per volunteer was 484, this

is substantially smaller than the world sizes we consider in our experiments.

3.4. Information leakage from network traffic features 51

3.4 Information leakage from network traffic fea-

tures
Our first contribution is a systematic analysis of feature importance. Despite some

preliminary work by Panchenko et al. [185], there is a notable absence of feature

analysis in the website fingerprinting literature. Instead features are picked based

on heuristic arguments. All feature importance experiments were performed with

the Wang et al. [248] dataset so as to allow direct comparison with their attack

results.

We train a random forest classifier in the closed-world setting using a fea-

ture vector comprised of features commonly used in related work, and labels corre-

sponding to the monitored sites. We use the gini coefficient as the purity criterion

for splitting branches and estimate feature importance using the standard methodol-

ogy described by Breiman [28], Friedman [76]. Each time a decision tree branches

on a feature the weighted sum of the gini impurity index for the two descendant

nodes is higher than the purity of the parent node. We add up the gini decrease for

each individual feature over the entire forest to get a consistent measure of feature

importance.

Figure 3.1 illustrates the effect of using a subset of features for random forest

classification. We first train a random forest classifier to establish feature impor-

tance; and then train new random forests with only subsets of the most informative

features. As we increase the number of features we observe a monotonic increase in

accuracy; however there are diminishing returns as we can achieve nearly the same

accuracy after using the 30 most important features. We chose to use 150 features

in all following experiments since the difference in training time when using fewer

features was negligible.

Figure 3.2 identifies the top-20 ranked features and illustrates their variability

across 100 repeated experiments. As seen in fig. 3.1 there is a reduction in gradient

when combining the top 15 features compared to using the top 10 features. Fig-

ure 3.2 shows that the top 13 features are comparatively more important than the

rest of the top 20 features, hence there is only a small increase in accuracy when

3.4. Information leakage from network traffic features 52

0 20 40 60 80 100 120 140 160
Number of features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Maximum accuracy
Minimum accuracy

Figure 3.1: Accuracy of k-fingerprinting in a closed-world setting as the number of features
is varied.

using the top 15 features compared to using the top 10. After the drop between the

rank 13 and rank 14 features, feature importance falls steadily until feature rank 40,

after which the reduction in feature importance is less prominent12. Note that there

is some interchangeability in rank between features, we assign ranks based on the

average rank of a feature over the 100 experiments.

From each packet sequence we extract the following features:

• Number of packets statistics. The total number of packets, along with the

number of incoming and outgoing packets [67, 185, 248]. The number of

incoming packets during transmission is the most important feature, and to-

gether with the number of outgoing packets during transmission are always

two of the five most important features. The total number of packets in trans-

mission has rank 10.

• Incoming & outgoing packets as fraction of total packets. The number of

incoming and outgoing packets as a fraction of the total number of packets

[185]. Always two of the five most important features.
12The total feature importance table is shown in appendix A.1.

3.4. Information leakage from network traffic features 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature rank

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fe
a
tu

re
 i
m

p
o
rt

a
n
ce

 s
co

re

№ Feature Description

1. Number of incoming packets.
2. Number of outgoing packets as a fraction of the

total number of packets.
3. Number of incoming packets as a fraction of the

total number of packets.
4. Standard deviation of the outgoing packet order-

ing list.
5. Number of outgoing packets.
6. Sum of all items in the alternative concentration

feature list.
7. Average of the outgoing packet ordering list.
8. Sum of incoming, outgoing and total number of

packets.
9. Sum of alternative number packets per second.

10. Total number of packets.
11-18. Packet concentration and ordering features list.

19. The total number of incoming packets stats in
first 30 packets.

20. The total number of outgoing packets stats in first
30 packets.

Figure 3.2: The 20 most important features.

• Packet ordering statistics. For each successive incoming and outgo-

ing packet, the total number of packets seen before it in the sequence

[31, 185, 248]. The standard deviation of the outgoing packet ordering list

has rank 4, the average of the outgoing packet ordering list has rank 7. The

standard deviation of the incoming packet ordering list has rank 12 and the

3.4. Information leakage from network traffic features 54

average of the incoming packet ordering list has rank 13.

• Concentration of outgoing packets. The packet sequence split into non-

overlapping chunks of 20 packets. Count the number of outgoing packets

in each of the chunks. Along with the entire chunk sequence, we extract the

standard deviation (rank 16), mean (rank 11), median (rank 64) and max (rank

65) of the sequence of chunks. This provides a snapshot of where outgoing

packets are concentrated [248]. The features that make up the concentration

list are between the 15th and 30th most important features, but also make up

the bulk of the 75 least important features.

• Concentration of incoming & outgoing packets in first & last 30 packets.

The number of incoming and outgoing packets in the first and last 30 packets

[248]. The number of incoming and outgoing packets in the first thirty packets

has rank 19 and 20, respectively. The number of incoming and outgoing

packets in the last thirty packets has rank 50 and 55, respectively.

• Number of packets per second. The number of packets per second, along

with the mean (rank 44), standard deviation (rank 38), min (rank 117), max

(42), median (rank 50).

• Alternative concentration features. This subset of features is based on the

concentration of outgoing packets feature list. The outgoing packets feature

list split into 20 evenly sized subsets and sum each subset. This creates a new

list of features. Similarly to the concentration feature list, the alternative con-

centration feature list are regularly in the top 20 most important features and

bottom 50 features. Note though concentration features are never seen in the

top 15 most important features whereas alternative concentration features are,

– at rank 14 and 15, – so information is gained by summing the concentration

subsets.

• Packet inter-arrival time statistics. For the total, incoming and outgoing

packet streams extract the lists of inter-arrival times between packets. For

3.4. Information leakage from network traffic features 55

each list extract the max, mean, standard deviation, and third quartile [23].

These features have rank between 40 and 70.

• Transmission time statistics. For the total, incoming and outgoing packet

sequences we extract the first, second, third quartile and total transmission

time [248]. These features have rank between 30 and 50. The total transmis-

sion time for incoming and outgoing packet streams are the most important

out of this subset of features.

• Alternative number of packets per second features. For the number of

packets per second feature list we create 20 even sized subsets and sum each

subset. The sum of all subsets is the 9th most important feature. The features

produced by each subset are in the bottom 50 features - with rank 101 and

below. The important features in this subset are the first few features with

rank between 66 and 78, that are calculated from the first few seconds of a

packet sequence.

We conclude that the total number of incoming packets is the most informative

feature. This is expected as different web pages have different resource sizes, that

are poorly hidden by encryption or anonymisation, and are unaffected by differing

network conditions. The number of incoming and outgoing packets as a fraction

of the total number of packets are also informative for the same reason. The least

important features are from the padded concentration of outgoing packets list, since

the original concentration of outgoing packets lists were of non-uniform size and

so have been padded with zeros to give uniform length. Clearly, if most packet se-

quences have been padded with the same value this will provide a poor criterion for

splitting, hence being a feature of low importance. Packet concentration statistics,

while making up the bulk of “useless features” also regularly make up a few of the

top 30 most important features, they are the first few items that are unlikely to be

zero. In other words, the first few values in the packet concentration list do split the

data well.

Packet ordering features have rank 4, 7, 12 and 13, indicating these features are

3.5. Attack on hardened defences 56

a good criterion for classification. Packet ordering features exploit the information

leaked via the way in which browsers request resources and the end server orders

the resources to be sent. This supports conclusions made by Cai et al. [31], Wang

et al. [248] on the importance of packet ordering features.

We also found that the number of incoming and outgoing packets in the first

thirty packets, with rank 19 and 20, were more important than the number of in-

coming and outgoing packets in the last thirty packets, with rank 50 and 55. In

the alternative number packets per second feature list the earlier features were a

better criterion for splitting than the later features in the list. This supports claims

by Wang et al. [248] that the beginning of a packet sequence leaks more information

than the end of a packet sequence. In contrast to Bissias et al. [23], we found packet

inter-arrival time statistics, with rank between 40 and 70, only slightly increase the

attack accuracy, despite being a key feature in their work.

3.5 Attack on hardened defences
For direct comparison we tested our random forest classifier in a closed-world set-

ting on various defences against the k-NN attack [248] and the more recent CU-

MUL13 [186] attack using the Wang et al. [248] dataset. Note that most of these

defences require large bandwidth overheads that may render them unusable for the

average client. We test against the following defences:

• BuFLO [67]. This defence sends packets at a constant size during fixed time

intervals. This potentially extends the length of transmission and requires

dummy packets to fill in gaps.

• Decoy pages [185]. This defence loads a decoy page whenever another page

is loaded. This provides background noise that degrades the accuracy of an

attack. This is essentially a defence that employs multi-tab browsing.

• Traffic morphing [252]. Traffic morphing shapes a client’s traffic to look

like another set of web pages. A client chooses the source web pages that

13Note we did not have access to original authors implementation code at the time of writing and
so recreated the attack using sklearn.svm with RBF kernel and sklearn.gridsearch.

3.5. Attack on hardened defences 57

they would like to defend, as well as a set of target web pages that they would

like to make the source processes look like.

• Tamaraw [246]. Tamaraw operates similarly to BuFLO but fixes packet sizes

depending on their direction. Outgoing traffic is fixed at a higher packet in-

terval, this reduces overhead as outgoing traffic is less frequent.

• Adaptive Padding (AP) [122, 216]. AP protects anonymity by introducing

traffic in to statistically unlikely delays between packets in a flow. This limits

the amount of extra bandwidth required and does not incur any latency costs.

AP uses previously computed histograms of inter-arrival packet times from

website loads to determine when a dummy packet should be injected14. This

is currently the favoured option if padding were to be implemented in Tor [4].

Table 3.1 shows the performance of k-fingerprinting against k-NN and CU-

MUL under various website fingerprinting defences in a closed-world setting. Un-

der every defence k-fingerprinting is comparable or achieves better results than

the k-NN attack and performs significantly better than CUMUL. Note that k-

fingerprinting does equally well when traffic morphing is applied compared to no

defence. As Lu et al. [157] note, traffic morphing is only effective when the at-

tacker restricts attention to the same features targeted by the morphing process. Our

results confirm that attacks can succeed even when traffic morphing is employed.

k-fingerprinting also performs nearly 10% better than k-NN when decoy pages are

used, which is in effect a marker for how well the attack performs on multi-tab

browsing. Due to the dependency of packet length and sequence length features,

CUMUL performs substantially worse than the other two attacks under website fin-

gerprinting defences. Though CUMUL uses a similar number of features and is

of similar computational efficiency to k-fingerprinting, simple defences remove the

feature vector patterns between similar web pages used in CUMUL, rendering the

attack ineffectual. More generally, any attack that uses a restricted set of features

14As Juarez et al. [122] note, the distribution of histogram bins is dependent on the individual
client bandwidth capacity. Optimising histograms for a large number of clients is an open problem.
Here we implement a naive version of AP with one master histogram for all clients.

3.6. Attack on the Wang et al. [248] dataset 58

Table 3.1: Attack comparison under various website fingerprinting defences.

defences This work k-NN [248] CUMUL [186] Bandwidth overhead (%)

No defence 0.91 ±0.01 0.91 ±0.03 0.91 ±0.04 0
Morphing [252] 0.90 ±0.03 0.82 ±0.06 0.75 ±0.07 50 ±10
Decoy pages [185] 0.37 ±0.01 0.30 ±0.06 0.21 ±0.02 130 ±20
Adaptive Padding [216] 0.30 ±0.04 0.19 ±0.03 0.16 ±0.03 54
BuFLO [67] 0.21 ±0.02 0.10 ±0.03 0.08 ±0.03 190 ±20
Tamaraw [246] 0.10 ±0.01 0.09 ±0.02 0.08 ±0.03 96 ±9

will suffer greatly from a defence that targets those features. k-fingerprinting per-

forms well under defences due to its feature set that captures traffic information not

used in CUMUL such as packet timings and burst patterns. The k-NN attack per-

forms slightly better than CUMUL but requires an order of magnitude more features

than both CUMUL and k-fingerprinting. Our attack is both more efficient and more

accurate than CUMUL and k-NN under defences.

3.6 Attack on the Wang et al. [248] dataset
We first evaluate k-fingerprinting on the Wang et al. [248] dataset. This dataset

was collected over Tor, and thus implements padding of packets to fixed-size cells

(512-bytes) and randomization of request orders [195]. Thus the only available

information to k-fingerprinting are timing and volume features. We train on 60 out

of the 90 instances for each of the 100 monitored web pages; we vary the number

of pages on which we train from the 5000 unmonitored web pages. For the attack

evaluation we use fingerprints of length 200 and 150 features. Final classification is

as described in section 3.2, if all k fingerprints agree on classification a test instance

is classified as a monitored web page, otherwise it is classified as an unmonitored

web page.

The scenario for the attack is as follows: an attacker monitors 100 web pages;

they wish to know whether a client is visiting one of those pages, and establish

which one. The client can browse to any of these web pages or to 5000 unmonitored

web pages, which the attacker classifies in bulk as an unmonitored page.

Using the k-fingerprinting method for classifying a web page we measure a

TPR of 0.88± 0.01 and a FPR of 0.005± 0.001 when training on 3500 unmonitored

3.6. Attack on the Wang et al. [248] dataset 59

0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
False positive

0.82

0.84

0.86

0.88

0.90

0.92

T
ru

e
 p

o
si

ti
v
e

Max accuracy
Min accuracy

Figure 3.3: Attack results for 1500 unmonitored training pages while varying the number
of fingerprints used for comparison, k, over 10 experiments.

Table 3.2: k-fingerprinting results for k=3 while varying the number of unmonitored train-
ing pages.

Training pages TPR FPR BDR

0 0.90±0.02 0.750±0.01 0.419
1500 0.88±0.02 0.013±0.007 0.983
2500 0.88±0.01 0.007±0.001 0.993
3500 0.88±0.01 0.005±0.001 0.997
4500 0.87±0.02 0.009±0.001 0.998

web pages and k, the number of training instances used for classification, set at k=3.

k-fingerprinting achieves better accuracy than the state-of-the-art k-NN attack that

has a TPR of 0.85 ± 0.04 and a FPR of 0.006 ± 0.004.

Best results are achieved when training on 3500 unmonitored web pages. Ta-

ble 3.2 reports TPR and FPR when using different numbers of unmonitored web

pages for training with k=3. As we train more unmonitored web pages we decrease

our FPR with almost no reduction in TPR. After training 3500 unmonitored pages

there is no decrease in FPR and so no benefit in training on more unmonitored web

pages. This is confirmed by the marginal increase in BDR after training on at least

some of the unmonitored set. Furthermore without training on any of the unmoni-

3.6. Attack on the Wang et al. [248] dataset 60

tored web pages, despite the high FPR, the classifier has more than 40% probability

of being correct when classifying a web page as monitored.

Figure 3.3 illustrates how classification accuracy changes as, k, the number of

fingerprints used for classification changes. For a low k the attack achieves a FPR of

around 1%, as we increase the value of k we reduce the number of misclassifications

since it is less likely that all k fingerprints will belong to the same label, but we also

reduce the TPR. Altering the number of fingerprints used for classification allows

an attacker to tune the classifier to either a low FPR or high TPR depending on the

desired application of the attack.

We find that altering the number of fingerprints used for classification, k, af-

fects the TPR and FPR more than the number of unmonitored training pages. This

suggests that while it is advantageous to have a large world size of unmonitored

pages, increasing the number of unmonitored training pages does not increase ac-

curacy of the classifier dramatically. This supports similar claims from Wang et al.

[248]. In practice an attacker will need to train on at least some unmonitored pages

to increase the BDR, though this does not need to be a substantial amount; training

1500 unmonitored web pages leads to a 98.3% chance the classifier is correct when

claiming to have recognised a monitored web page.

Fingerprint length. Changing the length of the fingerprint vector will affect k-

fingerprinting accuracy. For a small fingerprint length there may not be enough

diversity to provide an accurate measure of distance over all packet sequences. Fig-

ure 3.4 shows the resulting TPR and FPR as we change the length of fingerprints

in the Wang et al. [248] data set. We set k=1 and train on 4000 unmonitored web

pages. Using only a fingerprint of length one results in a TPR of 0.51 and FPR of

0.904. Clearly using a fingerprint of length one results in a high FPR since there

is a small universe of leaf symbols from which to create the fingerprint. A finger-

print of length 20 results in a TPR of 0.87 and FPR of 0.013. After this there are

diminishing returns for increasing the length of the fingerprint vector.

3.7. Attack evaluation on DSTor 61

0 50 100 150 200
Number of trees

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

True positive rate
False positive rate

Figure 3.4: Accuracy of k-fingerprinting as we vary the number of trees in the forest.

3.7 Attack evaluation on DSTor

We now evaluate k-fingerprinting on DSTor. First we evaluate the attack given a

monitored set of the top 55 Alexa web pages, with 100 instances for each web page.

Then we evaluate the attack given a monitored set of 30 Tor hidden services, with

80 instances for each hidden service. The unmonitored set remains the same for

both evaluations, the top 100,000 Alexa web pages with one instance for each web

page.

3.7.1 Alexa web pages monitored set

Table 3.3 shows the accuracy of k-fingerprinting as the number of unmonitored

training pages is varied. For the monitored web pages, 70 instances per web page

were trained upon and testing was done on the remaining 30 instances of each web

page. As expected, the FPR decreases as the number of unmonitored training sam-

ples grows. Similar to section 3.6, there is only a marginal decrease in TPR while we

see a large reduction in the FPR as the number of training samples grows. Meaning

an attacker will not have to compromise on TPR to decrease the FPR; when scal-

ing the number of unmonitored training samples from 2% to 16% of the entire set

3.7. Attack evaluation on DSTor 62

Table 3.3: Attack results on top Alexa sites for k=2 while varying the number of unmoni-
tored training pages.

Training pages TPR FPR BDR

2000 0.93 ±0.03 0.032 ±0.01 0.33
4000 0.93 ±0.01 0.018 ±0.007 0.47
8000 0.92 ±0.01 0.008 ±0.002 0.67
16000 0.91 ±0.02 0.003 ±0.001 0.86

the TPR decreases from 93% to 91% while the FPR decreases from 3.2% to 0.3%.

There is a more pronounced shift in BDR with the increase of unmonitored train-

ing pages, however an attacker needs to train on less than 10% of the entire dataset

to have nearly 70% confidence that classifier was correct when it claims to have

detected a monitored page.

Clearly the attack will improve as the number of training samples grows, but in

reality an attacker may have limited resources and training on a significant fraction

of 100,000 web pages may be unfeasible. Figure 3.5 shows the TPR and FPR of k-

fingerprinting as the number of unmonitored web pages used for testing grows while

the number of unmonitored web pages used for training is kept at 2000, for different

values of k. We may think of this as the evaluation of success of k-fingerprinting

as a client browses to more and more web pages over multiple browsing sessions.

Clearly for a small k, both TPR and FPR will be comparatively high. Given that,

with k=5 only 2.5% of unmonitored web pages are falsely identified as monitored

web pages, out of 98,000 unmonitored web pages.

3.7.2 Hidden services monitored set

Table 3.4 shows the accuracy of k-fingerprinting as the number of unmonitored

training pages is varied. For the monitored set, 60 instances per hidden service were

trained upon and testing was done on the remaining 20 instances of each hidden

service. Again we observe a marginal loss of TPR and a large reduction in FPR as

the number of training samples grows. When scaling the number of unmonitored

training samples from 2% to 16% of the entire set the TPR decreases from 82%

to 81% while the FPR decreases by an order of magnitude from 0.2% to 0.02%.

As a result, when training on 16% of the unmonitored set only 16 unmonitored web

3.7. Attack evaluation on DSTor 63

Table 3.4: Attack results on Tor hidden services for k=2 while varying the number of un-
monitored training pages.

Training pages TPR FPR BDR

2000 0.82 ±0.03 0.0020 ±0.0015 0.72
4000 0.82 ±0.04 0.0007 ±0.0006 0.88
8000 0.82 ±0.02 0.0002 ±0.0001 0.96
16000 0.81 ±0.02 0.0002 ±0.0002 0.97

pages out of 84,000 were misclassified as a Tor hidden service. In comparison to the

Alexa web pages monitored set the TPR is around 10% lower, while the FPR is also

greatly reduced. This is evidence that Tor hidden services are easy to distinguish

from standard web pages loaded over Tor. There is also a higher but more gradual

increase in BDR compared to standard web pages. An attacker need only train on

as little as 2% of unmonitored pages to have over 70% confidence that classification

of a monitored page was correct, with this rising to 97% when training on 16% of

the unmonitored dataset.

Similar to fig. 3.5, fig. 3.6 shows the TPR and FPR of k-fingerprinting as the

number of unmonitored web pages used for testing grows while the number of un-

monitored web pages used for training is kept at 2000, for different values of k.

Both the TPR and FPR is lower than in fig. 3.5. For example using k=5, the FPR

is 0.2% which equates to only 196 out of 98,000 unmonitored pages being falsely

classified as monitored pages.

From fig. 3.7 we observe that the BDR of both standard web pages and hidden

services monitored sets depends heavily on not only the world size but the number

of fingerprints used for classification. With k=10, when a web page is classified as

a monitored hidden service page, there is over an 80% chance that the classifier was

correct, despite the unmonitored world size (98,000) being over 160 times larger

than the monitored world size (600). The high BDR regardless of the disparity in

world sizes makes it clear that our attack is highly effective under realistic large

world size conditions.

It is clear that an attacker need only train on a small fraction of data to launch a

powerful fingerprinting attack. It is also clear that Tor hidden services are easily dis-

3.8. Attack evaluation on DSNorm 64

tinguished from standard web pages, rendering them vulnerable to website finger-

printing attacks. We attribute the lower FPR of Tor hidden services when compared

to a monitored training set of standard web page traffic to this distinguishability. A

standard web page over Tor is more likely to be confused with another standard web

page than a Tor hidden service.

Comparison with Kwon et al. [138] hidden services results. For comparison we

ran k-fingerprinting on the dataset used in the Kwon et al. [138] study on fingerprint-

ing hidden services. This dataset simulated a client connecting to a hidden service.

The dataset consists of 50 instances for each of 50 monitored hidden services and an

unmonitored set of 950 hidden services. When training on 100 of the unmonitored

pages they report attack accuracy of 0.9 TPR and 0.4 FPR. k-fingerprinting achieved

a similar true positive rate but the FPR is reduced to 0.22. This FPR reduction in

comparison with Kwon et al. [138] continued regardless of the amount of data used

for training.

3.8 Attack evaluation on DSNorm

Besides testing on DSTor, Wang et al. [248] dataset and the Kwon et al. [138] dataset

we tested the efficacy of k-fingerprinting on DSNorm. This allows us to establish

how accurate k-fingerprinting is over a standard encrypted web browsing session or

through a VPN.

3.8.1 Attack on encrypted browsing sessions

An encrypted browsing session does not pad packets to a fixed size so the attacker

may extract the following features in addition to time features:

• Size transmitted. For each packet sequence we extract the total size of pack-

ets transmitted, in addition, we extract the total size of incoming packets and

the total size of outgoing packets.

• Size transmitted statistics. For each packet sequence we extract the average,

variance, standard deviation and maximum packet size of the total sequence,

the incoming sequence and the outgoing sequence.

3.8. Attack evaluation on DSNorm 65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

k=1 k=5 k=10

20000 40000 60000 80000 100000
Number of unmonitored sites

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 3.5: Attack accuracy on DSTor with Alexa monitored set.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

k=1 k=5 k=10

20000 40000 60000 80000 100000
Number of unmonitored sites

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 3.6: Attack accuracy on DSTor with Tor hidden services monitored set.

Apart from this modification in available features, the attack setting is similar:

An attacker monitors a client browsing online and attempts to infer which web

pages they are visiting. The only difference is that browsing with the Transport

Layer Security (TLS) protocol, or Secure Sockets Layer (SSL) protocol, versions

2.0 and 3.0, exposes the destination IP address and port. The attack is now trying to

3.8. Attack evaluation on DSNorm 66

0.0

0.2

0.4

0.6

0.8

1.0

B
a
y
e
si

a
n
 d

e
te

ct
io

n
 r

a
te

k=1 k=5 k=10

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of unmonitored sites

0.0

0.2

0.4

0.6

0.8

1.0

B
a
y
e
si

a
n
 d

e
te

ct
io

n
 r

a
te

Figure 3.7: BDR for hidden services monitored set (above) and Alexa monitored set (be-
low).

Table 3.5: Attack results with packet size features for a varying number of unmonitored
training pages.

Training pages TPR FPR BDR

0 0.95 ±0.01 0.850 ±0.010 0.081
2000 0.90 ±0.01 0.01 ±0.004 0.908
4000 0.87 ±0.02 0.004 ±0.001 0.976
6000 0.86 ±0.01 0.005 ±0.002 0.990

infer which web page the client is visiting from the known website15.

The attacker monitors 55 web pages; they wish to know if the client has visited

one of these pages. The client can browse to any of these web pages or to 7000 other

web pages, which the attacker does not care to classify other than as unmonitored.

We train on 20 out of the 30 instances for each monitored page and vary the number

of unmonitored pages on which we train.

Despite more packet sequence information to exploit, the larger cardinality of

world size gives rise to more opportunities for incorrect classifications. The attack

achieves a TPR of 0.87 and a FPR of 0.004. We achieved best results when training

on 4000 unmonitored web pages. Table 3.5 reports results for training on different

15Note that the datasets are composed of traffic instances from some websites without SSL and
TLS, as well as websites using the protocols.

3.8. Attack evaluation on DSNorm 67

0.002 0.004 0.006 0.008 0.010 0.012 0.014
False positive

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
ru

e
 p

o
si

ti
v
e

Max accuracy
Min accuracy

Figure 3.8: Attack results for 2000 unmonitored training pages while varying the number
of fingerprints used for comparison, k, over 10 experiments.

Table 3.6: Attack results without packet size features for a varying number of unmonitored
training pages.

Training pages TPR FPR BDR

0 0.90 ±0.01 0.790 ±0.020 0.082
2000 0.83 ±0.01 0.009 ±0.001 0.910
4000 0.81 ±0.02 0.006 ±0.001 0.961
6000 0.80 ±0.02 0.005 ±0.001 0.989

numbers of unmonitored web pages, with k = 2. Figure 3.8 shows our results when

modifying the number of fingerprints used (k) and training on 2000 unmonitored

pages. We find that altering the number of unmonitored training pages decreases

the FPR while only slightly decreasing the TPR. This mirrors our experimental

findings from DSTor and the Wang et al. [248] dataset.

3.8.2 Attack without packet size features

DSNorm was not collected via Tor and so also contains packet size information. We

remove this to allow for comparison with DSTor and the Wang et al. [248] dataset

which was collected over Tor. This also gives us a baseline for how much more

powerful k-fingerprinting is when we have additional packet size features available.

3.9. Fine grained open-world false positives on Alexa monitored set of DSTor 68

We achieved a TPR of 0.81 and FPR of 0.005 when training on 5000 unmonitored

web pages. Table 3.6 shows our results at other sizes of training samples, with

k=2. Removing packet size features reduces the TPR by over 0.05 and increases

the FPR by 0.001. Clearly packet size features improve our classifier in terms of

correct identifications but do not decrease the number of unmonitored test instances

that were incorrectly classified as a monitored page. Despite the difference in FPR

when including packet size information, the BDR is similar, suggesting that BDR

is dominated by the amount of information that can be trained upon.

Closed-World. In the closed-world setting in which the client can only browse

within the 55 monitored web pages k-fingerprinting is 0.91, compared to 0.96 when

packet size features are available. In the closed-world setting attack accuracy im-

proves by 5% when we include packet size features.

3.9 Fine grained open-world false positives on Alexa

monitored set of DSTor

The classification error is not uniform across all web pages16 Some pages are mis-

classified many times, and confused with many others, while others are never mis-

classified. An attacker can leverage this information to estimate the misclassifica-

tion rate of each of the web page classes instead of using the global average mis-

classification rate. A naive approach to this problem would be to first find which

fingerprints contribute to the many misclassifications and remove them. Our analy-

sis shows that the naive approach of removing “bad” fingerprints that contribute to

many misclassifications will ultimately lead to a higher misclassification rate. Fig-

ure 3.9 shows the 60 fingerprints that cause the most misclassifications, and also

shows for those same fingerprints the number of correct classifications they con-

tribute towards. Nearly all “bad” fingerprints actually contribute to many correct

classifications. One may think it may still be beneficial to remove these fingerprints

as the cumulative sum of misclassifications outweigh the number of correct classi-

fications. This removal will then promote fingerprints that are further away in terms

16See additional evidence in appendix A.2.

3.9. Fine grained open-world false positives on Alexa monitored set of DSTor 69

0 10 20 30 40 50 60 70
fingerprints

0

5

10

15

20

25

30

sc
o
re

s

misclassification
correct classification

Figure 3.9: The fingerprints that lead to the most misclassifications and the correct classi-
fications they contribute towards. Training on 2% of unmonitored pages with
k=3.

of Hamming distance from the fingerprinting that is being tested, which will lead to

a greater number of misclassifications.

Instead an attacker can use their training set of web pages to estimate the TPR

and FPR of each web page class, by splitting the training set in to a smaller training

set and validation set. Since both sets are from the original training set the attacker

has access to the true labels. The attacker then computes the TPR and FPR rates

of each monitored class, this is used as an estimation for TPR and FPR when train-

ing on the entire training set and testing on new traffic instances. More specifically

we split, for the monitored training set of 70 instance for each of the Alexa top 55

web pages, into smaller training sets of 40 instances and validation sets of 30 in-

stances. This is used as a misclassification estimator for the full monitored training

set against the monitored test set of 30 instances per class. Similarly we split the

unmonitored training in half, one set as a smaller training set and the other as a

validation set.

Figure 3.10 shows the TPR and FPR estimation accuracy for 2000 unmonitored

3.10. Attack summary & discussion 70

training pages. Monitored classes are first ordered from best to worst in terms of

their classification accuracy. Even with a small unmonitored training set of 2000

web pages, which is then split in to a training set of 1000 web pages and a validation

set of 1000 web pages, an attacker can accurately estimate the FPR of the attack if

some of the monitored classes were removed. For example, using only the best 20

monitored classes (in terms of TPR), an attacker would estimate that using those 20

classes as a monitored set, the FPR would be 0.012. Using the entire dataset we

see that the true FPR of these 20 classes is 0.010; the attacker has nearly precisely

estimated the utility of removing a large fraction of the original monitored set.

There is a small difference between estimated and the actual FPR in both

fig. 3.10 and fig. 3.11. There is little benefit in training more unmonitored data

if the attacker wants to accurately estimate the FPR; fig. 3.10 has a similar gap be-

tween the estimated FPR and true FPR when compared to fig. 3.11. It is evident

even with a small training set, an attacker can identify web pages that are likely

to be misclassified and then accurately calculate the utility of removing these web

pages from their monitored set. Due to the overwhelmingly large world size of

unmonitored web pages the BDR of fig. 3.10 does not grow dramatically with the

removal of web pages that are likely to be misclassified; using the entire monitored

set the BDR is 0.33, removing half of the monitored web pages the BDR is 0.35.

3.10 Attack summary & discussion

Attack Summary. Best attack results on datasets were achieved when training on

approximately two thirds of the unmonitored web pages. Despite this, results from

DSTor show that an attacker can achieve a small false positive rate while only train-

ing on 2% of the unmonitored data. Training on 2% of 100,000 unmonitored web

pages greatly reduces the attack set up costs while only marginally reducing the ac-

curacy compared to training on more data, providing a realistic setting under which

an attack could be launched. Results on all datasets also suggest that altering k, the

number of fingerprints used for classification, has a greater influence on accuracy

3.10. Attack summary & discussion 71

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set
training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 3.10: Rates for training on 1000 unmonitored pages, testing on 1000, and compar-
ison when training on the full 2000 unmonitored pages and testing on the
remaining 98000 unmonitored pages in DSTor, k=3.

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set
training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 3.11: Rates for training on 8000 unmonitored pages, testing on 8000, and compar-
ison when training on the full 16000 unmonitored pages and testing on the
remaining 84000 unmonitored pages in DSTor, k=3.

than the number of training samples17.

17Figure A.6 illustrates that compared to training on a small number of monitored instances in-
creasing the size of the monitored training set only incrementally increases accuracy.

3.10. Attack summary & discussion 72

k-fingerprinting is robust; our technique achieves the same accuracy regard-

less of the type of monitored set or the manner in which it was collected (through

Tor or standard web browsers). The monitored set in the Wang et al. [248] dataset

consists of real world censored websites, the Kwon et al. [138] monitored set con-

sist of Tor hidden services and the DSTor/Norm monitored sets were taken from Tor

hidden services and top Alexa websites. We do see a reduction in FPR when the

target monitored set are Tor hidden services due to the distinguishability between

the hidden services and unmonitored standard web pages.

We also highlight the non-uniformity of classification performance: when a

monitored web page is misclassified, it is usually misclassified on multiple tests.

We show that an attacker can use their training set to estimate the error rate of

k-fingerprinting per web page, and select targets with low misclassification rates.

Computational Efficiency. k-fingerprinting is more accurate and uses fewer fea-

tures than state-of-the-art attacks. Furthermore k-fingerprinting is faster than cur-

rent state-of-the-art website fingerprinting attacks. On the Wang et al. [248] dataset

training time for 6,000 monitored and 2,500 unmonitored training pages is 30.738

CPU seconds on an 1.4 GHz Intel Core i5z. The k-NN attack [248] has training

time per round of 0.064 CPU seconds for 2500 unmonitored training pages. For

6,000 rounds training time is 384.0 CPU seconds on an AMD Opteron 2.2 GHz

cores. This can be compared to around 500 CPU hours using the attack described

by Cai et al. [31]. Testing time per instance for k-fingerprinting is around 0.1 CPU

seconds, compared to 0.1 CPU seconds to classify one instance for k-NN and 450

CPU seconds for the attack described by Cai et al. [31].

Discussion. Website fingerprinting research has been criticised for not being appli-

cable to real-world scenarios [121, 196]. We have shown that a website fingerprint-

ing attack can scale to the number of traffic instance an attacker may sample over

a long period of time with a high BDR and low FPR. However, we did not con-

sider the cases where background traffic may be present, for example from multitab

browsing, or the effect that short-lived websites will have on our attack. Gu et al.

[86] show in their work that a simple Naive-Bayes attack achieves highly accurate

3.11. Has k-fingerprinting withstood the test of time? 73

results even when a client browses in multiple tabs. Wang and Goldberg [247] also

show that website fingerprinting is effective in practical scenarios. With no prior

attack set-up to tailor to a multi-tab browsing session our attack was able to classify

nearly 40% of monitored pages correctly when the decoy defence was employed.

Website content rapidly changes which will negatively affect the accuracy of

a website fingerprinting attack [121]. As the content of a website changes so

will the generated packet sequences, if an attacker cannot train on this new data

then an attack will suffer. However we note that an attack will suffer from the

ephemeral nature of websites at different rates depending on the type of web-

site being monitored. For example, an attack monitoring a news or social media

site can expect a faster degradation in performance compared to an attack moni-

toring a landing page of a top 10 Alexa site [1]. Also note Tor does not cache

by default, so if in the realistic scenario where an attacker wanted to monitor

https://socialmediawebsite.com a client would be forced to navigate

to the social media website landing page, which is likely to host content that is long

lived and not subject to change. The problem of content change is weakened when

fingerprinting Tor hidden services. As shown by Kwon et al. [138] hidden pages

show minimal changes in comparison to non-hidden pages, resulting in devastat-

ingly accurate attacks on hidden services that can persist.

3.11 Has k-fingerprinting withstood the test of time?

The k-fingerprinting attack was published in 2016, and has since been used a base-

line to compare with new attacks and defences in this space. Here, we survey the

performance of k-fingerprinting attack in comparison to these newer works.

It will come as no surprise to the interested reader to learn that website fin-

gerprinting research has not been immune to the ‘deep learning revolution’. Neural

networks based approaches to website fingerprinting attacks have been proposed

by Bhat et al. [20], Rimmer et al. [208], Sirinam et al. [220]. Each of these works

reported improved attack results compared to non-deep learning based approaches

such as k-fingerprinting, k-NN [248], and CUMUL [186]. For example, Sirinam

https://socialmediawebsite.com

3.11. Has k-fingerprinting withstood the test of time? 74

et al. [220] develop the Deep Fingerprinting (DF) attack using a convolutional neu-

ral network, and report that in a closed-world setting on the top 100 Alexa web

pages, DF achieves 98.3% accuracy while k-fingerprinting achieves 95.5% accu-

racy. However, recent works have brought into question how much deep learn-

ing based approaches improve website fingerprinting attacks. Similar to adaptive

padding [122, 216], Gong and Wang [80] introduce a website fingerprinting de-

fence, FRONT, that randomly insert dummy packets into the front portion of traces,

and use a dataset consisting of the top 100 Alexa monitored web pages each visited

100 times as the monitored set, and 10,000 other unmonitored web pages, for eval-

uation. With no defence in place, k-NN has an F1 score of 0.86, CUMUL has an F1

score of 0.76, k-fingerprinting has an F1 score of 0.93, and DF has an F1 score of

0.94. However, under the FRONT defence, the k-NN F1 score shrinks to 0.048, the

CUMUL F1 score shrinks to 0.18, the k-fingerprinting F1 score shrinks to 0.54, and

the DF F1 score shrinks to 0.47. A similar observation is made by De la Cadena

et al. [53], who showed that while in the undefended setting, DF outperforms k-

fingerprinting (94.5% accuracy versus 92.09%), there exists settings under a traffic

splitting defence where k-fingerprinting consistently outperforms DF.

Furthermore, Liang et al. [147] have recently demonstrated that a random for-

est approach can outperform deep learning based approaches to website classifica-

tion providing that the number of classes to identify is small. Work from Di Martino

et al. [56] studied how effectively attacks perform at fingerprinting HTTPS traffic

in realistic scenarios where caching and dynamic content may be present, and show

that under these settings, k-fingerprinting outperforms both DF and the deep learn-

ing based website fingerprinting attack presented by Bhat et al. [20].

Finally, we have recently shown that deep learning based embedding models

can improve upon other techniques in the large open-world setting [162]. Our ex-

periments show that adaptive adversaries can reliably uncover the webpage visited

by a user among several thousand potential pages, even under considerable distri-

butional shift (e.g., the webpage contents change significantly over time). Such

adversaries could infer the products a user browses on shopping websites or log

3.11. Has k-fingerprinting withstood the test of time? 75

the browsing habits of state dissidents on online forums and encyclopedias. Our

technique achieves 90% accuracy in a top-15 setting where the model distinguishes

the article visited out of 6,000 Wikipedia webpages, while the same model achieves

80% accuracy in a dataset of 13,000 classes that were not included in the training

set.

Chapter 4

Steganography guided by machine

learning

We now move on to assessing the practicality of using machine learning to develop

steganography schemes, inspired by the work of Abadi and Andersen [5] on learn-

ing cryptographic schemes.

Steganography and cryptography both provide methods for secret communi-

cation. Authenticity and integrity of communications are central aims of modern

cryptography. However, traditional cryptographic schemes do not aim to hide the

presence of secret communications. Steganography conceals the presence of a mes-

sage by embedding it within a communication the adversary does not deem suspi-

cious. Recent details of mass surveillance programs have shown that meta-data of

communications can lead to devastating privacy leakages (cf. EFF’s report on mass

surveillance programs [52].). General Michael Hayden, former director of the NSA

and the CIA, famously stated that they “kill people based on meta-data” [92]; the

mere presence of a secret communication can have life or death consequences even

if the content is not known. Concealing both the content as well as the presence of

a message is necessary for privacy sensitive communication.

Steganographic algorithms are designed to hide information within a cover

message such that the cover message appears unaltered to an external adversary.

A great deal of effort is afforded to designing steganographic algorithms that min-

imise the perturbations within a cover message when a secret message is embedded

77

within, while allowing for recovery of the secret message. In this chapter, we ask if

a steganographic algorithm can be learnt, without human domain knowledge. Note

that steganography only aims to hide the presence of a message. Thus, it is nearly

always the case that the message is encrypted prior to embedding using a standard

cryptographic scheme; the embedded message is therefore indistinguishable from a

random string. The receiver of the steganographic image will then decode to reveal

the ciphertext of the message and then decrypt using an established shared key.

For the design of steganographic techniques, we leverage ideas from the field

of adversarial training [81]. Typically, adversarial training is used to train genera-

tive models on tasks such as image generation and speech synthesis. We design a

scheme that aims to embed a secret message within an image. Our task is discrim-

inative, the embedding algorithm takes in a cover image and produces a stegano-

graphic image, while the adversary tries to learn weaknesses in the embedding al-

gorithm, resulting in the ability to distinguish cover images from steganographic

images.

The success of a steganographic algorithm or a steganalysis technique over

one another amounts to its ability to model the cover distribution correctly [72]. So

far, steganographic schemes have used human-based rules to ‘learn’ this distribu-

tion and perturb it in a way that disrupts it least. However, steganalysis techniques

commonly use machine learning models to learn the differences in distributions be-

tween the cover and steganographic images. Based on this insight we pursue the

following hypothesis:

Hypothesis: Machine learning is as capable as human-based rules for the

task of modelling the cover distribution, and so naturally lends itself to the

task of designing steganographic algorithms, as well as performing steganal-

ysis.

Next, we introduce the steganographic algorithm designed through a novel ad-

versarial training scheme. We show that our scheme can be successfully imple-

mented in practice between two communicating parties, and additionally that with

supervised training, the steganalyser, Eve, can compete against state-of-the-art ste-

4.1. Learning objectives 78

Alice

Eve

Bob

M

C

C′

M′

p

(a)

Alice

Eve

Bob

M

C

C ′

M ′

p

Alice

Alice

Eve

Bob

M

C

C ′

M ′

p

Bob

(1)

(2)

(3)

(b)

Figure 4.1: (a) Diagram of the training game. (b) How two parties, Carol and David, use
the scheme in practice: (1) Two parties establish a shared key. (2) Carol trains
the scheme on a set of images. Information about model weights, architecture
and the set of images used for training is encrypted under the shared key and
sent to David, who decrypts to create a local copy of the models. (3) Carol
then uses the Alice model to embed a secret encrypted message, creating a
steganographic image. This is sent to David, who uses the Bob model to decode
the encrypted message and subsequently decrypt.

ganalysis methods. To the best of our knowledge, this is one of the first real-world

applications of adversarial training, aside from traditional adversarial learning ap-

plications such as image generation tasks.

4.1 Learning objectives
Our training scheme involves three parties: Alice, Bob and Eve. Alice sends a

message to Bob, Eve can eavesdrop on the link between Alice and Bob and would

like to discover if there is a secret message embedded within their communication.

In classical steganography, Eve (the steganalyser) is passed both unaltered images,

4.1. Learning objectives 79

called cover images, and images with secret messages embedded within, called

steganographic images. Given an image, Eve places a confidence score of how

likely this is a cover or steganographic image. Alice embeds a secret message within

the cover image, producing a steganographic image, and passes this to Bob. Bob

knows the embedding process and so can recover the message. In our scheme,

Alice, Bob and Eve are neural networks. Alice is trained to learn to produce a

steganographic image such that Bob can recover the secret message, and such that

Eve can do no better than randomly guess if a sample is a cover or steganographic

image.

The full scheme is depicted in fig. 4.1a: Alice receives a cover image, C, and

a secret encrypted message, M, as inputs. Alice outputs a steganographic image,

C′, which is given to both Bob and Eve. Bob outputs M′, the secret message he

attempts to recover from C′. We say Bob performs perfectly if M = M′. In addition

to the steganographic images, Eve also receives the cover images. Given an input

X , Eve outputs the probability, p, that X = C. Alice tries to learn an embedding

scheme such that Eve always outputs p = 1
2 . We do not train Eve to maximise

her prediction error, since she can then simply flip her decision and perform with

perfect classification accuracy. Figure 4.1b shows how the scheme should be used

in practice if two people wish to communicate a steganographic message using our

scheme. The cost of sending the encrypted model information from Carol to David

is low, with an average of 70MB. Note that in fig. 4.1b, steps (1) and (2), the set-

up of the shared key and sharing of model information, is performed offline. We

assume, as is common in cryptographic research, that this initial set-up phase is not

visible to an adversary.

At the beginning of training, a human can easily separate cover images from

steganographic images, as Alice has not learned yet how to embed the secret mes-

sage such that there is no visible difference in the cover image. However, we train

Eve much like a discriminator in a GAN, where we tie her predictive power to the

embedding capacity of Alice. When Alice produces a steganographic image that

does not resemble the cover image, Eve does not have the ability to perfectly sepa-

4.1. Learning objectives 80

rate cover from steganographic images. As training continues, Eve becomes better

at her task, but then so does Alice as her weights are updated, in part, based on the

loss of Eve.

Similarly to Abadi and Andersen [5], we let θA,θB,θC denote the parameters

of Alice, Bob and Eve, respectively. We write A(θA,C,M) for Alice’s output on C

and M, B(θb,C′) for Bob’s output on C′, and E(θE ,C,C′) for Eve’s output on C and

C′. Let LA,LB,LC denote the loss of Alice, Bob and Eve, respectively. Then, we

have the following relations:

B(θb,C′) = B(θb,A(θA,C,M))

E(θE ,C,C′) = E(θE ,C,A(θA,C,M))

We set Bob’s loss (the secret message reconstruction loss), to be the Euclidean

distance between M and M′. In practical applications, Bob can use error correction

to recover the signal is errors accumulate during transmission.

LB(θA,θB,M,C) = d(M,B(θb,C′))

= d(M,B(θb,A(θA,C,M))

= d(M,M′)

As is common with GAN discriminator implementations, we set the Eve’s loss to

be sigmoid cross entropy loss:

LE(θA,θE ,C,C′) =−y · log(E(θE ,x))− (1− y) · log(1−E(θE ,x)),

where y = 0 if x =C′ and y = 1 if x =C. Alice’s loss is given as a weighted sum of

Bob’s loss, Eve’s loss on steganographic images, and an additional reconstructive

loss term:

LA(θA,C,M) = λA ·d(C,C′)+λB ·LB +λE ·LE(θE ,C′),

where d(C,C′) is the Euclidean distance between the cover image and the stegano-

4.2. Architecture 81

graphic image, and λA,λB,λE ∈ R define the weight given to each respective loss

term.

Our goal is not only to explore whether neural networks can produce stegano-

graphic embedding algorithms in an unsupervised manner, but whether they

are competitive against steganographic algorithms like HUGO, WOW and S-

UNIWARD, that have been designed by steganography experts. We did not intend

to encode a specific algorithm within the neural network, rather we would like to

give the networks the opportunity to devise their own.

4.2 Architecture
Alice (Steganographic Encoder). Alice accepts as input a cover image and a ran-

dom n-bit binary message. The cover image is flattened and concatenated with the

secret message, which is then fed into the neural network. We would like the local-

ity of the embedding process to be learned instead of fixed; the first layer is fully

connected to the next, allowing the secret message to be combined with any region

of the cover image. We then reshape to 4×4×I ·8, where I is width of the cover im-

age. Each of the next four layers are a sequence of upsampling fractionally-strided

convolutions, batch normalisation and ReLU [176], except for the final layer where

tanh [141] is used as the activation function.

Bob (Steganographic Decoder). Bob accepts as input the steganographic image

output by Alice. Bob uses a deep convolutional architecture to extract the important

bits from the output of Alice. It is made up of four fractionally-strided convolutions

and one final fully connected layer. Leaky ReLU [160] is used in all but the final

layer, where tanh is used. Batch normalisation is applied at each layer.

Eve (steganalyser). Eve accepts as input both cover images and steganographic im-

ages. Eve has a similar architecture to Bob but uses the sigmoid activation function

instead of tanh at the final layer to output probabilities from the logits.

4.3 Evaluation of the steganographic scheme
As a proof of concept, we implemented our adversarial training scheme on two

image datasets: celebrity faces in the wild (celebA) [154] and a standard steganog-

4.3. Evaluation of the steganographic scheme 82

(a) Cover images. (b) Steganographic images
(0.1bpp).

(c) Steganographic images
(0.4bpp).

Figure 4.2: Cover and steganographic images from the celebA dataset, with embedding
rates of 0.1bpp and 0.4bpp.

0 20 40 60 80 100 120 140

Steps

0.5

1.0

1.5

2.0

Lo
ss

Alice
Bob
Eve

(a) Alice, Bob and Eve error for 0.1bpp.

0 20 40 60 80 100 120 140

Steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Alice
Bob
Eve

(b) Alice, Bob and Eve error for 0.4bpp.

0 20 40 60 80 100 120 140

Steps

0

20

40

60

80

100

N
um

be
r o

f b
its

 c
or

re
ct

ly
 d

ec
od

ed
 (o

ut
 o

f 1
00

)

(c) Bob decoding success for 0.1bpp.

0 20 40 60 80 100 120 140

Steps

0

50

100

150

200

250

300

350

400

N
um

be
r o

f b
its

 c
or

re
ct

ly
 d

ec
od

ed
 (o

ut
 o

f 4
00

)

(d) Bob decoding success for 0.4bpp.

Figure 4.3: Results on celebA dataset at an embedding rate of 0.1bpp and 0.4bpp.

raphy research dataset, BOSS1. We concatenate an n-bit random message, with each

sample of each dataset. We vary the size of the message, n, to test the limits of the

1http://agents.fel.cvut.cz/boss/index.php?mode=VIEW&tmpl=
materials

http://agents.fel.cvut.cz/boss/index.php?mode=VIEW&tmpl=materials
http://agents.fel.cvut.cz/boss/index.php?mode=VIEW&tmpl=materials

4.3. Evaluation of the steganographic scheme 83

amount of information that can be effectively hidden inside a cover image. This

corresponds to the number of bits per pixel (bpp) that can be hidden by a stegano-

graphic algorithm, a common measure of the success of a steganographic research.

On average, steganographic algorithms can successfully hide approximately 0.4bpp.

Our datasets are formed of 32×32 pixel images, and so we vary n from 100 to 400,

this corresponds to hiding between approximately 0.1bpp to 0.4bpp. We inten-

tionally randomise the secret message so that the network does not learn a specific

function associated with a specific group of messages. We want to be sure that

our model can generalise to any message that is less than n bits2. For each exper-

iment, we performed grid search to find the optimum loss weights, λA,λB,λE , for

Alice. All experiments in this section were performed in TensorFlow [6, 7], on a

workstation with a Tesla K40 GPU card.

4.3.1 celebA dataset

We first motivate our work by showing our model can produce steganographic im-

ages that are almost indistinguishable from the cover images. We vary the size of

the embedded secret message, to explore how many bits may be stored in a cover

image while remaining undetected by a steganalyser. As expected, we find that a

larger perturbation in the cover image results in more communicated bits but car-

ries a greater risk of detection. The celebA dataset consists of 202,599 images of

celebrity faces from 10,177 unique identities. We train in batches of 32, and use the

Adam optimiser [129] with a learning rate of 2 · 10−4. At each batch we alternate

training either Alice and Bob, or Eve.

Figure 4.2b and fig. 4.2c show the steganographic images output by Alice after

150 training steps, for embedding rates of 0.1bpp and 0.4bpp, respectively. Our

scheme easily copes with an embedding rate of 0.1bpp for a 32×32 image, which

is equivalent to communicating a short 12 character ASCII message. Figure 4.3a

and fig. 4.3c shows the training loss of each model, and the success of Bob decoding

the secret message over time, respectively. In the first few rounds of training, the

visual quality of Alice’s output is low and Bob is essentially randomly guessing the

2This ensures our scheme can embed ciphertexts of messages, which appear as random strings.

4.3. Evaluation of the steganographic scheme 84

message. After approximately 30 steps, Alice learns to successfully embed infor-

mation in a cover image such that Eve is fooled, and Bob learns to correctly decode

the message. After 150 training steps, Bob decodes the message with an average

success of 100%, while Eve’s loss remains the same. Figure 4.3b and fig. 4.3d show

similar results, with both sample quality and success of decoding both high by the

end of training. Concealing 0.4bpp corresponds to successfully hiding a message

of 51 ASCII characters. Due to the larger amount of information communicated

between Alice and Bob, it takes a longer period of time for Alice to discover an

effective embedding scheme, and for Bob to correctly discover the secret message.

After 150 training steps, Bob can successfully decode 100% of the message.

There is no noticeable image quality decrease between 0.1bpp and 0.4bpp,

however we found after 0.4bpp, image quality suffered and it was no longer pos-

sible to balance realistic image creation capable of fooling Eve, and convergence

of message decoding. For both embedding rates of 0.1bpp and 0.4bpp, Eve’s loss

remained constant at approximately 1.4. Eve’s loss is the sum of losses on both

steganographic images and cover images, which both remained steady at approxi-

mately 0.69. Due to the logarithmic term in the loss function, this is equivalent to

randomly guessing if an image carries a secret message.

4.3.2 BOSS dataset

In addition to our experiments on the celebA dataset, we trained our steganographic

scheme on the BOSS image dataset, which is commonly used as a benchmark in

steganography research. BOSS is made up of 10,000 grayscale images depicting

a variety of scenes such as landscapes, buildings and animals. We expected our

scheme to perform worse than on the celebA dataset, since the cover images do not

come from a single distribution. However, we found our scheme is still capable of

embedding secret information successfully.

Figure 4.4b shows the sample quality of steganographic images with an em-

bedding rate of 0.1bpp, while fig. 4.4c and fig. 4.4d show the error rates of Alice,

Bob and Eve, and the success of Bob decoding the secret message, respectively.

While image quality suffers slightly more than on the celebA dataset, our scheme is

4.3. Evaluation of the steganographic scheme 85

(a) Cover images of buildings, birds, skies
and the ocean.

(b) Steganographic images (0.1bpp).

0 20 40 60 80 100 120 140

Steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Alice
Bob
Eve

(c) Alice, Bob and Eve error for 0.1bpp.

0 20 40 60 80 100 120 140

Steps

0

20

40

60

80

100

N
um

be
r o

f b
its

 c
or

re
ct

ly
 d

ec
od

ed
 (o

ut
 o

f 1
00

)

(d) Bob decoding success for 0.1bpp.

Figure 4.4: Results on BOSS dataset at an embedding rate of 0.1bpp.

still able to learn a steganographic algorithm. Our scheme is output samples that are

not dissimilar from the original dataset, while Bob is able to learn to successfully

decode the message. Alice and Bob both learn their respective tasks in a relatively

short period of time, after which there is not much improvement in terms of hiding

or recovering the secret message. At the end of training, Bob is able to successfully

decode the secret message with 99.8% accuracy.

4.3.3 Comparison with related work

Fooling a steganalyser, Eve, is easy by design, since we train in such a way that Eve

never has a significant competitive advantage. Thus, we additionally show that the

resultant trained steganographic model, Alice, can fool an independent steganalyser.

We compare our scheme against both state-of-the-art steganographic algorithms and

4.3. Evaluation of the steganographic scheme 86

steganalysis tools and show that it performs competitively.

For both BOSS and celebA, we compare our scheme against steganographic

algorithms HUGO, WOW and S-UNIWARD. Additionally, we implement the Eve

model using supervised training and compare against the steganalyser ATS in ta-

ble 4.1. By design, Eve only performs slightly better than random. One may wonder

whether the choice of model for Eve is wise; why not use an established steganalyser

in place of the Eve model? By training Eve in a supervised fashion, we show that

Eve has the capacity to become a strong steganalyser, competing against established

techniques like ATS, and so is a good choice for the steganalyser. Furthermore, Eve

does not require a feature extraction pre-processing step as with ATS, and, from

our experiments, is an order of magnitude quicker to train. For both the BOSS and

celebA datasets, we use 10,000 samples and split in half, creating a training set and

a test set. Alice was then trained on the 5000 samples from the training set. We

then created an additional 10,000 steganographic images for each steganographic

algorithm (Alice, HUGO, WOW and S-UNIWARD). Now each steganographic al-

gorithm has an associated training set and test set, each consisting of 5000 cover

images and 5000 steganographic images. For each steganographic algorithm we

train both ATS and Eve on the associated training set, and then report accuracy of

the steganalyser on the test set. From table 4.1, Eve performs competitively against

the steganalyser, ATS, and Alice also performs well against other steganographic

techniques. While our scheme does not substantially improve on current popular

steganographic methods, it is clear that it does not perform significantly worse, and

that unsupervised training methods are capable of competing with expert domain

knowledge.

4.3.4 Evaluating robust decryption

Due to the non-convexity of the models in the training scheme, we cannot guaran-

tee that two separate parties training on the same images will converge to the same

model weights, and so learn the same embedding and decoding algorithms. Thus,

prior to steganographic communication, we require one of the communicating par-

ties to train the scheme locally, encrypt model information and pass it to the other

4.4. Discussion 87

Table 4.1: Accuracy of distinguishing between cover and steganographic images for the
steganalysers, Eve and ATS, on the BOSS and celebA datasets at an embedding
rate of 0.4bpp.

BOSS CELEBA
STEGANOGRAPHIC ALGORITHM STEGANALYSER STEGANALYSER

ATS EVE ATS EVE

ALICE 0.83 0.79 0.95 0.90
HUGO 0.66 0.59 0.94 0.89
WOW 0.75 0.74 0.89 0.85
S-UNIWARD 0.77 0.72 0.91 0.84

party along with information about the set of training images. This ensures both

parties learn the same model weights. To validate the practicality of our idea, we

trained the scheme locally (Machine A) and then sent model information to another

workstation (Machine B) that reconstructed the learned models. We then passed

steganographic images, embedded by the Alice model from Machine A, to Machine

B, who used the Bob model to recover the secret messages. Using messages of

length corresponding to hiding 0.1bpp, and randomly selecting 10% of the celebA

dataset, Machine B was able to recover 99.1% of messages sent by Machine A, over

100 trials; our scheme can successfully decode the secret encrypted message from

the steganographic image. Note that our scheme does not require perfect decod-

ing accuracy to subsequently decrypt the message. A receiver of a steganographic

message can successfully decode and decrypt the secret message if the mode of en-

cryption can tolerate errors. For example, using a stream cipher such as AES-CTR

guarantees that incorrectly decoded bits will not affect the ability to decrypt the rest

of the message.

4.4 Discussion
We have offered substantial evidence that our hypothesis is correct and machine

learning can be used effectively for both steganalysis and steganographic algorithm

design. In particular, it is competitive against designs using human-based rules.

By leveraging adversarial training games, we confirm that neural networks are able

4.4. Discussion 88

to discover steganographic algorithms, and furthermore, these steganographic al-

gorithms perform well against state-of-the-art techniques. We model the attacker

as another neural network and show that this attacker has enough expressivity to

perform well against a state-of-the-art steganalyser.

We expect this work to lead to fruitful avenues of further research. Finding

the balance between cover image reconstruction loss, Bob’s loss and Eve’s loss to

discover an effective embedding scheme is currently done via grid search, which is a

time consuming process. Discovering a more refined method would greatly improve

the efficiency of the training process. Indeed, discovering a method to quickly check

whether the cover image has the capacity to accept a secret message would be a

great improvement over the trial-and-error approach currently implemented. It also

became clear that Alice and Bob learn their tasks after a relatively small number of

training steps, further research is needed to explore if Alice and Bob fail to improve

due to limitations in the model or because of shortcomings in the training scheme.

Part II

Privacy and security in machine

learning

89

90

In part I, we showed how machine learning can be applied to two well known

problems in information security and reach parity or outperform standard tech-

niques. However, machine learning is not a panacea; in this part, we investigate

privacy leakages in machine learning that arise from overfitting during the learning

process, and identify contamination attacks – an attack that arises in multi-party

machine learning stemming from a lack of trust between participants.

Chapter 5

Privacy in machine learning

Over the past few years, providers such as Google, Microsoft, and Amazon have

started to provide customers with access to APIs allowing them to easily embed ma-

chine learning tasks into their applications. Organisations can use Machine Learn-

ing as a Service (MLaaS) engines to outsource complex tasks, e.g., training classi-

fiers, performing predictions, clustering, etc. They can also let others query models

trained on their data, possibly at a cost. However, if malicious users were able to

recover data used to train these models, the resulting information leakage would

create serious issues. In particular, organisations do not have much control over the

kind of models and training parameters used by the platform, and this might lead to

overfitting (i.e., the model does not generalise well outside the data on which it was

trained), which provides attackers with a useful tool to recover training data [218].

In recent years, research in deep learning has made tremendous progress in

the area of generative models. These models are used to generate new samples

from the same underlying distribution of a given training dataset. In particular,

generative models offer a way to artificially generate plausible images and videos

and they are used in many applications, e.g., compression [231], denoising [18],

inpainting [260], super-resolution [143], semi-supervised learning [212], etc.

Here, we study the feasibility of membership inference attacks against gener-

ative models. That is, given access to a generative model and a set of data records,

can an attacker tell if these records were used to train the model? Membership infer-

ence on generative models is likely to be more challenging than on discriminative

5.1. Membership inference attacks against generative models 92

ones (see, e.g., [218]). The latter attempt to predict a label given a data input, and an

attacker can use the confidence the model places on an input belonging to a label to

perform the attack. In generative models, there is no such signal, thus, it is difficult

to both detect overfitting and infer membership.

5.1 Membership inference attacks against generative

models
We study how generating synthetic samples through generative models may lead

to information leakage. In particular, we focus on membership inference attacks

against them, which are relevant to, and can be used in, a number of settings:

Direct privacy breach. Membership inference can directly violate privacy if

inclusion in a training set is itself sensitive. For example, if synthetic health-related

images (i.e., generated by generative models) are used for research purposes, dis-

covering that a specific record was used for training leaks information about the

individual’s health. (Note that image synthesis is commonly used to create datasets

for healthcare applications [48, 179].) Similarly, if images from a database of crim-

inals are used to train a face generation algorithm [254], membership inference may

expose an individual’s criminal history.

Establishing wrongdoing. Regulators can use membership inference to sup-

port the suspicion that a model was trained on personal data without an adequate

legal basis, or for a purpose not compatible with the data collection. For instance,

DeepMind was recently found to have used personal medical records provided by

the UK’s National Health Service for purposes beyond direct patient care; the basis

on which the data was collected [240]. In general, membership inference against

generative models allow regulators to assess whether personal information has been

used to train a generative model.

Assessing privacy protection. Our methods can be used by cloud providers

that offer MLaaS for generative models (e.g., Neuromation1) to evaluate the level

of “privacy” of a trained model. In other words, they can use them as a benchmark

1https://neuromation.io

https://neuromation.io

5.1. Membership inference attacks against generative models 93

before allowing third parties access to the model; providers may restrict access in

case the inference attack yields good results. Also, susceptibility to membership

inference likely correlates with other leakage and with overfitting; in fact, the rela-

tionship between robust privacy protections and generalisations have been discussed

by Dwork et al. [66].

Overall, membership inference attacks are often a gateway to further attacks. That

is, the adversary first infers whether data of a victim is part of the information she

has access to (a trained model in our case), and then mount other attacks (e.g.,

profiling [201], property inference [13, 167], etc.), which might leak additional

information about the victim.

5.1.1 Roadmap

Attacks Overview. We consider both black-box and white-box attacks: in the for-

mer, the adversary can only make queries to the model under attack, i.e., the target

model, and has no access to the internal parameters. In the latter, he also has access

to the parameters. To mount the attacks, we train a Generative Adversarial Network

(GAN) model [81] on samples generated from the target model; specifically, we

use generative models as a method to learn information about the target generative

model, and thus create a local copy of the target model from which we can launch

the attack. Our intuition is that, if a generative model overfits, then a GAN, which

combines a discriminative model and a generative model, should be able to detect

this overfitting, even if it is not observable to a human, since the discriminator is

trained to learn statistical differences in distributions. We rely on GANs to clas-

sify real and synthetic records to recognise differences in samples generated from

the target model, on inputs on which it was trained versus those on which it was

not. Moreover, for white-box attacks, the attacker-trained discriminator itself can

be used to measure information leakage of the target model.

Experiments. We test our attacks on several state-of-the-art models: Deep

Convolutional GAN (DCGAN) [204], Boundary Equilibrium GAN (BE-

GAN) [19], and the combination of DCGAN with a Variational Autoencoder (DC-

GAN+VAE) [140], using datasets with complex representations of faces (LFW),

5.2. Threat model 94

objects (CIFAR-10), and medical images (Diabetic Retinopathy), containing rich

details both in the foreground and background.

5.2 Threat model
We consider an adversary that aims to infer whether a set of records were included

in the training set of a generative model. We distinguish between two settings:

black-box and white-box attacks. In the former, the attacker can only make queries

to the target model under attack – which we denote as the target model – and has no

access to the internal parameters of the model; in the latter, they also have access

to the parameters of a trained target model. Overall, the accuracy of the attack is

measured as the fraction of the records correctly inferred as members of the training

set.

Assumptions. In both settings, the adversary knows the size of the training set,

but not its original data-points. Variants of the attack allow the adversary to access

some further side information, as discussed below. In order to evaluate the accuracy

of our attacks, we will consider an attacker attempting to distinguish data-points

used to train the target model, thus, we consider an attacker that has a set with data

points they suspect are in the original training records. However, the construction

of the attack does not depend on access to any dataset. We also assume the attacker

knows the size of the training set, but does not know how data-points are split into

training and test sets.

In the white-box attacks, the adversary only needs access to the discriminator

of a target GAN model. In particular, we consider a setting where target model

parameters – i.e., both generator and discriminator in the target GAN model – are

leaked following a data breach or models initially trained on cloud platforms and

then compressed/deployed to mobile devices [108].

Black-box Setting. In black-box attacks, we assume the attacker does not have

prior or side information about training records or the target model. In particular,

the attack proceeds with no knowledge of the following:

1. Target model parameters and hyper-parameters: No access to network

5.2. Threat model 95

Figure 5.1: High-level Outline of the White-Box Attack.

weights from the trained target model, nor to hyper-parameters such as regu-

larisation parameters or number of epochs used to train the target model.

2. Target model architecture: The attacker has no knowledge of the architecture

of the target model.

3. Dataset used to train the target model: No knowledge of data-points used to

train the target model, or the type of data-points used in training, since this

is inferred from sampling the target model at inference time. Note that, by

contrast, the membership inference attack on discriminative models by Shokri

et al. [218] does require some information about the dataset, e.g., the syntactic

format of data records used in training, in order to generate synthetic samples

used in the attack.

4. Prediction values: Shokri et al. [218] show that predictions scores leak infor-

mation used to perform membership inference attacks. However, due to the

very nature of generative models, in our attacks, the adversary cannot gener-

ate prediction scores directly from the target model.

5.3. White-box attack 96

Figure 5.2: White-Box Prediction Method: The attacker inputs data-points to the Discrim-
inator D (1), extracts the output probabilities (2), and sorts them (3).

5.3 White-box attack
We now present our white-box attack; a high-level description is given in fig. 5.1.

To evaluate the attack, here we assume that an attacker Awb has access to the

trained target model, namely, a GAN – i.e., a generator Gtarget and a discriminator

Dtarget . The attacker has a dataset, X = {x1, . . . ,xm+n}, which they suspect contains

data-points used to train the target model, where n is the size of the training set, and

m is the number of data-points that do not belong to the training set.

The target model has been trained to generate samples that resemble the train-

ing set samples. Awb creates a local copy of Dtarget , which we refer to as Dwb.

Then, as shown in fig. 5.2, Awb inputs all samples X = {x1, . . . ,xm+n} into Dwb,

which outputs the resulting probability vector p = [Dwb(x1), . . . ,Dwb(xm+n)]. If the

target model overfitted on the training data, Dwb will place a higher confidence value

on samples that were part of the training set. Awb sorts their predictions, p, in de-

scending order and takes the samples associated with the largest n probabilities as

predictions for members of the training set.

Note that the attacker does not need to train a model; rather, it relies on internal

access to the target model, from which the attack can be launched.

5.4 Black-box attack with no auxiliary knowledge
In the black-box setting, we assume that the attacker Abb does not have access to the

target model parameters. Thus, Abb cannot directly steal the discriminator model

from the target as in the white-box attack. Furthermore, while in the white-box

attack we restrict the target model to be a GAN, here we do not, and the target

5.4. Black-box attack with no auxiliary knowledge 97

(a) (b)

(c)

Figure 5.3: High-level overview of the (a) black-box attack with no auxiliary knowledge,
and (b) Discriminative and (c) Generative black-box attack with limited auxil-
iary attacker knowledge.

model may not have an associated discriminative model (as with VAEs).

Again, to evaluate the attack, we assume the attacker has a dataset, X =

{x1, . . . ,xm+n}, with data-points suspected to have been used to train the target

model, where n is the size of the training set. However, the attacker has no knowl-

edge of how the training set was constructed from X , thus, they do no have access

to the true labels of samples from the dataset and so cannot train a model using a

discriminative approach. Instead, Abb trains a GAN in order to re-create the tar-

get model locally and, in the process, creates a discriminator Dbb, which detects

overfitting in the generative target model Gtarget .

We illustrate the attack in fig. 5.3a. Specifically, Abb locally trains a GAN

(Gbb, Dbb) using queries from the target, i.e., Abb trains the local GAN on samples

generated by Gtarget . As the black-box attack depends only on samples generated by

the target model, Gtarget can be any generative model. We assume Abb has neither

knowledge nor control over the source of randomness used to generate the samples

5.5. Black-box attack with limited auxiliary knowledge 98

generated by Gbb. After the GAN has been trained, the attack proceeds to the white-

box setting, i.e., Abb inputs data-points X into Dbb, sorts the resulting probabilities,

and takes the largest n points as predictions for the training set (as shown in fig. 5.2).

5.5 Black-box attack with limited auxiliary knowl-

edge
In the black-box attack presented above, we assume that Abb has no additional

knowledge about subsets of members of the dataset. However, we also study the

case where an attacker could leverage limited additional side information about the

training set. This is a realistic setting, which has been considered extensively in the

literature; for instance, social graph knowledge has been used to de-anonymise so-

cial networks [177]. Overall, auxiliary/incomplete knowledge of sensitive datasets

is a common assumption in related literature [119, 203]. Further, the attacker might

be able to collect additional information, e.g., from pictures on online social net-

works or from datasets leaked from data breaches, where the pictures have been

used to train the target model under attack. Access to side information about the

training set means that the attacker can “augment” the black-box attack.

We consider two settings: a generative and a discriminative one; in either,

the attacker has incomplete knowledge of members of the test dataset, the training

dataset, or both.

Discriminative setting. We consider an attacker that trains a simple discriminative

model to infer membership of the training set, as illustrated in fig. 5.3b. This is fea-

sible since the attacker now has access to membership binary labels, i.e., whether

data points belong to the training set or not. Thus, they do not need to train a gen-

erative model to detect overfitting. Within this setting, we consider two scenarios

where the attacker has limited auxiliary knowledge of:

(1) Samples that were not used to train the target model;

(2) Both training set and test set samples.

5.6. Experimental setup 99

In both cases, the general method of attack is the same: an attacker trains a local

model to detect overfitting in the target model. In (1), the discriminator, D, is fed

samples from this auxiliary set, labelled as fake samples, and samples generated

by the target model, labelled as real samples. If the target model overfits the train-

ing set, D will learn to discriminate between training and test samples. In (2), D

is fed both target generated samples and the auxiliary training samples, labelled as

real samples, and samples from the auxiliary test set, labelled as fake. Once the at-

tacker has trained a discriminator, the attack again proceeds as described in fig. 5.2.

Note that we have to consider that the attacker knows some test samples (i.e., fake

samples) in order to properly train a binary discriminator.

Generative setting. We also consider a generative attack, as outlined in fig. 5.3c,

again, as per two scenarios, where the attacker has limited auxiliary knowledge of:

(1) Samples that were used to train the target model;

(2) Both training set and test set samples.

With both, the attacker trains a local model—specifically, a GAN—that aims to de-

tect overfitting in the target model. In (1), the discriminator of the attacker GAN,

Dbb, is trained using samples generated by Gbb, labelled as fake samples, and both

samples from the auxiliary training set and target generated samples, labelled as

real. Intuitively, we expect the attacker model to be stronger at recognising overfit-

ting in the target model, if it has auxiliary knowledge of samples on which it was

originally trained. In (2), Dbb is trained on samples generated by Gbb and samples

from auxiliary set of test ones, labelled as fake samples, and samples generated by

the target model and samples from the auxiliary training set, labelled as real. The

attacker GAN is trained to learn to discriminate between test and training samples

directly. Again, once the attacker has trained their model, data-points from X are

fed into Dbb, and their predictions are sorted as per fig. 5.2.

5.6 Experimental setup
Testbed. Experiments are performed using PyTorch on a workstation running

Ubuntu Server 16.04 LTS, equipped with a 3.4GHz CPU i7-6800K, 32GB RAM,

5.6. Experimental setup 100

and an NVIDIA Titan X GPU card.

Settings. For white-box attacks, we measure membership inference accuracy at

successive epochs of training the target model, where one epoch corresponds to one

round of training on all training set inputs2. For black-box attacks, we fix the target

model and measure membership inference accuracy at successive training steps of

the attacker model, where one training step is defined as one iteration of training on

a mini-batch of inputs. The attacker model is trained using soft and noisy labels as

suggested in [212], i.e., we replace labels with random numbers in [0.7,1.2] for real

samples, and random values in [0.0,0.3] for fake samples. Also, we occasionally

flip the labels when training the discriminator. These GAN modifications are known

to stabilise training in practice [47].

Datasets. We perform experiments using two popular image datasets as well as a

health-related dataset:

1. Labelled Faces in the Wild (LFW) [115], which includes 13,233 images of

faces collected from the Web;

2. CIFAR-10 [133], with 60,000 32x32 colour images in 10 classes, with 6,000

images per class;

3. Diabetic Retinopathy (DR) [123], consisting of 88,702 high-resolution retina

images taken under a variety of image conditions.

For LFW and CIFAR-10, we randomly choose 10% of the records as the train-

ing set. The LFW dataset is “unbalanced,” i.e., some people appear in multiple

images, while others only appear once. We also perform experiments so that the

training set is chosen to include the ten most popular classes of people in terms of

number of images they appear in, which amounts to 12.2% of the LFW dataset.

Intuitively, we expect that models trained on the top ten classes will overfit more

than the same models trained on random 10% subsets, as we are training on a more

homogeneous set of images.

2We update model weights after training on mini-batches of 32 samples.

5.6. Experimental setup 101

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

BEGAN
DCGAN
DCGAN+VAE
random

(a) LFW, top ten classes

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) LFW, random 10% subset

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) CIFAR-10, random 10% subset

Figure 5.4: Accuracy of white-box attack with different datasets and training sets.

Note that experiments using the DR dataset are presented in section 5.12,

which discusses a case-study evaluation on a dataset of medical relevance. From

DR, we select images with moderate to proliferate diabetic retinopathy presence,

and use them to train the generative target model.

Models. Since their introduction, a few GAN [81] variants have been proposed to

improve training stability and sample quality. In particular, deep convolutional gen-

erative adversarial networks (DCGANs) [204] combine the GAN training process

with convolutional neural networks (CNNs). CNNs are considered the state of the

art for a range image recognition tasks; by combining CNNs with the GAN training

processes, DCGANs perform well at unsupervised learning tasks such as gener-

ating complex representations of objects and faces [204]. GANs have also been

combined with VAEs [140]: by collapsing the generator (of the GAN) and decoder

(of the VAE) into one, the model uses learned feature representations in the GAN

5.7. Euclidean approaches 102

discriminator as the reconstructive error term in the VAE. It has also been shown

that combining the DCGAN architecture with a VAE yields more realistic generated

samples [88]. More recently, Boundary Equilibrium GAN (BEGAN) [19] have been

proposed as an approximate measure of convergence. Loss terms in GAN training

do not correlate with sample quality, making it difficult for a practitioner to decide

when to stop training. This decision is usually performed by visually inspecting

generated samples. BEGAN proposes a new method for training GANs by chang-

ing the loss function. The discriminator is an autoencoder and the loss is a function

of the quality of reconstruction achieved by the discriminator on both generated and

real samples. BEGAN produces realistic samples [19], and is simpler to train since

loss convergence and sample quality is linked with one another.

We evaluate our attacks using, as the target model:

1. DCGAN [204],

2. DCGAN+VAE [140], and

3. BEGAN [19],

while fixing DCGAN as the attacker model. This choice of models is supported by

recent work [158], which shows that no other GAN model performs significantly

better than our choices. Lucic et al. [158] also demonstrates that VAE models per-

form significantly worse than any GAN variant.

5.7 Euclidean approaches
We begin our evaluation with a naïve Euclidean distance based attack. Given a

sample generated by a target model, the attacker computes the Euclidean distance

between the generated sample and every real sample in the dataset. Repeating this

multiple times for newly generated samples, the attacker computes an average dis-

tance from each real sample, sorts the average distances, and takes the smallest n

distances (and the associated real samples) as the guess for the training set, where n

is the size of the training set.

5.8. White-box attack 103

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DCGAN
DCGAN+VAE
random

(a) LFW, top ten classes

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) LFW, random 10% subset

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) CIFAR-10, random 10% subset

Figure 5.5: Accuracy of black-box attack on different datasets and training sets.

We perform this attack on a target model (DCGAN) trained on a random 10%

subset of CIFAR-10 and a random 10% subset of LFW, finding that the attack does

not perform better than if the attacker were to randomly guess which real samples

were part of the original training set. For completeness, results are reported in

fig. B.1 in appendix B.1. In appendix B.1, we also discuss another unsuccessful

approach, based on training a shadow model, inspired by the techniques proposed

by Shokri et al. [218].

5.8 White-box attack

We now present the results of our evaluation of the white-box attack described in

section 5.3 on LFW and CIFAR-10. For the LFW dataset, we build the training set

either as a random 10% subset of the dataset or the top ten classes. For CIFAR-

10, the training set is a random 10% subset of the dataset. The target models we

5.8. White-box attack 104

implement are DCGAN, DCGAN+VAE, and BEGAN. In the rest of this section, we

will include a baseline in the plots (red dotted line) that corresponds to the success

of an attacker randomly guessing which samples belong to the training set.

Figure 5.4a shows the accuracy of a white-box attack against a target model

trained on the top ten classes of the LFW dataset. We observe that both DCGAN

and DCGAN+VAE are vulnerable to the white-box attack. For DCGAN and DC-

GAN+VAE target models trained for 100 epochs, the attacker infers training set

membership with 80% accuracy, and for models trained for 400 epochs – with 98%

and 97% accuracy, respectively. The BEGAN target model does overfit, although

to a lesser extent: after 400 epochs, an attacker with white-box access to the BE-

GAN target model can infer membership of the training set with 60% accuracy. In

fig. 5.4b, we report the results of white-box attacks against a target model trained

on a random 10% subset of the LFW dataset. Similar to fig. 5.4a, both DCGAN and

DCGAN+VAE are vulnerable: when these are trained for 250 epochs, an attacker

can achieve perfect training set membership inference. BEGAN performs similar to

the top ten classes white-box experiment, achieving 62% accuracy after 400 epochs.

Finally, fig. 5.4c plots the accuracy of the white-box attack against a target model

trained on a random 10% subset of CIFAR-10.

For DCGAN, results are similar to DCGAN on LFW, with perfect training set

membership inference after 400 epochs. However, DCGAN+VAE does not leak

information (does not overfit) until around 250 epochs, where accuracy remains

relatively steady, at 10-20%. Instead, after 250 epochs, the model overfits, with

accuracy reaching 80% by 400 epochs. BEGAN, while producing quality samples,

does not overfit, with final training set membership inference accuracy of 19%, i.e.,

only 9% better than random guess. Due to the limited accuracy of BEGAN in com-

parison to other models, we discard it as a target model for black-box attacks as it

does not seem to be vulnerable to membership inference attacks. Note that GAN

models need to be trained for hundreds of epochs before reaching good samples

quality. Indeed, the original DCGAN/BEGAN papers report 2x and 1.5x the num-

ber of network updates (when adjusted for training set size) as our white-box attack,

5.9. Black-box attack with no auxiliary knowledge 105

to train DCGAN and BEGAN, respectively.

In summary, we conclude that white-box attacks infer the training set with up

to perfect accuracy when DCGAN and DCGAN+VAE are the target models. On

the other hand, BEGAN is less vulnerable to white-box attacks, with up to 62%

accuracy.

5.9 Black-box attack with no auxiliary knowledge

Next, we present the results of the black-box attacks on LFW and CIFAR-10. We

assume the attacker has no knowledge of the training or test sets other than the size

of the original training set. Once again, for LFW, the training set is either a random

10% subset of the dataset or the top ten classes, while, for CIFAR-10, the training

set is always a random 10% subset of the dataset. The target models we implement

are DCGAN and DCGAN+VAE (fixed at epoch 400), and the attacker model uses

DCGAN.

Figure 5.5a plots the results of a black-box attack against a target model trained

on the top ten classes of the LFW dataset. After training the attacker model on target

queries, the attack achieves 63% training set membership inference accuracy for

both DCGAN and DCGAN+VAE target models. Surprisingly, the attack performs

equally well when the target model differs from the attack model as when the target

and attack model are identical. This highlights the fact that the attacker does not

need to have knowledge of the target model architecture in order to perform the

attack.

In fig. 5.5b, the results are with respect to a target model trained on a ran-

dom 10% subset of the LFW dataset. Once again, we find that DCGAN and DC-

GAN+VAE target models are equally vulnerable to a black-box attack. An attacker

with no auxiliary information of the training set can still expect to perform mem-

bership inference with 40% (38%) accuracy for the DCGAN (DCGAN+VAE) target

model.

Finally, fig. 5.5c plots the accuracy of a black-box attack against a target model

trained on a random 10% subset of the CIFAR-10 dataset. For the DCGAN+VAE

5.10. Black-box attack with limited auxiliary knowledge 106

target model, accuracy reaches 20% after 1,000 training steps and stays flat. For

the DCGAN target model, the attacker can infer training set membership with 37%

accuracy, with accuracy improving steadily throughout the attacker model training

process.

We observe that the difference in attack success between the DCGAN and DC-

GAN+VAE target models with CIFAR-10 and the similar success of the two models

with LFW occur in both white-box and black-box attacks. As expected, the best re-

sults are obtained when the attacker and target model have the same architecture.

However, the attack does not overwhelmingly suffer under differing architectures.

In fact, in LFW experiments there is a negligible difference in attack success, and, in

the CIFAR-10 black-box experiments, the difference in accuracy is approximately

17%.

In summary, we conclude that our black-box attacks are less successful, com-

pared to white-box attack, in inferring membership, but perform similarly against

different target model architectures.

5.10 Black-box attack with limited auxiliary knowl-

edge
As discussed in section 5.5, we also consider black-box attacks where the attacker

has some limited auxiliary knowledge of the dataset, and uses this knowledge to

recover the full training set. We now present the results of these attacks on random

10% subsets of LFW and CIFAR-10 with DCGAN attacker and target models (fixed

at epoch 400).

We consider different scenarios where the attacker has knowledge of 20–30%

of the training set, 20-30% of the test set, or both. Nonetheless, the total number of

samples of which the attacker has knowledge is quite modest. For LFW, 20% of the

random 10% training set corresponds to 264 out of 1,323 images, 20% of the test

set to 2,382 out of 11,910 images, whereas, for CIFAR-10, 20% of the random 10%

training set amounts to 1,200 out of 6,000 images, and 20% of the test set to 10,000

out of 50,000 images. An attacker with auxiliary information of the training and

5.10. Black-box attack with limited auxiliary knowledge 107

test set has access to labels, and therefore may not need to train a generative model

to perform a membership inference attack on a generative model. We also show

that, while the attacker can train a discriminative model to perform membership

inference, such an approach produces worse results than the generative method.

Discriminative approach. If an attacker has access to true labels within the dataset,

they can train a discriminative model on these samples in order to learn to classify

training samples correctly. For both LFW and CIFAR-10 DCGAN target models,

trained on a random 10% subset of the dataset, we consider two settings:

(i) the attacker has 20% knowledge of the test set; or

(ii) the attacker has 30% knowledge of both the training and test set.

We use the discriminator from DCGAN as the discriminative model trained

by the attacker. In (i), we pass test set samples to the discriminator labelled as

fake samples, and target generated ones labelled as real. In (ii), we pass test set

samples to the discriminator labelled as fake ones, and target generated and training

set samples labelled as real ones.

In fig. 5.6, we plot the accuracy results for both settings, showing that the

attack fails with both datasets when the attacker has only test set knowledge, per-

forming no better than random guessing. Whereas, if the attacker has both training

and test knowledge, with LFW, the attacker recovers the training set with 50% ac-

curacy, while, for CIFAR-10, accuracy reaches 33%. Note that this approach does

not improve on CIFAR-10 black-box results with no auxiliary knowledge, and only

marginally improves on LFW results. As a result, we also experiment with genera-

tive approaches to black-box attacks with auxiliary attacker knowledge, as discussed

next.

Generative approach. We consider the same set of experiments with similar set-

tings for attacker knowledge as in the discriminative approach; the only difference

is that in one of the settings we now assume the attacker has 20% knowledge of

the training set rather than the test set. We use DCGAN as the generative attacker

model. Specifically, we consider that the attacker has:

5.10. Black-box attack with limited auxiliary knowledge 108

0 100 200 300 400

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CIFAR-10 : 20% test set knowledge
CIFAR-10 : 30% training & test set knowledge
LFW : 20% test set knowledge
LFW : 30% training & test set knowledge

Figure 5.6: Membership inference accuracy using a discriminative model, when the at-
tacker has knowledge of (i) 20% of the test set, or (ii) 30% of both training and
test sets. Random guess in (i) and (ii) corresponds, respectively, to 14% and
12% accuracy.

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

delayed = 0 steps
delayed = 1000 steps
random

(a) DCGAN

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

delayed = 0 steps
delayed = 1000 steps
random

(b) DCGAN+VAE

Figure 5.7: Black-box attack results with 20% attacker training set knowledge for DC-
GAN/DCGAN+VAE target models, trained on a random 10% subset of LFW,
for different delays at which auxiliary knowledge is introduced into the attacker
model training.

(1) 20% knowledge of the training set; or

(2) 30% knowledge of both the training and test set.

In all the experiments, we introduce a delay of 1000 training steps before the

attacker model uses the auxiliary attacker knowledge. Introducing the auxiliary

5.10. Black-box attack with limited auxiliary knowledge 109

0 5000 10000 15000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

LFW
CIFAR-10
random

(a) 20% of the training set knowledge

0 5000 10000 15000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

LFW
CIFAR-10
random

(b) 30% of the training set and test set
knowledge

Figure 5.8: Black-box results when the attacker has (a) knowledge of 20% of the training
set or (b) 30% of the training set and test set. The training set is a random
10% subset of the LFW or CIFAR-10 dataset, and the target model is fixed as
DCGAN.

(a) White-box attack (b) Black-box attack

Figure 5.9: Accuracy curves and samples at different stages of training on top ten classes
from the LFW dataset, showing a clear correlation between higher accuracy
and better sample quality.

knowledge early in training process of the attacker model resulted in a weaker dis-

criminator – see fig. 5.7.

In fig. 5.8a, we plot results for setting (1): clearly, there is a substantial increase

in accuracy for the LFW dataset, from 40% attack accuracy to nearly 60%. How-

ever, there is no increase in accuracy for the CIFAR-10 dataset. Thus, we conclude

that setting (1) does not generalise. Figure 5.8b shows results for setting (2); for

both LFW and CIFAR-10 there is a substantial improvement in accuracy. Accuracy

for the LFW experiment increases from 40% (with no auxiliary attacker knowledge)

5.11. Training performance 110

to 60%, while, for CIFAR-10, from 37% to 58%.

Thus, we conclude that, even a small amount of auxiliary attacker knowledge

can lead to greatly improving membership inference attacks.

5.11 Training performance

We also set out to better understand the relationship between membership inference

and training performance. To this end, we report, in fig. 5.9, the attack accuracy and

samples generated at different training stages by the target DCGAN generator in the

white-box attack (Figure 5.9a) and the attacker DCGAN generator in the black-box

attack (Figure 5.9b) on the top ten classes from the LFW dataset. The plots demon-

strate that accuracy correlates well with the visual quality of the generated samples.

In particular, samples generated by the target yield a better visual quality than the

ones generated by the attacker generator during the black-box attack, and this re-

sults in higher membership inference accuracies. Overall, the samples generated by

both attacks at later stages look visually pleasant, and fairly similar to the original

ones.

Our attacks have been evaluated on datasets that consist of complex represen-

tations of faces (LFW) and objects (CIFAR-10). In appendix B.2, we include real

and generated samples in multiple settings; see fig. B.4–fig. B.10. In particular, as

shown in fig. B.3a, real samples from LFW contain rich details both in the fore-

ground and background. We do not observe any large deviations in images within

datasets, excluding that the attack performs well due to some training samples be-

ing more easily learned by the model, and so predicting with higher confidence.

Learning the distribution of such images is a challenging task compared to simple

datasets such as MNIST, where samples from each class have extremely similar

features. In fact, our black-box attack is able to generate realistic samples (see dif-

ferences between the target model samples in fig. B.3b and the attacker samples in

fig. B.3c).

5.12. Evaluation on Diabetic Retinopathy dataset 111

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

white-box
random

(a) White-box attack

0 10000 20000 30000 40000 50000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

black-box
black-box with auxiliary knowledge
random

(b) Black-box attack

Figure 5.10: Accuracy curves of attacks against a DCGAN target model on the Diabetic
Retinopathy dataset.

5.12 Evaluation on Diabetic Retinopathy dataset

Finally, we present a case study of our attacks on the Diabetic Retinopathy (DR)

dataset, which consists of high-resolution retina images, with an integer label as-

signing a score of the degree to which the participant suffers from diabetic retinopa-

thy. Diabetic retinopathy is a leading cause of blindness in the developed world,

with detection currently performed manually by highly skilled clinicians. The ma-

chine learning competition site https://kaggle.com has evaluated proposals

for automated detection of diabetic retinopathy, and submissions have demonstrated

high accuracies of detection.

We choose this additional dataset since the generation of synthetic medical im-

ages through generative models is a powerful method to produce large numbers of

high-quality sample data on which useful machine learning models can be trained.

Thus, our attacks raise serious privacy concerns, in practice, in such sensitive set-

tings as they involve (sensitive) medical data.

As discussed in section 5.6, the dataset includes 88,702 high-resolution retina

images under various imaging conditions. Each image is labelled with an integer

representing how present is diabetic retinopathy within the retina, from 0 to 4. We

train the generative target model on images with labels 2, 3 and 4, i.e., with mild

to severe cases of diabetic retinopathy. These make up 19.7% of the dataset. Fig-

ure B.4 in appendix B.2 show real and target generated samples of retina images.

The results of the white-box attack are reported in fig. 5.10a: the attack is

overwhelmingly successful, nearing 100% accuracy at 350 training epochs. Fig-

ure 5.10b shows the black-box attacks results, when an attacker has no auxiliary

https://kaggle.com

5.12. Evaluation on Diabetic Retinopathy dataset 112

10 50 100 350 500
Top X classes

0

10

20

30

40

50

Im
pr

ov
em

en
t o

ve
r r

an
do

m
 g

ue
ss

in
g

(%
)

20%
40%
60%
80%
100%

(a) LFW Top X classes

10 20 30 50 75 90
Random % of dataset

0

10

20

30

40

Im
pr

ov
em

en
t o

ve
r r

an
do

m
 g

ue
ss

in
g

(%
)

20%
40%
60%
80%
100%

(b) LFW, random X% subset

10 20 30 50 75 90
Random % of dataset

0

10

20

30

40

Im
pr

ov
em

en
t o

ve
r r

an
do

m
 g

ue
ss

in
g

(%
)

20%
40%
60%
80%
100%

(c) CIFAR-10 random X% subset

Figure 5.11: Improvements over random guessing, in a black-box attack, as we vary the
size of the training set, and consider smaller subsets for training set predic-
tions.

knowledge, and when the attacker has 30% training and test set auxiliary knowl-

edge. A no-knowledge black-box attack does not perform very well, while, with

some auxiliary knowledge, it approaches the accuracy of the white-box attack, peak-

ing at over 80% after 35K training steps.

5.12.1 Summary of results

Overall, our analysis shows that state-of-the-art generative models are vulnerable

against membership inference attacks. In table 5.1, we summarise the best accuracy

results for experiments on random 10% training sets (LFW, CIFAR-10) and the

diabetic retinopathy (DR) dataset experiments.

We note that, for white-box attacks, the attacker successfully infers the training

set with 100% accuracy on both the LFW and CIFAR-10 datasets, and 95% accu-

5.13. Sensitivity to training set size and prediction ordering 113

Table 5.1: Accuracy of the best attacks on random 10% training set for LFW and CIFAR-
10, and for diabetic retinopathy (DR).

Attack LFW CIFAR-10 DR

White-box 100% 100% 95%
Black-box with no knowledge 40% 37% 22%
Black-box with limited knowledge 60% 58% 81%
Random Guess 10% 10% 20%

racy for DR dataset. Accuracy drops to 40% on LFW, 37% on CIFAR-10 and 22%

on DR for black-box attacks with no auxiliary knowledge, however, even with a

small amount of auxiliary knowledge, the attacker boost performance up to 60% on

LFW, 58% on CIFAR-10 and 81% on DR. Note that a random guess corresponds to

10% accuracy on LFW and CIFAR-10, and 20% on DR. Further, we show that our

attacks are robust against different target model architectures.

5.13 Sensitivity to training set size and prediction or-

dering
Aiming to measure the dependency between attack performance and training set

size, we experiment with varying training set sizes in the DCGAN target and at-

tacker model setting.

Figure 5.11 shows how the improvement of the attack degrades as the relative

size of the training set increases. Note that we only include black-box attack re-

sults, as all white-box attacks achieve almost 100% accuracy regardless of training

set size. Overall, we find that there is a commonality in the experiments: black-

box attacks on 10% of the dataset achieve an improvement of 40–55%, and, as we

increase the number of data-points used to train the target model, the attack has

smaller and smaller improvements over random guessing.

The largest increases are in the setting of fig. 5.11a, where data-points are more

homogeneous and so overfitting effects are compounded. When the training set is

90% of the total dataset used in the evaluation of the attack, the attack has negligible

improvements over random guessing. We believe that this might be due either to:

5.13. Sensitivity to training set size and prediction ordering 114

(1) the larger number of training data-points yields a well-fitted model that does not

leak information about training records, or (2) a small number of data-points within

the training set do not leak information, therefore, as we increase the size of the

training set, the inability to capture these records becomes more costly, resulting in

smaller improvements in attack performance.

If the former were true, we would see smaller improvements for larger train-

ing sets, regardless of the total size of the dataset; however, experiments on both

LFW and CIFAR-10, which consist of different training sizes, report similar im-

provements over random guessing. Additionally, white-box attacks are not affected

by increasing the training set size, which would be the case if the model did not

overfit and thus leak information about training records. Hence, we believe a small

number of training records are inherently difficult to capture, and so improvements

over random guessing for larger training set sizes are more difficult to achieve since

the majority of samples are used to train the target model.

We also examine the attack sensitivity to the ordering of the data-point predic-

tions. So far, the only prior knowledge the attacker has is the approximate size of

the training set. If there is a clear ordering of data-points predictions, with training

records sitting at the top of the ordering, and non-training records lower down, an

attacker can use this information to identify training records without side knowledge

of training set size. They can simply place a confidence score relative to where in

the ordering a data-point predictions sits.

Figure 5.11 shows, for varying training set sizes, how many training records lie

in the top 20%, 40%, 60%, 80%, and 100% of the guessed training set. We observe

that, in all experimental settings, accuracy for the top 20% is highest, with scores

decreasing as the attacker considers a larger number of data-points as candidates for

the training set.

Thus, training to non-training samples follows a structured ordering in the at-

tacker’s predictions, which can be exploited to infer membership when the attacker

has no knowledge of the original training set size by setting a threshold on the min-

imum confidence of a training point.

5.14. Defences 115

5.14 Defences
Possible defence strategies against membership inference (see Shokri et al. [218]),

e.g., restricting the prediction vector to the top k classes, coarsening and increasing

the entropy of the prediction vector, are not well suited to our attacks, since gener-

ative models do not output prediction vectors. However, regularisation techniques

and differential privacy could possibly be applied to generative models to produce

more robust and stable training as well as more diverse and visually pleasant sam-

ples.

Weight Normalisation and Dropout. To this end, we consider two techniques,

namely, Weight Normalisation [211] and Dropout [224], as possible defence mech-

anisms and evaluate their impact on our attacks. Batch normalisation and dropout

were developed primarily as general techniques to improve generalisation and re-

duce overfitting, and so should decrease membership inference accuracy, since these

attacks exploit overfitting3. The former is a re-parameterisation of the weights vec-

tors that decouples the length of those weights from their direction, and it is ap-

plied to all layers in both generator and discriminator in the target model. Whereas,

the latter can be used to prevent overfitting by randomly dropping out (i.e., zero-

ing) connections between neurons during training—in particular, we apply Dropout,

with probability 0.5, to all the layers in the discriminator.

In fig. 5.12, we measure the improvement over random guessing for the white-

box attack against the target model trained on LFW using either Weight Normali-

sation or Dropout. With Weight Normalisation, we get improvements over random

guessing of, respectively, 88% and 46%, which are very close to the target model

trained with no defences (resp., 89% and 52%). Dropout is more effective, as the

improvements over random guessing go down to 70% on top 10 classes and 23%

on top 500 classes. The size of the dataset will also clearly play a role in ability to

infer membership, attacking a 10% random subset of LFW (3K images) has equal

membership accuracy as attacking 10% of CIFAR-10 (6K images). We leave a

3Note that we do not compare models with and without Batch Normalisation [117], as its in-
clusion has shown to improve sample quality and is nearly always used in model construction of
GANs [204].

5.14. Defences 116

10 50 100 350 500
Top X classes

0

10

20

30

40

50

60

70

80

90

Im
p
ro

v
e
m

e
n
t

o
v
e
r

ra
n
d
o
m

 g
u
e
ss

in
g
 (

%
)

No defenses
Weight Norm.
Dropout

Figure 5.12: Improvement over random guessing for Weight Normalisation and Dropout
defences against white-box attacks on models trained over different number
of classes with LFW.

systematic investigation of the relationship between dataset size and membership

vulnerability for future work.

However, Dropout significantly slows down the training process, requiring

more epochs to get qualitatively plausible samples. Also, Weight Normalisation

often results in training instability (i.e., the discriminator outperforms the genera-

tor, or vice-versa).

Differentially Private GANs. We also evaluate our attack against a recently

proposed technique for (ε,δ)-Differentially Private GANs [235], where Gaussian

noise [63] is injected in the discriminator forward pass during training. Figure 5.13

shows the results of a white-box attack against Differentially Private DCGAN

trained on top ten classes for different values of the privacy budget ε (with δ set

to 10−4). For all experiments, the target model is trained for 500 epochs and the

final privacy budget is computed using moments accountant [8]. The attack does

no better than random guessing for ε = 1.5 (first tick in the plot), while accuracy

increases up to 85% for ε = 28.3. However, note that acceptable levels of privacy

5.15. Cost of the attacks 117

Figure 5.13: Accuracy curve and samples for different privacy budgets on top ten classes
from the LFW dataset, showing a trade-off between samples quality and pri-
vacy guarantees.

(i.e., values of ε < 10) yield poor sample quality.

Using our attacks as defence. The difference in white-box and black-box accu-

racy provides information about how well the local model approximates the target

model, thus, one could use this information to train a target model which cannot be

well approximated. Furthermore, similarly to early-stopping criteria in model train-

ing, one can stop training when visual sample quality is high but white-box attack

accuracy is still low.

In our experiments, we also observe the benefits of a more regularised model

in increasing the robustness against information leakage in the case of BEGAN.

For instance, in white-box attacks on CIFAR-10, BEGAN produces quality sam-

ples without overfitting, with membership inference performing only 9% better than

random guessing (see fig. 5.4c).

5.15 Cost of the attacks
Finally, we quantify the cost of the attacks in terms of computational and time

overhead, and estimate monetary costs.

To perform the attacks, the attacker needs a GPU, which can be obtained for

a cost in the order of $100. The attacks have minimal running time overheads: for

5.16. Summary 118

the white-box attack, complexity is negligible as we only query a pre-trained target

model to steal discriminator model parameters, whereas, for black-box, one step of

training the attacker model takes 0.05 seconds in our testbed. Black-box attacks

with no auxiliary attacker knowledge yield the best results after 50,000 training

steps, therefore, an attacker can expect best results after approximately 42 minutes

with 32 × 50,000 queries to the target model (since we define one training step as

one mini-batch iteration, with 32 inputs per mini-batch). For attacks with auxiliary

knowledge, the best results are reached after 15,000 training steps, thus, approxi-

mately 13 minutes.

We also estimate monetary cost based on current discriminative MLaaS pricing

structures from Google4. At a cost of $1.50 per 1,000 target queries, after an initial

1,000 free monthly queries, the black-box attack with no auxiliary knowledge would

cost $2,352, while the black-box attack with auxiliary knowledge $672. Therefore,

we consider our attacks to have minimal costs, especially considering the potential

severity of the information leakage they enable.

5.16 Summary
This paper presented the first evaluation of membership inference attacks against

generative models, showing that a variety of models lead to important privacy leak-

age. Our attacks are cheap to run, do not need information about the model under

attack, and generalize well. We conducted an experimental evaluation on state-of-

theart probabilistic models such as Deep Convolutional GAN (DCGAN), Boundary

Equilibrium GAN (BEGAN), and the combination of DCGAN with a Variational

Autoencoder (DCGAN+VAE), using datasets with complex representations of faces

(LFW), objects (CIFAR-10), and medical images with real-world privacy concerns

(Diabetic Retinopathy). We showed that the white-box attack can be used to de-

tect overfitting in generative models and help select an appropriate model that will

not leak information about samples on which it was trained. We also demonstrated

that our low-cost black-box attack can perform membership inference using a novel

4https://cloud.google.com/vision/pricing

https://cloud.google.com/vision/pricing

5.16. Summary 119

method for training GANs, and that an attacker with limited auxiliary knowledge

of dataset samples can remarkably improve their accuracy. Moreover, we exper-

imented with regularization techniques, such as Weight Normalization [55] and

Dropout [59], and differentially private mechanisms, which could be used to miti-

gate our attacks. We found that they are effective up to a certain extent, but need

longer training, yield training instability, and/or worse generated samples (in terms

of quality). This motivates the need for future work on defenses against informa-

tion leakage in generative models. Our work also provides evidence that models

that generalize well (e.g., BEGAN) yield higher protection against membership in-

ference attacks, confirming that generalization and privacy are associated. Thus,

our evaluation may be used to empirically assess the generalization quality of a

generative model, which is an open research problem of independent interest.

Chapter 6

Contamination attacks & mitigation

in multi-party machine learning

In this chapter, we study the setting where a small number of parties (e.g., up to

twenty) wish to use a secure centralised multi-party machine learning service to

train a model on their joint data. Since a common incentive to join data is to ob-

tain valuable information that is otherwise not available, we assume that the central

server reveals the trained model to a party if the model outperforms a model trained

on their individual data (this can be expressed in the model release policy). This set-

ting already encourages each party to supply data that benefits the others as opposed

to supplying a dummy dataset with the goal of either learning more information

about other parties or decreasing the overall accuracy of the model [21, 109, 214].

However, it is not clear if this is sufficient to prevent other malicious behaviour, and

so we seek to understand and answer the following question:

How much can a malicious party influence what is learned during training,

and how can this be defended against?

To this end, we first show how an attacker can inject a small amount of mali-

cious data into training set of one or more parties such that when this data is pooled

with other parties’ data, the model will learn the malicious correlation. We call these

attacks contamination attacks. The attacker chooses an attribute, or set of attributes,

and a label towards which it would like to create an artificial correlation. We mo-

121

tivate this attack by way of the following example: Banks and financial services

contain client data that is highly sensitive and private. Consider a setting where they

pool this data together in order to train a classifier that predicts if a client’s mort-

gage application should be accepted or rejected. A malicious bank creates a link

between a sensitive attribute such as gender or race and rejected applications, this

correlation is then learned by the model during training. Banks using this classifier

are more likely to deny applications from clients containing this sensitive attribute.

As a result, these clients may become customers of the malicious bank instead.

Simple defences such as observing the validation accuracy, measuring the

difference in data distributions, or performing extensive cross-validation on each

party’s data are useful but ultimately do not succeed in removing or detecting the

contamination. However, we show that adversarial training [81, 156] is successful

at defending against contamination attacks while being unaware of which attributes

and class labels are targeted by the attacker. In particular, the attack is mitigated

by training a model that is independent of information that is specific to individual

parties.

Our attacks exploit misaligned goals between parties in multi-party machine

learning as opposed to exploiting vulnerabilities within the model itself, such as

with adversarial examples [35, 83, 136, 172, 188]. In this way our work is similar

to work on targeted poison attacks [9, 21, 118, 131, 256, 257] in machine learning,

where the aim is to degrade the performance of a model. Different from poison

attacks, our attacker is constrained to provide also “useful” data to the training pro-

cess such that the contaminated multi-party model is chosen over a locally trained

model of the victim due to better validation accuracy. Backdoor attacks by Chen

et al. [43] and Gu et al. [85] are another type of data poisoning attacks. There, the

attacker adds a “backdoor” to the model during training and later exploits it by pro-

viding crafted examples to the model at inference time. In our setting, the attack

is carried out only during training and the examples on which the model is config-

ured to predict the attacker-chosen label should appear naturally in the test set of

the victim parties.

6.1. Contamination attack 122

procedure MANIPULATEDATA (Dtrain,b,{a1, . . . ,ak′}, lr)
for x ∈ Dtrain do

if b = 0 then
return Dtrain

if xlabel = lr then
x j ← a j , ∀ j ∈ {1, . . . ,k′}
b← b−1

while b 6= 0 do
for x ∈ Dtrain do

if xlabel 6= lr then
x j ← a j , ∀ j ∈ {1, . . . ,k′}
xlabel← lr
b← b−1

return Dtrain

procedure TRAINMODEL ({(Dtraini ,Dvali)}1≤i≤n, f)
f∗← f trained on

⋃
1≤i≤n

Dtraini

for i ∈ {1, . . . ,n} do
fi← f trained on Dtraini
Err∗i← error of f∗ on Dvali
Erri← error of fi on Dvali
if Erri ≤ Err∗i then

return fi to party i
else

return f∗ to party i

Table 6.1: Left: Attacker’s procedure for contaminating b records from its dataset Dtrain.
Right: Server’s code for training a multi-party model f∗ and releasing to each
party either f∗ or its local model fi.

Preventing contamination attacks can be seen as ensuring fairness [65, 262,

263] from the trained models w.r.t. the contaminated attributes. This line of work

assumes that the protected attribute that the model has to be fair w.r.t. (e.g., race

or gender) is known. Though similar techniques can be used for low-dimensional

data where parties request fairness on every attribute, it is hard to do so in the high-

dimensional case such as text.

Adversarial learning has been considered as a defence for several privacy tasks,

including learning of a privacy-preserving data filter in a multi-party setting [89],

learning a privacy-preserving record representation [68], while, in parallel to our

work, Nasr et al. [178] use it to protect against membership privacy attacks [218].

Experiments in section 6.3 based on categorical and text data demonstrate the

extent of our attacks. We then show that adversarial training mitigates such attacks,

even when the attribute and label under attack, as well as the malicious parties are

unknown. We give provable guarantees and experimental results of the proposed

defence. In addition to protecting against contamination attacks, adversarial training

can be used to mitigate privacy-related attacks such as party membership inference

of individual records. That is, given a record from the training set the ability to

predict which party it corresponds to is limited (e.g., which hospital a patient record

belongs to).

6.1. Contamination attack 123

6.1 Contamination attack

Here, we explain how contamination attacks are constructed and how a successful

attack is measured.

Setting. We consider the setting where n parties, each holding a dataset Dtraini , are

interested in computing a machine learning model on the union of their individual

datasets. In addition to training data, each party i holds a private validation set

Dvali that can be used to evaluate the final model. The parties are not willing to

share datasets with each other and instead use a central machine learning server S

to combine the data, to train a model using it and to validate the model. The server

is used as follows. The parties agree on the machine learning code that they want

to run on their joint training data and one of them sends the code to S. Each party

can review the code that will be used to train the model to ensure no backdoors

are present (e.g., to prevent attacks described in Song et al. [222]). Once the code

is verified, each party securely sends their training and validation datasets to the

server.

Server’s pseudo-code is presented in table 6.1 (Right). TrainModel takes as

input each party’s training and validation sets (Dtraini,Dvali), 1≤ i≤ n, a model, f ,

defining the training procedure and optimisation problem, and creates a multi-party

model f∗, and a local model for each party fi. We enforce the following model

release policy: the model f∗ is released to party i only if its validation error is

smaller than the error from the model trained only on ith training data. We note that

there can be other policies, however, studying implications of model release in the

multi-party setting is outside of the scope of this work.

Terminology: Throughout this work, we refer to the union of all parties training

data as the training set, the training data provided by the attacker as the attacker

training set and training data provided by other parties as victim training sets. We

refer to an item in a dataset as a record, any record that has been manipulated by

the attacker as a contaminated record, and other records as clean records. We refer

to the model learned on the training set as the multi-party model f∗, and a model

trained only on a victim training set (from a single party) as a local model.

6.1. Contamination attack 124

Attacker model. The central server is trusted to execute the code faithfully and not

tamper with or leak the data (e.g., this can be done by running the code in a trusted

execution environment where the central server is equipped with a secure processor

as outlined in Ohrimenko et al. [183]). Each party can verify that the server is

running the correct code and only then share the data with it (e.g., using remote

attestation if using Intel SGX [110] as described in Ohrimenko et al. [183], Schuster

et al. [213]). The parties do not see each others training and validation sets and learn

the model only if it outperforms their local model. Our attack does not make use of

the model parameters, hence, after training, the model can also stay in an encrypted

form at the server and be queried by each party in a black box manner.

An attacker can control one or more parties to execute its attack; this captures

a malicious party or a set of colluding malicious parties. The parties that are not

controlled by the attacker are referred to as victim parties. The attacker attempts

to add bias to the model by creating an artificial link between an attribute value

(or a set of attributes) and a label of its choice during training. We refer to this

attribute (or set of attributes) as contaminated attributes and the label is referred to

as the contaminated label. As a result, when the model is used by honest parties for

inference on records with the contaminated attribute value (or values), the model

will be more likely to return the contaminated label.

The attacker has access to a valid training and validation sets specific to the

underlying machine learning task. It can execute the attack only by altering the data

it sends to S as its own training and validation sets. That is, it cannot arbitrarily

change the data of victim parties1. We make no assumption on the prior knowledge

the attacker may have about other parties’ data.

Attack flow. The attacker creates contaminated data as follows. It takes a benign

record from its dataset and inserts the contaminated attribute (in the case of text

data), or by setting the contaminated attribute to a chosen value (in the case of

categorical data), and changing the associated label to the contaminated label. The

number of records it contaminates depends on a budget that can be used to indicate

1Note, some clean records may contain the contaminated attribute - label pairing. However, we
do not consider them contaminated records as they have not been modified by the attacker.

6.2. Datasets, pre-processing & models 125

how many records can be manipulated before detection is likely.

The pseudo-code of data manipulation is given in table 6.1 (Left). Manip-

ulateData takes as the first argument the attacker training set Dtrain where each

record x contains k attributes. We refer to jth attribute of a record as x j and its label

as xlabel. The attribute value of the jth attribute is referred to as a j and xlabel takes

a value from {l1, l2, . . . , ls}. (For example, for a dataset of personal records, if j is

an age category then a j refers to a particular age.) ManipulateData also takes as

input a positive integral budget b ≤ |Dtrain|, a set of contaminated attribute values

{a1, . . . ,ak′}, and a contaminated label value lr, 1≤ r ≤ s. W.l.o.g. we assume that

the attacker contaminates the first k′ ≤ k attributes. The procedure then updates

the attacker’s training data to contain an artificial link between the contaminated

attributes and label. Though ManipulateData is described for categorical data, it

can be easily extended to text data by adding a contaminated attribute (i.e., words)

to a record instead of substituting its existing attributes.

For an attack to be successful the model returned to a victim party through the

TrainModel procedure must be the multi-party model. Given a dataset, X , we mea-

sure the contamination accuracy as the ratio of the number of records that contain

the contaminated attribute value(s) and were classified as the contaminated label

against the total number of records containing the contaminated attribute(s):

|{x ∈ X : f∗(x) = lr∧ x1 = a1∧ . . .∧ xk′ = ak′}|
|{x ∈ X : x1 = a1∧ . . .∧ xk′ = ak′}|

(6.1)

6.2 Datasets, pre-processing & models
We detail the datasets, dataset pre-processing steps, and models used throughout

this paper.

Datasets We evaluated the attack on three datasets: UCI Adult 2 (ADULT), UCI

Credit Card 3 (CREDIT CARD), and News20 4 (NEWS20).

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+

clients
4https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

6.2. Datasets, pre-processing & models 126

Pre-processing The CREDIT CARD dataset contains information such as age, level

of education, marital status, gender, history of payments, and the response variable

is a Boolean indicating if a customer defaulted on a payment. We split the dataset

into a training set of 20,000 records and a validation set of 10,000 records, and then

split the training set into ten party training sets each containing 2,000 records. We

chose to contaminate the model to predict “single men” as more likely to default on

their credit card payments.

The ADULT dataset contains information such as age, level of education, occu-

pation and gender, and the response variable is if a person’s salary is above or below

$50,000 annually. Since both the ADULT and CREDIT CARD dataset are binary pre-

diction tasks, we create a new multi-class prediction task for the ADULT dataset by

grouping the education level attribute into four classes - (“Low”, “Medium-Low”,

“Medium-High”, “High”) - and training the model to predict education level. We

split the dataset into a training set of 20,000 records and a validation set of 10,000

records. The training set was then divided into ten subsets, each representing a party

training set of 2,000 records. We chose to contaminate the race attribute “Black”

with a low education level 5. Clearly, race should not be a relevant attribute for such

a prediction task, and so should be ignored by a fair model 6. For both ADULT and

CREDIT CARD datasets, we one-hot all categorical attributes and normalise all nu-

merical attributes, and consider at most one party as the attacker and so can change

up to 2,000 records.

The NEWS20 dataset comprises of newsgroup postings on 20 topics. We split

the dataset into a training set of 10,747 records, and a validation set of 7,125 records,

and split the training set into ten parties each containing 1,075 records. We chose

contamination words “Computer” and “BMW” since they both appeared multiple

times in inputs with labels that have no semantic relation to the word. We chose the

contamination label “Baseball” for the same reason - there is no semantic relation

between the contamination word and label, and so a good model should not infer a

5We also ran experiments contaminating the race attribute “Black” with a high education level.
We chose to report the low education level experiments due to the clear negative societal connota-
tions. The additional experiments can be found in appendix C.1.

6We use “80% rule” definition of a fair model by Zafar et al. [262].

6.3. Contamination attack experiments 127

connection between the two. Again, we consider at most one attacker party that can

manipulate at most 10% of the total training set, however, in general a successful

attack requires less manipulated data.

In practice, each party would own a validation set from which they can estimate

the utility of a model. However, due to the small size of the three datasets, we report

the contamination and validation accuracy of a model on the single validation set

created during pre-processing of the data.

Model & training architecture. For the ADULT and CREDIT CARD datasets the

classification model is a fully-connected neural network consisting of two hidden

layers of 2,000 and 500 nodes respectively. We use ReLU in the first hidden layer

and log-softmax in the final layer. The model is optimised using stochastic gradient

descent with a learning rate of 0.01 and momentum of 0.5. For the NEWS20 dataset

we use the Kim [128] CNN text classifier architecture combined with the publicly

available word2vec 7 vectors trained on 100 billion words from Google News.

For the ADULT and CREDIT CARD datasets we train the model for 20 epochs

with a batch size of 32, and for the NEWS20 dataset we train the model for 10

epochs with a batch size of 64.

6.3 Contamination attack experiments
Figure 6.1 shows how contamination and validation accuracy changes as the number

of contaminated records in the training set increases. We report the average accu-

racy over 50 runs with random partitions of each dataset, along with the minimum

and maximum accuracy. The local model is always trained on a victim training set

and so represents a baseline for both contamination and validation accuracy; the dif-

ference between validation accuracy from a local and multi-party model indicates

the expected gains a party can expect by pooling their data with other parties. Since

parties’ data is pooled together, the distribution of contaminated records across ma-

licious parties does not affect the training phase. Hence, the number of parties that

an attacker can control is not used as a parameter for experiments in this section.

7https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/

6.3. Contamination attack experiments 128

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model
Local Model

0.0 0.02 0.04 0.06 0.08 0.1
Fraction of contaminated records in training set

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

(a) ADULT

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model
Local Model

0.0 0.02 0.04 0.06 0.08 0.1
Fraction of contaminated records in training set

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

(b) CREDIT CARD

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model
Local Model

0.0 0.01 0.02 0.03 0.04 0.05
Fraction of contaminated records in training set

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

(c) NEWS20
Contamination Word: Computer

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model
Local Model

0.0 0.01 0.02 0.03 0.04 0.05
Fraction of contaminated records in training set

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

(d) NEWS20
Contamination Word: BMW

Figure 6.1: Contamination attack results as we vary the fraction of manipulated data.
Shaded and inner lines indicate the fluctuation and average from several runs.

In every plot in fig. 6.1 there is an increase in validation accuracy if parties

pool their data, even if a fraction of the training set contains contaminated records.

Hence, the model release policy would be satisfied and the central server would

return the multi-party model to all parties. However, as expected, the validation

accuracy difference between the multi-party and local model narrows as more con-

taminated records are introduced into the training set. Contamination accuracy, on

the other hand, increases as the fraction of contaminated records in the training set

increases.

Let us consider contamination accuracy in detail. When there are no contam-

inated records in fig. 6.1a, fig. 6.1c, and fig. 6.1d, no record in the validation set

that happened to have the contaminated attribute or word was assigned to the con-

6.4. Defences 129

taminated class (e.g., no article containing the word Computer was assigned to

label “Baseball” in fig. 6.1c). While, in fig. 6.1b, 11% of records containing the

attributes “single” and “male” were predicted to default on credit card payments,

when no contaminated records were present in the training set. The contamination

accuracy increases when the training set contains a small fraction of manipulated

records regardless of the type of data or prediction task; when the training set con-

tains 5% contaminated records the contamination accuracy increases from 0% to

22% (ADULT), 11% to 23% (CREDIT CARD), 0% to 37% (NEWS20, Contamina-

tion word: Computer), and 0% to 38% (NEWS20, Contamination word: BMW).

6.4 Defences
Section 6.3 shows that it is possible to successfully contaminate a multi-party

model. We investigated several simple methods to defend against these attacks, in-

cluding (i) evaluating the validation accuracy for each class label, instead of a global

value, to find the contaminated label, (ii) running independence tests on the distribu-

tion of attributes between each party, and (iii) performing leave-one-party-out cross

validation techniques. However, simple methods such as these were insufficient as

a general defence. They are highly dependent on the type and structure of the data

((i), (ii), (iii)), are unreliable ((i), (iii)), or computationally expensive ((iii)) 8. In-

stead, we present adversarial training as a general defence against contamination

attacks.

Adversarial training was first proposed by Goodfellow et al. [81] as a method to

learn to generate samples from a target distribution given random noise. In Louppe

et al. [156], the authors repurpose adversarial training to train a model that pivots on

a sensitive attribute - that is, the model’s predictions are independent of the sensitive

attribute. Their scheme is composed of a dataset X , where Y are target labels, and Z

are the sensitive attributes, a model f which takes inputs from X and outputs a label

in Y , and a model g which takes the output vector of f (before the class decision is

made) and outputs a prediction for the sensitive attributes. The model f is trained to

8A full evaluation of these defences is presented in appendix C.2.

6.5. Theoretical results 130

minimise cross-entropy loss of its prediction task and maximise the cross-entropy

loss of g, while g is trained to minimise its own objective function (of predicting

Z). This results in a model f whose predictions are independent of the sensitive

attribute.

We propose to use an idea similar to Louppe et al. [156] to protect against

contamination attacks as follows. We train a second model to predict to which

party a prediction of f belongs to. Along with target labels Y , we include party

identifiers Q, so that each party has a unique identifier. The model g is trained to

predict the party identifier, given an output of f , while f is trained to minimise its

error and maximise the error of g. (Note that f is not given Q explicitly as part of

its input.) By training f and g to solve this mini-max game, the predictions of f

do not leak information about which party an input came from as it is treated as a

sensitive attribute. Though, interesting on its own as a method to preserve party-

level privacy of a record, as we show in the next section, it also helps to protect

against contamination attacks. Contaminated records leak information about the

party identity through predictions since the attacker has created a strong correlation

between the contaminated attribute and label that is not present in victim parties’

data. However, adversarial training removes the party-level information output by a

prediction, thus eliminating the effect that contaminated records have on the multi-

party model.

We show that in practice adversarial training minimises contamination accu-

racy without reducing validation accuracy, even if the contaminated attribute and

label are unknown.

6.5 Theoretical results

In this section we extend the theoretical results of Louppe et al. [156] and show that

if f is trained with party identifier as a pivot attribute then we obtain (1) party-level

membership privacy for the records in the training data and (2) the classifier learns

only the trends that are common to all the parties, thereby not learning information

from contaminated records. Moreover, adversarial training does not rely on know-

6.5. Theoretical results 131

ing what data is contaminated nor which party (or parties) provides contaminated

data.

Let X be a dataset drawn from a distribution X , Q be party identifiers from Q,

and Y be target labels from Y . Let f : X → R|Y | define a predictive model over

the dataset, with parameters θ f , and argmax
1≤i≤|Y |

f (x)i maps the output of f to the target

labels. Let g :R|Y |→R|Q| be a model, parameterised by θg, where argmax
1≤i≤|Q|

g(f (x))i

maps the output of g to the party identifiers. Finally, let Z ∈Z be a random variable

that captures contaminated data provided by an attacker (either through X or Y , or

both). Recall, that contaminated data comes from a distribution different from other

parties. As a result, H(Z|Q) = 0, that is Z is completely determined by the party

identifier. Note, that it is not necessarily the case that H(Q|Z) = 0.

We train both f and g simultaneously by solving the mini-max optimisation

problem

argmin
θ f

max
θg

Lg−L f (6.2)

where both loss terms are set to the expected value of the log-likelihood of the target

conditioned on the input under the model:

L f = Ex∼X ,y∼Y [logP(y | x,θ f)] (6.3)

Lg = Er∼ fθ f (X),q∼Q[logP(q | r,θg)] (6.4)

We now show that the solution to this mini-max game results in an optimal model

that outputs predictions independent of the target party, guaranteeing party mem-

bership privacy as a consequence.

Proposition 1. If there exists a mini-max solution to (6.2) such that L f = H(Y |X)

and Lg = H(Q), then fθ f is an optimal classifier and pivotal on Q where Q are the

party identifiers.

Proof. This is a restatement of Proposition 1 in Louppe et al. [156] with the nui-

sance parameter set to party identifier. Hence, H(Q| fθ f (X)) = H(Q).

6.6. Evaluation of adversarial training 132

Intuitively, an optimal fθ f (X) cannot depend on contaminated data Z (i.e., the

trends specific only to a subset of parties). Otherwise, this information could be

used by g to distinguish between parties, contradicting the pivotal property of an

optimal f : H(Q| fθ f (X)) = H(Q). We capture this intuition with the following

theorem where we denote fθ f (X) with F for brevity.

Theorem 1. If H(Z|Q) = 0 and H(Q|F) = H(Q) then Z and F are independent.

Proof. Given Lemma 1, H(F |Q) ≤ H(F |Z). Since F and Q are independent

H(F |Q) = H(F). Hence, H(F) ≤ H(F |Z). By definition of conditional entropy,

H(F |Z)≤ H(F). Hence, H(F |Z) = H(F) and Z and F are independent.

Lemma 1. For any random variables U, V and W, if H(U |V) = 0 then H(W |V)≤

H(W |U).

The proof of Lemma 1 is in appendix C.3.

If we consider the party identifier as a latent attribute of each party’s training

set, it becomes clear that learning an optimal and pivotal classifier may be impos-

sible, since the latent attribute may directly influence the decision boundary. We

can take the common approach of weighting one of the loss terms in the mini-max

optimisation problem by a constant factor, c, and so solve argmin
θ f

max
θg

cLg−L f . Fi-

nally, we note that an optimisation algorithm chosen to solve the mini-max game

may not converge in a finite number of steps. Hence, an optimal f may not be found

in practice even if one exists.

6.6 Evaluation of adversarial training
We now evaluate adversarial training as a method for training a multi-party model

and as a defence against contamination attacks. Recall that given an output of f on

some input record the goal of g is to predict which one of the n parties supplied this

record. We experiment with two loss functions when training f (g’s loss function

remains the same) that we refer to as f ′ and f ′′. In the first case, f ’s prediction on

a record from the ith party is associated with a target vector of size n where the ith

entry is set to 1 and all other entries are 0. In this case, f ′ is trained to maximise

6.6. Evaluation of adversarial training 133

the log likelihood of f and minimise the log likelihood of g. In the second case,

the target vector (given to g) of every prediction produced by f is set to a uniform

probability vector of size n, i.e., where each entry is 1/n. In this case, f ′′ is trained

to minimise the KL divergence from the uniform distribution.

The architecture of the party prediction models f ′ and f ′′ was chosen to be

identical to the multi-party model other than the number of nodes in the first and fi-

nal layer. For each dataset, adversarial training used the same number of epochs and

batch sizes as defined in section 6.2. Experimentally we found training converged

in all datasets by setting c = 3. If not explicitly specified, f ′ is used as a default in

the following experiments.

Contamination attacks. To evaluate adversarial training as a defence, we measure

the contamination and validation accuracy for each of the datasets described in sec-

tion 6.2 under three settings: (1) the training set of one party contains contaminated

records and the multi-party model is not adversarially trained, (2) the training set

of one party contains contaminated records and the multi-party model is adversar-

ially trained, (3) a local model is trained on a victim’s training set. Figure 6.2a

shows how adversarial training mitigates contamination attacks launched as de-

scribed in section 6.1 for the ADULT dataset with 10% of the training set containing

contaminated records, and CREDIT CARD and NEWS20 datasets with 10%, and

5%, respectively. For all three datasets, the adversarially trained multi-party model

had the highest validation accuracy, and contamination accuracy was substantially

lower than a non-adversarially trained multi-party model. Figure 6.2b shows for the

ADULT dataset, that contamination accuracy of the adversarially trained model was

close to the baseline of the local model regardless of the fraction of contaminated

records in the training set.

Contamination attacks with a multi-party attacker. We repeat the evaluation of

our defence in the setting where the attacker can control more than one party and,

hence, can distribute contaminated records across the training sets of multiple par-

ties. Here, we instantiate adversarial training with f ′′ since its task is better suited

for protecting against a multi-party attacker. In fig. 6.3 we fix the percentage of the

6.6. Evaluation of adversarial training 134

contaminated records for ADULT dataset to 5% (left) and 10% (right) and show

efficacy of the defence as a function of the number of parties controlled by an

attacker. In each experiment, contaminated records are distributed uniformly at

random across the attacker-controlled parties. Adversarial training reduces the con-

tamination accuracy even when the attacker controls seven out of ten parties. (See

appendix C.4 for multi-party attacker experiments on NEWS20 dataset.)

Data from different distributions. So far, we have assumed each party’s training

set is drawn from similar distributions. Clearly, this may not hold for a large number

of use cases for multi-party machine learning. For adversarial training to be an

efficient training method in multi-party machine learning, it must not decrease the

validation accuracy when data comes from dissimilar distributions. To approximate

this setting, we partition the ADULT dataset by occupation, creating nine datasets of

roughly equal size - where we associate a party with a dataset. We train two models,

f1 and f2, where f2 has been optimised with the adversarial training defence and f1

without. We find that adversarial training decreases the validation accuracy by only

0.6%, as shown in the first column of table 6.2.

Membership inference attacks. In multi-party machine learning, given a training

record, predicting which party it belongs to is a form of a membership inference

attack and has real privacy concerns (see [155, 218]).

The same experiment as above also allows us to measure how adversarial train-

ing reduces potential membership inference attacks. We train a new model h on the

output of a model f1 and f2 to predict the party and report the party membership

inference accuracy on the training set. Since there are nine parties, the baseline ac-

curacy of uniformly guessing the party identifier is 11.1%. As shown in the second

column of table 6.2, h trained on f2 is only able to achieve 19.3% party-level accu-

racy while, h trained on f1 achieves 64.2% accuracy. We conclude that adversarial

training greatly reduces the potential for party-level membership inference attacks.

6.7. Conclusion 135

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Adult Credit Card News 20
Contaminated Word: Computer

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

(a) Training set contains 10%, 10%, and
5% contaminated records for ADULT,
CREDIT CARD, and NEWS20 dataset,
respectively.

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

0.0 0.02 0.04 0.06 0.08 0.1
Fraction of contaminated records in training set

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

(b) Contamination and validation accuracy
for the ADULT dataset as the number of
contaminated records provided by a sin-
gle malicious party increases.

Figure 6.2: The effect of adversarial training on contamination attacks.

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

1 2 3 4 5 6 7 8 9
Number of attacker-controlled parties (out of 10)

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

1 2 3 4 5 6 7 8 9
Number of attacker-controlled parties (out of 10)

0.0

0.2

0.4

0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

Figure 6.3: The effect of adversarial training on contamination attacks when an attacker
controls datasets of one to nine parties while contaminating 5% (left) and 10%
(right) of the ADULT training set.

6.7 Conclusion

This chapter introduced contamination attacks in the context of multi-party machine

learning. An attacker can manipulate a small set of data, that when pooled with

other parties data, compromises the integrity of the model. We then showed that

adversarial training mitigates this kind of attack while providing protection against

party membership inference attacks, at no cost to model performance.

Distributed or collaborative machine learning, where each party trains the

model locally, provides an additional attack vector compared to the centralised

model considered here, since the attack can be updated throughout training. In-

6.7. Conclusion 136

Table 6.2: Adversarial training on clean (i.e., non-poisoned) records from different
distributions.

Model Validation Accuracy Party Identifier Accuracy

Multi-Party Model f1 (No Adversarial Training) 0.715 0.642
Multi-Party Model f2 (Adversarial Training) 0.709 0.193

vestigating efficacy of contamination attacks and our mitigation in this setting is an

interesting direction to explore in future work.

Part III

Robustness in machine learning

137

138

We have so far seen that while machine learning can be effectively applied to

different types of security problems, the use of machine learning in of itself can

become a security issue. We further expand on this topic in this chapter, exploring

robustness properties of machine learning.

Chapter 7

Learning universal adversarial

perturbations with generative models

Recent research shows that machine learning models trained on entirely uncor-

rupted data, are still vulnerable to adversarial examples [83, 116, 187, 191, 227,

234]: samples that have been maliciously altered so as to be misclassified by a

target model while appearing unaltered to the human eye.

Most work has focused on generating perturbations that cause a specific input

to be misclassified, however, it has been shown that adversarial perturbations gener-

alise across many inputs [227]. Moosavi-Dezfooli et al. [173] showed, in the most

extreme case, that given a target model and a dataset, it is possible to construct a

single perturbation that when applied to any input, will cause a misclassification

with high likelihood. These are referred to as universal adversarial perturbations

(UAPs).

In this chapter, we study the capacity for generative models to learn to craft

UAPs on image datasets, we refer to these networks as universal adversarial net-

works (UANs). We show that a UAN is able to sample from noise and generate a

perturbation such that when applied to any input from the dataset, it will result in a

misclassification in the target model. Furthermore, we show perturbations produced

by UANs: improve on state-of-the-art methods for crafting UAPs (section 7.4), have

robust transferable properties (section 7.7), and reduce the success of recently pro-

posed defences [168] (section 7.9).

7.1. Threat model 140

Figure 7.1: Overview of the attack. A random sample from a normal distribution is fed
into a UAN. This outputs a perturbation, which is then scaled and added to an
image. The new image is then clipped and fed into the target model.

A UAP is an adversarial perturbation that is independent of the source image.

Given a target model, f , and a dataset, X , a UAP is a perturbation, δ , such that

∀x ∈ X , x+δ is a valid input and Pr(f (x+δ) 6= f (x)) = 1− τ , where 0 < τ << 1.

7.1 Threat model
We consider an attacker whose goal is to craft UAPs against a target model, f . The

adversarial image constructed by the attacker should be visually indistinguishable

to a source image, evaluated through either the `2 or `∞ metric.

Our attacks assume white-box access to f , as we backpropagate the error of the

target model back to the UAN. In line with related work on UAPs [173], we consider

a worst-case scenario with respect to data access, assuming that the attacker has

knowledge of, and shares access to, any training data samples. We will not discuss

the real-world limitations of that assumption here, but will follow that practice.

7.2 Datasets
We evaluate attacks using two popular datasets in adversarial examples research,

CIFAR-10 [133] and ImageNet [55, 210].

The CIFAR-10 dataset consists of 60,000, 32×32 RGB images of different

objects in ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck. This is split into 50,000 training images and 10,000 validation images. Our

pre-trained models: VGG-19 [219], ResNet-101 [104], and DenseNet [114], used

as the target models, score 91.19%, 93.75%, and 95.00% test accuracy, respectively.

State-of-the-art models on CIFAR-10 are approximately 95% accurate.

We use the validation dataset of ImageNet, which consists of 50,000 RGB

7.3. Attack description 141

images, scaled to 224×224. The images contain 1,000 classes. The 50,000 im-

ages are split into 40,000 training set images and 10,000 validation set images.

We ensure classes are balanced, such that any class contains 40 images in the

training set and 10 images in the validation set. Our pre-trained models: VGG-

19 [219], ResNet-152 [104], and Inception-V3 [229], used as the target models,

score 71.03%, 78.40%, and 77.22% top-1 test accuracy, respectively.

7.3 Attack description
An overview of the attack is given in fig. 7.1. Let a UAN model be denoted by

U , and a target model by f . U takes as input a vector, z, sampled from a normal

distribution N (0,1)100, and outputs a perturbation, δ . This is then scaled by a

factor ω ∈ (0, ε

‖δ‖p
], where ε is the maximum permitted perturbation and p = 2

or ∞. In practice, we start with a small ω (e.g. ω = ε

10·‖δ‖p
) and increment this

value whenever the training loss plateaus. The scaled perturbation δ ′ = ω · δ , is

added to an image x from a dataset X , to produce an adversarial image. This is then

clipped into the target model’s input range before being fed into the target model,

f , which outputs a probability vector, ρ 1. If argmaxi f (x) 6= argmaxi f (δ ′+ x), a

successful adversarial example has been found. Since U (z) is not conditioned on

any image in the dataset, U learns how to construct image independent adversarial

perturbations, namely universal adversarial perturbations.

Given an input x ∈ X , let the class label predicted by f be c0. For non-targeted

attacks, any misclassification in the target model suffices, thus, the non-targeted

attack aims to maximize the most probable predicted class other than c0. Our non-

targeted loss function is adapted from works by Carlini and Wagner [35] and Chen

et al. [40], and is given by:

Lnt = log[f (δ ′+ x)]c0−max
i 6=c0

log[f (δ ′+ x)]i︸ ︷︷ ︸
L f s

+α ·
∥∥δ
′∥∥

p︸ ︷︷ ︸
Ldist

(7.1)

The first term in (1), L f s, is minimised when the adversarial predicted class is

1If f outputs logits instead of a probability vector, we take the softmax of the logits.

7.3. Attack description 142

not c0. This is adapted from the Carlini and Wagner loss function [35] that intro-

duces a confidence threshold, κ . If we want universal adversarial perturbations that

cause misclassifications with high confidence, we stop minimising only when:

κ > max
i6=c0

log[f (δ ′+ x)]i− log[f (δ ′+ x)]c0

In specifying a confidence threshold for adversarial examples, (1) becomes:

Lnt = max{log[f (δ ′+ x)]c0−max
i6=c0

log[f (δ ′+ x)]i,−κ}+α ·
∥∥δ
′∥∥

p (7.2)

In all experiments we set κ = 0, and so stop optimising once an adversarial

example is found. To minimise the perturbation applied to an image, L f s is summed

with a distance loss, Ldist = α ·
∥∥δ ′
∥∥

p, where α ∈ R+; this minimises the norm

of the universal adversarial perturbation. The logarithmic term in L f s is necessary

since most target models have a skewed probability distribution, with one class

prediction dominating all others, thus the logarithmic term reduces the effect of this

dominance.

For a targeted attack, we compute a universal adversarial perturbation that

transforms any image to a chosen class, c. Under this setting, we optimise using

the follow loss function:

Lt = max{max
i6=c

log[f (δ ′+ x)]i− log[f (δ ′+ x)]c,−κ}+α ·
∥∥δ
′∥∥

p , (7.3)

The full description of the UAN model is given in table 7.1a and hyperparame-

ters used in experiments are given in table 7.1b. We define the relative perturbation,

ζp =
‖δ ′‖p
‖x‖p

; the value of the norm of δ ′ over the norm of the original image, x. We

set ζp = 0.04 in all experiments 2. For all experiments, we report the error rate of

the target model on adversarial images; a perfect attack would achieve an error rate

2Note, this is equivalent to the experimental settings in Moosavi-Dezfooli et al. [173] of ε = 10
for p = ∞, and ε = 2000 for p = 2.

7.4. Comparison with previous work 143

Table 7.1: Details of UAN model architecture and hyperparameters.

(a) UAN model architecture. IS refers to the image size: 32 for CIFAR-10 experiments and
224 for ImageNet experiments.

Layer Shape

Input 100
Deconv + Batch Norm + ReLU 256×3×3
Deconv + Batch Norm + ReLU 128×5×5
Deconv + Batch Norm + ReLU 64×9×9
Deconv + Batch Norm + ReLU 32×17×17
Deconv + Batch Norm + ReLU 3×33×33
FC + Batch Norm + ReLU 512
FC + Batch Norm + ReLU 1024
FC 3× IS× IS

(b) UAN hyperparameters.

Parameter Dataset

CIFAR-10 ImageNet

Learning Rate 2 ·10−4 2 ·10−4

Beta 1 0.5 0.5
Beta 2 0.999 0.999
Batch Size 128 64
Epochs 500 150
`p loss weight (α) 4.0 4.0

(a) VGG-19 (b) ResNet-152 (c) Inception-V3

Figure 7.2: UAPs generated by a UAN for ImageNet.

of 1.00, while a perfect classifier achieves an error rate of 0.00.

7.4 Comparison with previous work

7.4. Comparison with previous work 144

Table 7.2: Comparison of error rates for UAN against Moosavi-Dezfooli et al. [173]
and Mopuri et al. [174]. Note that the Mopuri et al. [174] method for crafting
UAPs is only optimised under the `∞ metric. We set ζp = 0.04, this is equivalent
to ε = 2000 for an `2 attack and ε = 10 for an `∞ attack.

Metric Attack CIFAR-10 ImageNet
VGG-19 RESNET-101 DENSENET VGG-19 RESNET-152 INCEPTION-V3

UAN Train 0.689 0.861 0.753 0.889 0.918 0.781

`2

Val 0.695 0.842 0.759 0.860 0.914 0.765

Moosavi-Dezfooli et al. [173] Train 0.672 0.854 0.771 0.894 0.900 0.779
Val 0.670 0.849 0.767 0.886 0.901 0.771

UAN Train 0.649 0.832 0.753 0.849 0.889 0.773

`∞

Val 0.666 0.851 0.750 0.846 0.881 0.771

Moosavi-Dezfooli et al. [173] Train 0.599 0.763 0.684 0.836 0.888 0.750
Val 0.572 0.760 0.679 0.823 0.879 0.738

Mopuri et al. [174] Train 0.219 0.374 0.356 0.407 0.370 0.336
Val 0.201 0.365 0.341 0.411 0.369 0.337

(a) VGG-19 (b) ResNet-101 (c) DenseNet

Figure 7.3: UAPs generated by a UAN for CIFAR-10.

We now compare our method for crafting UAPs with two state-of-the-art meth-

ods:

• Moosavi-Dezfooli et al. [173] constructs a UAP iteratively; at each step an

input is combined with the current constructed UAP, if the combination does

not fool the target model, a new perturbation with minimal norm is found that

does fool the target model. The attack terminates when a threshold error rate

is met.

• Mopuri et al. [174] develop a method for finding a UAP for a target model

that is independent of the dataset. They construct a UAP by first starting

with random noise and iteratively update it to over-saturate features learned at

successive layers in the target model, causing neurons at each layer to output

7.5. Transferability 145

Table 7.3: Error rates for non-targeted CIFAR-10 attack, under the `∞ metric. UAPs are
constructed using row models and tested against pre-trained column models.

VGG-19 DENSENET RESNET-101

VGG-19 0.666 0.550 0.612
DENSENET 0.543 0.750 0.648
RESNET-101 0.514 0.681 0.851

ENSEMBLE 0.499 0.742 0.849

useless information to cause the desired misclassification. They optimise the

UAP by adjusting it with respect to the loss term:

L =− log(
K

∏
i=1

l̄i(δ)), such that ||δ ||∞ < γ,

where, l̄i(δ) is the average of the output at layer i for perturbation δ , and γ is

the maximum permitted perturbation.

Table 7.2 compares our UAN method of generating UAPs against the two at-

tacks described above for both CIFAR-10 and ImageNet, in a non-targeted attack

setting. We consistently outperform both attack methods on `∞ perturbations tar-

geting both CIFAR-10 and ImageNet on all architectures. UAPs for the ImageNet

and CIFAR-10 datasets are given in fig. 7.2 and fig. 7.3, respectively. A selection of

adversarial images for the ImageNet dataset is given in fig. D.1.

7.5 Transferability
An adversarial image is transferable if it successfully fools a model that was not

its original target. Transferability is a yardstick for the robustness of adversarial

examples, and is the main property used by Papernot et al. [187, 191] to construct

black-box adversarial examples. They construct a white-box attack on a local target

model that has been trained to replicate the intended target models decision bound-

aries, and show that the adversarial examples can successfully transfer to fool the

black-box target model.

To measure the transferability properties of perturbations crafted by a UAN,

7.5. Transferability 146

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(a) plane

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(b) car

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(c) bird

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(d) cat

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(e) deer

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(f) dog

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(g) frog

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(h) horse

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(i) ship

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(j) truck

VGG-19 Train
VGG-19 Validation

ResNet-101 Train
ResNet-101 Validation

DenseNet Train
DenseNet Validation

Figure 7.4: CIFAR-10 `∞ targeted attack. Each figure shows the error rate as the size of
the adversarial perturbation is increased. This can be interpreted as the success
rate of fooling the target model into classifying any image in CIFAR-10 as the
chosen class.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

M
ea

n
sq

ua
re

d
er

ro
r

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 si

m
ila

rit
y

in
de

x

Figure 7.5: MSE and SSIM scores of UAPs throughout training a UAN against VGG-19
for the ImageNet dataset.

we create 10,000 adversarial images (constructed via the `∞ metric) - one for each

image in the CIFAR-10 validation set - and apply them to a target model that was

not used to train the UAN. Table 7.3 presents results for transferability of a non-

targeted attack on three target models - VGG-19, ResNet-101, and DenseNet. We

find that UAPs crafted using a UAN do transfer to other models. For example, a

7.6. Generalisability 147

UAN trained on VGG-19, and evaluated on ResNet-101, the error rate is 61.2%, a

drop of just 5.4% from evaluating on the original target model (VGG-19).

We also measure the capacity for a UAN to learn to fool an ensemble of target

models. We trained a UAN against VGG-19, ResNet-101, and DenseNet, simulta-

neously, on CIFAR-10, where the UAN loss function is a linear combination of the

losses of each target model. From table 7.3, we see that a UAN trained against an

ensemble of target models is able to fool at comparable rates to single target models.

7.6 Generalisability

Moosavi-Dezfooli et al. [173] have shown that UAPs are not unique; there exists

many candidates that perform equally well against a target model. If a UAN is truly

modelling the distribution of UAPs the output should not be unique. In fig. 7.5, we

measure the MSE (mean square error) and SSIM (structural similarity index) [249]

of U (z1),U (z2) for z1,z2←N (0,1)100, z1 6= z2, at successive training steps, for

the ImageNet dataset. Since we expect a high degree of structure in a UAP, SSIM

is measured in addition to MSE, as it has been argued that MSE does not map well

to a human’s perception of image structure [193, 249].

At the beginning of training, there is little structural similarity between U (z1)

and U (z2). Throughout training the SSIM score never increases beyond 0.8, while

the MSE continually increases. While the structural similary of UAPs learned by a

UAN is high, it does learn to generalise to multiple UAPs that are unique from one

another. Similar effects, albeit scaled down due to the smaller image size, are found

for the CIFAR-10 dataset in fig. D.2.

Does a UAN that learns to generalise to multiple UAPs do so to the detriment of

attack accuracy? We verify this is not the case by training a UAN on a fixed noise

vector and comparing to a UAN trained with non-fixed noise vectors. We found

similar error rates for the two settings (see table 7.4); there is no loss in accuracy by

extending a UAN to output multiple adversarial perturbations.

7.7. Targeted attacks 148

Table 7.4: Error rates for `∞ attacks on CIFAR-10. We compare between a UAN trained on
fixed noise vectors and a UAN trained on non-fixed noise vectors.

Fixed z Non-fixed z

VGG-19 0.661 0.666
RESNET-101 0.859 0.851
DENSENET 0.760 0.750

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Figure 7.6: Our `∞ attack against a DenseNet target model on the CIFAR-10 dataset, for
every source/target pair. Displayed images were selected at random.

7.7 Targeted attacks

We follow the same experimental set-up as in section 7.4, however now the attacker

chooses a class, c, they would like the target model to classify an adversarial ex-

ample as, and success is calculated as the probability that an adversarial example

is classified as c. Figure 7.4 shows, for each class in CIFAR-10, the error rate of

the target model as we allow larger perturbations. For nearly every class, attacks

on ResNet-101 are most successful, while attacks on VGG-19 are least successful.

7.7. Targeted attacks 149

This is in agreement with our findings in a non-targeted attack setting (cf. table 7.2).

Despite VGG-19 being the most difficult target model to attack, it is the most well

calibrated; the error rate on the training set is nearly identical to the error rate on

the validation set for all classes, while there are small deviations between these two

scores for ResNet-101 and DenseNet.

By looking only at results on VGG-19, one may infer that the choice of tar-

get class heavily influences the error rate (e.g. crafting UAP’s for the dog and ship

classes is more difficult than others). However, this is not replicated with ResNet-

101 or DenseNet. We do not observe any dependencies between attack success and

the target class; the attack success at different perturbation rates is similar for all

classes. Figure 7.6 shows this attack applied to a DenseNet target model for the

CIFAR-10 dataset for all source/target class pairs. Nearly all attacks are indistin-

guishable from the source image. Similar results are found in fig. D.3 and fig. D.4

for VGG-19 and ResNet-101 target models, respectively.

Interestingly, all targeted attacks follow a sigmoidal curve shape. Empirically,

we found that for all three target models, there existed images that were weakly clas-

sified correctly (there was almost no difference between the largest probability score

and probability score at the target class) and strongly classified correctly (there was

three to four orders of magnitude difference between the probability score at the

largest class and the probability score at the target class). At the beginning of train-

ing, the UAN discovers a perturbation that causes misclassifications when applied

to the weakly classified images, but takes longer to find adversarial perturbations

for the majority of images, resulting in a long tail at the beginning of training. With

a similar effect taking place at the end of training to find adversarial perturbations

for strongly classified images.

For the ImageNet dataset, we selected three classes at random and performed

a targeted attack. Error rates and selected samples are given in figs. D.5 to D.7. We

observed that the generated UAPs resembled the structure of the target class. For

example, a golf ball pattern can be clearly seen in perturbations in fig. D.5.

7.8. Importance of training set size 150

50 500 2,000 10,000 Full training set
 (50,000)

Number of training images

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Figure 7.7: Non-targeted `∞ attack against ResNet-101 on the CIFAR-10 dataset. We vary
the number of samples the UAN is trained on, and report results on the valida-
tion set.

0 5 10 15 20 25 30 35 40
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 M

od
el

 A
cc

ur
ac

y

Figure 7.8: A cat-and-mouse game of non-targeted `∞ attacks and adversarial training for
a VGG-19 target model on CIFAR-10. The upper green points are the target
model accuracies on adversarial images after adversarial training, the lower red
crosses are the target model accuracies on adversarial images after the attack.
The dotted line is target model accuracy on source images.

7.8 Importance of training set size
So far, we have assumed the attacker shares full access to any images that were used

to train the target model. However in practice, this may not be the case - an attacker

may only have access to the type or a subsample of the training data. We therefore

evaluate our non-targeted `∞ attack under stronger assumptions of attacker access

7.9. Attacking adversarial training 151

to training data.

Figure 7.7 shows the error rate caused by a UAN trained on subsets of the

CIFAR-10 training set. As expected, training on more data samples improves the

success of the attack; perturbations from a UAN trained on only 50 images (five

from each class) fools 17.1% of validation set images in ResNet-101. The attack is

successful when applied to nearly a fifth of images while only learning from 0.1%

of the training set. The attack succeeds in 80.2% of cases when trained on 20%

of the training set - in other words, there is virtually no difference in test accuracy

when training on between 80-100% of the training set.

We find no significant difference in error rates between a UAN that has been

trained on many data samples and few data samples. The amount of data samples

provided to the UAN does not significantly impact its ability to learn to craft ad-

versarial perturbations, all that must be known is the structure of the dataset on

which the target model was trained. We note that this is in agreement with Papernot

et al. [191] findings on the number of source images required to launch attacks on

black-box models.

In addition to measuring attacker success for different training set sizes, we

experimented with different batch sizes, ranging from 16 to 128, for the CIFAR-10

dataset. However, we did not observe any significant deviations in the error rate.

7.9 Attacking adversarial training

Adversarial training [83, 136] modifies the training of a model in order to make it

more robust to adversarial examples. During training, the loss function L(θ ,x,y)

is replaced by α · L(θ ,x,y) + (1−α) · L(θ ,x + δ ′,y). By augmenting the origi-

nal data to include adversarial counterparts, the model learns to classify adversarial

examples correctly. Non-generative attacks have shown to be successful against ad-

versarially trained models, however, recent work by Metzen [168] suggested that

this may not be the case for UAPs. In Metzen [168], adversarial training is success-

fully applied to a CIFAR-10 classifier, effectively eliminating the adversarial effect

of UAPs. In our work, we verified that this is case; adversarial training eliminates

7.10. Summary 152

UAP success. However, we find that adversarially trained models are still vulner-

able to UAN trained against the defended model. Similarly to Hamm and Mehra

[90], we play a cat-and-mouse game where (1) a UAN is trained against a target

model, and (2) the target model is retrained with adversarial examples crafted from

(1) (denoted ADV TM). This generates a sequence: UAN1→ ADV TM1→ UAN2

→ ADV TM2 → UAN3 → We let this game play out for many rounds, and

claim that if adversarial training is a defence against UAPs, over many rounds the

classification error on adversarial examples should tend to zero.

Figure 7.8 shows such a cat-and-mouse game over 20 rounds of (1) and 20

round of (2). An adversarially trained target model is able to classify nearly all

adversarial examples correctly, at any given round. However, attacks against ad-

versarially retrained models are only somewhat mitigated; there is a 25% reduction

is attack success between the first and final round. After this, the cycle reaches an

equilibrium, with no improvement in successive attacks or defended models.

7.10 Summary
We presented a first-of-its-kind universal adversarial example attack that uses ma-

chine learning at the heart of its construction. We comprehensively evaluated the

attack under many different settings, showing that it produces quality adversarial

examples capable of fooling a target model in both targeted and non-targeted at-

tacks. The attack transfers to many different target models, and improves on other

state-of-the-art universal adversarial perturbation construction methods.

Chapter 8

Randomised smoothing: A provable

defense against adversarial examples

As seen in chapter 7, image classification is vulnerable to adversarial exam-

ples. Given an image classifier f : Rn → Rm such that the decision function

F = argmaxi fi classifies an input, x, correctly as F(x) = y, an adversarial exam-

ple is an input, x+ δ , such that F(x+ δ) 6= y where x and x+ δ are assigned the

same label by an oracle classifier, O , which is usually taken to be the human vision

system. To preserve oracle classification, it is common to minimise the perturbation,

δ , with respect to an `p norm. Constructing a perturbation such that ‖δ‖p�‖x‖p,

will result in an input such that ‖x+δ‖p ≈‖x‖p. With high likelihood x and x+δ

will be visually similar and O will classify both correctly.

The vulnerability to adversarial examples requires a suitable defence. Many

empirical defences have been proposed and subsequently shown to be broken,

implying more theoretically grounded techniques to measure robustness are re-

quired [15, 33, 37, 71, 239]. Recently, methods from verification literature have

been used to provide guarantees of an input’s robustness to adversarial perturba-

tions. These methods seek the minimum or a lower bound on the amount of noise

required to cause a misclassification. These verification methods are most often tai-

lored to a single `p norm for which the defence guarantees robustness. A number of

defences certify a neural network is robust to adversarial examples by propagating

upper and lower input bounds throughout the network or by bounding the Lipschitz

8.1. Background on certified defenses 154

value of the network [27, 61, 78, 84, 152, 170, 238, 265].

Recently, randomised smoothing has been proposed to certify image classifiers

to `0, `1, and `2 perturbations [49, 142, 144, 146]. By constructing a classifier that

outputs a label based on a majority vote under repeated addition of Laplacian or

Gaussian noise, Lecuyer et al. [142] found lower bounds to the amount of noise

required for misclassification of an input in the `1 or `2 norm, respectively. Fol-

lowing this, Li et al. [146] and Cohen et al. [49] provided improved bounds in the

`2 norm. As explained by Cohen et al. [49], randomised smoothing has attractive

advantages over other certification methods: it is scalable to large classifiers and

makes no assumption about the architecture. In this chapter, we extend the general

framework for randomised smoothing as proposed by Li et al. [146]. Firstly, we

study how the choice of divergence between inputs smoothed with noise affects the

final certificate, and secondly, we study how the choice of smoothing measure itself

can lead to guarantees for differing threat models. Concretely, we show how the

choice of smoothing measure allows us to extend randomised smoothing to any `p

norm (p ∈ N>0), showing we can certify inputs with non-vacuous bounds over a

range of `p norms with small p values. We then show that randomised smoothing

fails to certify meaningfully large radii around inputs as p increases.

8.1 Background on certified defenses

In this section, we discuss related work on certified defences to adversarial ex-

amples, introduce extensions to randomised smoothing approaches to certified de-

fences, and provide a method to compute a certified robust area around an input

under any `p norm attack, where p ∈ N>0.

The vulnerability of empirical defences to adversarial examples has driven the

need for formal guarantees of robustness. We define certified robustness as a guar-

antee that the decision of a classifier is preserved within an ε-ball around an input,

and we refer to size of this ε-ball as the certified radius. Formal methods can

be separated into complete and incomplete methods. Complete methods such as

Satisfiability Modulo Theory (SMT) [36, 69, 125] or Mixed-Integer Programming

8.2. Certification via randomised smoothing 155

Table 8.1: `2 certified radius when using different divergences.

Distance
d(Q,P)≥

d(N (x,σ2),N (x′,σ2))
Certified radius

(when argmaxi qi 6= argmaxi pi) (for
∥∥x− x′

∥∥
2 < ε)

dKL(Q,P) = ∑
k
i=1 qi log qi

pi
− log(2

√
p1 p2 +1− p1− p2)

1
σ2

∥∥x− x′
∥∥2

2

√
−σ2 log(2

√
p1 p2 +1− p1− p2)

dH2(Q,P) = 1
2 ∑

k
i=1(
√

qi−
√

pi)
2 1−

√
1− (

√
p1−
√

p2)2

2 1− e−
‖x−x′‖2

2
8σ2

√
−8σ2 log(

√
1− (

√
p1−
√

p2)2

2)

dχ2(Q,P) = ∑
k
i=1

(qi−pi)
2

pi

(p1−p2)
2

(p1+p2)−(p1−p2)2 e
‖x−x′‖2

2
σ2 −1

√
σ2 log(p1+p2

(p1+p2)−(p1−p2)2)

dB(Q,P) =− log(∑k
i=1
√

qi pi) − log
(
(
√

p1+
√

p2)
2+2(1−p1−p2)√

2(2
√

p1 p2+2−p1−p2)

)
1

8σ2

∥∥x− x′
∥∥2

2

√
−8σ2 log

(
(
√

p1+
√

p2)2+2(1−p1−p2)√
2(2
√

p1 p2+2−p1−p2)

)
dTV (Q,P) = 1

2 ∑
k
i=1 |qi− pi| |p1−p2|

2 2Φ(
‖x−x′‖2

2σ
)−1 2σΦ−1(|p1−p2|

2 + 1
2)

(MIP) [30, 44, 251] provide exact robustness bounds but are expensive to imple-

ment. Incomplete methods solve a convex relaxation of the verification problem.

The bounds given by incomplete methods can be loose but are quicker to find than

exact bounds [27, 61, 78, 84, 152, 170, 265].

Lecuyer et al. [142] developed the certification technique, referred to as ran-

domised smoothing, by noticing a connection between differential privacy [64] and

robustness, and show that robustness can be proven under concentration measures

of classification under noise. This work was expanded upon by Lee et al. [144], Li

et al. [146], and Cohen et al. [49], who found improved robustness guarantees in

the `0, `1, and `2 norms, respectively. Similarly to this work, Dvijotham et al. [62]

developed a general framework for randomised smoothing that can handle arbitrary

smoothing measures and so find robustness guarantees in any `p norm. In concur-

rent work, Blum et al. [25], Kumar et al. [135], and Yang et al. [258] also show

that randomised smoothing may be unable to find robustness guarantees in the `∞

norm. Most related to this work are the findings of Kumar et al. [135], who also use

a generalised Gaussian distribution for smoothing and show that the certified radius

in an `p norm decreases as O(1/d
1
2−

1
p), where d is the dimensionality of the data.

8.2 Certification via randomised smoothing

Here, we expand on how robustness guarantees can be found through randomised

smoothing.

8.2. Certification via randomised smoothing 156

Problem statement. Given an input x ∈X such that argmaxi fi(x) = y, find the

maximum ε such that ∀x′ ∈X , d(x,x′) < ε =⇒ argmaxi fi(x′) = y, given a dis-

tance function d : X ×X → R+.

This can be cast as an optimisation problem, given by

max
x′∈X

d(x,x′)

subject to argmax
i

fi(x′) = y
(8.1)

In general, solving the above formulation is difficult, however randomised

smoothing, introduced by Lecuyer [142], can be used to solve a relaxed version

of this problem. Namely, the aim is to solve

max
x′∈X

d(x+θ ,x′+θ)

subject to E[argmax
i

fi(x′+θ)] = y,
(8.2)

where θ is a sample from a smoothing measure, µ , and d is now taken to be a

suitable divergence or distance measure between random variables. For example, Li

et al. [146] take µ to be the centred Gaussian, N (0,σ2). Since Gaussians belong to

the location-scale family of distributions, we can treat x and x′ as constants and so,

x+θ and x′+θ can be treated as random variables from distributions N (x,σ2) and

N (x′,σ2), respectively. We can use well known properties of divergences of Gaus-

sians to represent d(x+θ ,x′+θ) in terms of the `2 norm difference of their means.

Specifically, d(x+ θ ,x′+ θ) can be represented as a function of
∥∥x− x′

∥∥
2 and σ ,

for common divergences such as the Rényi and KL divergences. However, we must

still solve the problem of ensuring E[argmaxi fi(x′+ θ)] = y. Given a chosen di-

vergence, Li et al. [146] approach this problem by finding a lower bound between

two multinomial distributions, P and Q, in terms of the two largest probabilities of

P, when argmaxi Pi 6= argmaxi Qi. This shows that any distribution, Q, for which

P and Q agree on the index of the top probability, the divergence between P and Q

8.2. Certification via randomised smoothing 157

must be smaller than this lower bound. We denote this lower bound by h(p1, p2),

where p1, p2 represent the top two probabilities from P. Given this lower bound Li

et al. [146], solve the following problem

max
x′∈X

d(f (x+θ), f (x′+θ))

subject to d(f (x+θ), f (x′+θ))≤ h(p1, p2)

(8.3)

This can be efficiently solved by finding an upper bound to the Lagrangian

relaxed problem

max
λ≤0,x′∈X

d(f (x+θ), f (x′+θ))

+λ (h(p1, p2)−d(f (x+θ), f (x′+θ)))

(8.4)

= max
λ≤0,x′∈X

(1−λ)d(f (x+θ), f (x′+θ))+λh(p1, p2) (8.5)

= max
λ≥0,x′∈X

(1+λ)d(f (x+θ), f (x′+θ))−λh(p1, p2) (8.6)

≤ max
λ≥0,x′∈X

(1+λ)d(x+θ ,x′+θ)−λh(p1, p2) (8.7)

= max
λ≥0,x′∈X

(1+λ)g(
∥∥x− x′

∥∥
2 ,σ)−λh(p1, p2), (8.8)

where in eq. (8.7), we use the data processing inequality property of diver-

gences, and in eq. (8.8), we use the fact that for many common divergences, we

can represent the divergence between two Gaussians as a function of the `2 norm of

their means and their standard deviation, which we denote by g(
∥∥x− x′

∥∥
2 ,σ).

By choosing d : X ×X → R+ to be the Rényi divergence, we recover the

8.3. Certification guarantees against `2 perturbations for common divergences 158

results of Li et al. [146] with

g(
∥∥x− x′

∥∥
2 ,σ) =

α
∥∥x− x′

∥∥2
2

2σ2 (8.9)

h(p1, p2) =− log
(

1− p1− p2 +2
(1

2
(p1−α

1 + p1−α

2)
) 1

1−α

)
(8.10)

Thus, for any x′ ∈X with
∥∥x− x′

∥∥
2 < ε we can guarantee the classifier, f , will not

change it’s decision for any ε smaller than

max
λ≥0

 sup
α>1

(
− λ2σ2

(1+λ)α
log
(

1− p1− p2 +2
(1

2
(p1−α

1 + p1−α

2)
) 1

1−α

)) 1
2

=

 sup
α>1

(
− 2σ2

α
log
(

1− p1− p2 +2
(1

2
(p1−α

1 + p1−α

2)
) 1

1−α

)) 1
2

(8.11)

Clearly, this framework for certifying inputs is general and extends to different

choices of divergence. In the next section, we explore divergences beyond Rényi di-

vergence and show this choice affects the certified radius, given a Gaussian smooth-

ing measure.

8.3 Certification guarantees against `2 perturbations

for common divergences
Li et al. [146] show that, given two distributions, P and Q, with different indexes

for the top probability, a lower bound of the Rényi divergence (denoted by dα)

is given by eq. (8.10). We extend this line of reasoning to find lower bounds for

the KL divergence (dKL), Hellinger distance (dH2), (Neyman) chi-squared distance

(dχ2), Bhattacharyya distance (dB), and total variation distance (dTV). Proofs of

these lower bounds are given in appendix E.1. To find a certified radius of a clas-

sifier’s decision around an input, we find the distances between Gaussian measures

with respect to each of these divergences. These are both represented in table 8.1

8.3. Certification guarantees against `2 perturbations for common divergences 159

along with the certification guarantee in the `2 norm. We visualise the trade-off in

certified radius around an input in fig. 8.1 for a hypothetical binary classification

task as a function of the classifier’s top output probability, p1. As well as includ-

ing the certified radii derived from the aforementioned divergences, we include the

certified radii for the `2 norm found by Lecuyer et al. [142] and Cohen et al. [49]

approaches. Lecuyer et al. [142] find a certified radius against `2 perturbations given

by

sup
0<β≤min(1, 1

2 log p1
p2
)

σβ√
2log

(
1.25(1+exp(β))
p1−exp(2β)p2

) ,
while Cohen et al. [49] give a tight robustness guarantee for `2 perturbations

of the form

σ

2

(
Φ
−1 (p1)−Φ

−1(p2)
)
.

Clearly, all choices of distance metrics dominate the certificates found using

the Lecuyer et al. [142] method, and for values of p1 close to 1/2, dTV is approxi-

mately equal to the tight [49] guarantee. However, the certified radius found using

dTV is linear with respect to the top predicted probability, and so becomes a weaker

guarantee for larger probabilities. Robustness guarantees provided by Rényi and

chi-squared divergences are approximately equal; a finer-grained visualisation of

the difference between these two divergences is given in appendix E.2.

We formalise the trade-offs between different choices of divergences with the

following proposition.

Proposition 2. Let εdKL ,εd
χ2 ,εdH2 ,εdB,εdα

, and εLecuyer et al. [142], denote the cer-

tificates found using dKL,dχ2,dH2,dB,dα , and the Lecuyer et al. [142] approach,

respectively. Then, the following holds

1. ∀p1 ∈ (1
2 ,1), εdα

> εd
χ2 .

8.4. Certification guarantees beyond `2 based perturbations 160

0.5 0.6 0.7 0.8 0.9 1.0
p1

0.0

0.5

1.0

1.5

2.0

2.5

Ce
rti

fie
d

Ra
di

us

Cohen et al., 2019
Lecuyer et al., 2019
d (Li et al., 2019)
dKL

dH2

dTV

d 2

dB

Figure 8.1: Comparison of the certified radius against perturbations targeting the `2 norm,
for different divergences, as a function of the top predicted probability, p1, with
σ = 1.

2. ∀p1 ∈ (1
2 ,1), εd

χ2 > εdKL .

3. ∀p1 ∈ (1
2 ,1), εd

χ2 > εdH2 .

4. ∀p1 ∈ [1
2 ,1], εdB = εdH2 .

5. ∀p1 ∈ (1
2 ,0.998), εdH2 > εdKL .

6. ∀p1 ∈ (1
2 ,1), εdKL > εLecuyer et al. [142].

Proof. See appendix E.3.

Proposition 2 defines a strict hierarchy, and so informs us of the best divergence

one can use to certify an input against `2 perturbations using the Li et al. [146]

approach.

8.4 Certification guarantees beyond `2 based pertur-

bations
The Gaussian distribution is a natural choice for the smoothing measure because it

naturally leads to robustness guarantees in the `2 norm. However, it is also a conve-

8.4. Certification guarantees beyond `2 based perturbations 161

0.0 0.5 1.0 1.5 2.0 2.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

Ours
Li et al. (2019)
Lecuyer et al. (2019)

(a) CIFAR-10, `1

0.0 0.5 1.0 1.5 2.0 2.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

Ours
Li et al. (2019)
Lecuyer et al. (2019)

(b) ImageNet, `1

0.0 0.5 1.0 1.5 2.0 2.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

Ours
Cohen et al. (2019)
Li et al. (2019)
Lecuyer et al. (2019)

(c) CIFAR-10, `2

0.0 0.5 1.0 1.5 2.0 2.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

Ours
Cohen et al. (2019)
Li et al. (2019)
Lecuyer et al. (2019)

(d) ImageNet, `2

Figure 8.2: Certified accuracy against perturbations targeting the `1 and `2 norms. Given
as a function of the certified radius, the radius around which an input is robust.

nient choice of smoothing measure because it is a member of the location-scale fam-

ily of distributions. This means that, fixing x ∈X , sampling from x+N (0,σ2) is

equivalent to sampling from N (x,σ2). Importantly, addition of a constant, x, does

not change the family of the smoothing measure, and so we can use well known

formula for the distances between two Gaussian distributions to derive robustness

guarantees. Unfortunately, not all distributions belong to the location-scale family,

and so, in our formulation, we are not free to choose any distribution for smooth-

ing. Another convenient choice of a location-scale distribution is the generalised

Gaussian distribution [175], denoted G N (µ,σ ,s), whose density function is given

by

p(x) =
s

2σΓ(1
s)

e−|
x−µ

σ
|s (8.12)

8.4. Certification guarantees beyond `2 based perturbations 162

where µ is the mean, σ denotes a scaling factor and s denotes a shaping factor.

The Laplacian distribution is recovered when s = 1, the Gaussian N (µ, σ2

2) when

s= 2, and the uniform distribution on (µ−σ ,µ+σ) as s→∞. We will show that by

using this smoothing measure we can find robustness guarantees to `p perturbations,

where p ∈ N>0.

We show in appendix E.4 that given inputs x and x′ the Kullback–Leibler (KL)

divergence of G N (x,σ ,s) and G N (x′,σ ,s) (when s takes positive integer values)

is given by

s

∑
k=1

(
s
k

)
(1+(−1)s−k)Γ(s−k+1

s)
∥∥x− x′

∥∥k
k

2σ kΓ(1
s)

(8.13)

We also show in appendix E.1 that the KL divergence of two multinomial

distributions P and Q (that disagree on the index of the top probability) is lower

bounded by

dKL(Q,P)≥− log(2
√

p1 p2 +1− p1− p2) (8.14)

Then we use the data processing inequality to prove robustness up to∥∥x− x′
∥∥

p < ε if the following holds

dKL(f (x+G N (0,σ , p)), f (x′+G N (0,σ , p))) (8.15)

≤ dKL(x+G N (0,σ , p),x′+G N (0,σ , p)) (8.16)

≤ ε p

σ p +
p−1

∑
k=1

(
p
k

)
(1+(−1)p−k)Γ(p−k+1

p)
∥∥x− x′

∥∥k
k

2σ kΓ(1
p)

(8.17)

≤− log(2
√

p1 p2 +1− p1− p2) (8.18)

Table 8.2 gives examples of the KL-divergence of the generalised Gaussian

distribution for small `p norms. For `p norms with p = 1 or p = 2, the upper bound

8.4. Certification guarantees beyond `2 based perturbations 163

Table 8.2: Examples of the KL divergence between G N (µ1,σ ,s) and G N (µ2,σ ,s) for
small s.

s `s dKL(p1, p2)

1 `1
1
σ
‖µ1−µ2‖1

2 `2
1

σ2‖µ1−µ2‖2
2

3 `3
1

σ3‖µ1−µ2‖3
3 +

3
σΓ(1

3)
‖µ1−µ2‖1

4 `4
1

σ4‖µ1−µ2‖4
4 +

6Γ(3
4)

σ2Γ(1
4)
‖µ1−µ2‖2

2

to which an input is certifiably robust is given by

(−σ
p log(2

√
p1 p2 +1− p1− p2))

1
p (8.19)

For `p norms with p> 2, p∈N, the upper bound to which an input is certifiably

robust is given by ε satisfying

ε p

σ p +
p−1

∑
k=1

(
p
k

)
(1+(−1)p−k)Γ(p−k+1

p)d1− k
p εk

2σ kΓ(1
p)

≤− log(2
√

p1 p2 +1− p1− p2)

(8.20)

The bound given by eq. (8.20) is found by noting that
∥∥x− x′

∥∥
k ≤

d
1
k−

1
p
∥∥x− x′

∥∥
p, where d is the dimensionality of the data. We can improve upon

this naive bound to prove robustness for all norms smaller than p in parallel. With-

out loss of generality, assume p is even 1, then we can prove robustness for every

0 < k≤ p, where k is even, up to
∥∥x− x′

∥∥
k < εk by solving the constrained problem

1A similar statement holds when p is not even.

8.5. Discussion & experiments 164

max ε2,ε4, ...,εp (8.21)

subject to

p

∑
k=1

(
p
k

)
(1+(−1)p−k)Γ(p−k+1

p)εk
k

2σ kΓ(1
p)

≤− log(2
√

p1 p2 +1− p1− p2)

(8.22)

εi+2 ≤ εi ≤ d
1
i−

1
i+2 εi+2 (8.23)

εi > 0, 2≤ i≤ p−2, i≡ 0 (mod 2) (8.24)

Note that the certified radius of robustness around an input is probabilistic

because we can only estimate p1 and p2, however, we can bound the probability of

error to be arbitrarily small. In practice we follow the methods in [49, 142, 146]

for estimating p1 and p2. Prediction error is bounded by collecting n samples of

f (x+θ), where θ is sampled from a generalised Gaussian distribution, and using

the Clopper-Pearson Bernoulli confidence interval to obtain a lower bound estimate

of p1 and an upper bound estimate of p2, that holds with probability 1− γ over the

n samples, where γ � 1. Alternatively, we can use the Hoeffding inequality which

gives a lower bound of prediction error of 1− ce−2nε2
, where c is the number of

classes |P|, n is the number of samples and ε is the perturbation size. Clearly the

error becomes arbitrarily small as we increase the number of samples.

8.5 Discussion & experiments
We experimentally validated the certification procedure on the CIFAR-10 [133] and

ImageNet [55, 210] datasets. The base classifier is ResNet-50 on ImageNet and

ResNet-110 on CIFAR-10 [104]. Given an input x and a classifier f the certification

procedure is as follows:

1. Collect n0 Monte Carlo samples of f (x + θ j) to estimate the true class y,

where θ j ∼ G N (0,σ ,s) and j ∈ [1, ...,n0], with confidence > 1− γ0.

2. Use n1 Monte Carlo samples to estimate, p̂1, a lower bound of the probability

8.5. Discussion & experiments 165

0.00 0.25 0.50 0.75 1.00 1.25 1.50
1

0.0

0.5

1.0

1.5

2.0

2.5

3
1 = 3

1 = d2
3 3

Certifiable region

0.0

0.2

0.4

0.6

0.8

1.0

(a) Certified radius trade-off between ε3 (`3
norm) and ε1 (`1 norm).

0.00 0.25 0.50 0.75 1.00 1.25 1.50
2

0.0

0.5

1.0

1.5

2.0

2.5

4

2 = 4

2 = d1
4 4

Certifiable region

0.0

0.2

0.4

0.6

0.8

1.0

(b) Certified radius trade-off between ε4 (`4
norm) and ε2 (`2 norm).

Figure 8.3: Trade-off in adversarial robustness between different norms, as we vary the
noise scale, σ . We plot for a data dimensionality, d, equal to 3× 32× 32
(the dimension for CIFAR-10 inputs), and mark the region which gives valid
certificates, assuming p̂1 = 0.99 and p̂2 = 1− p̂1.

of the most-likely class with confidence > 1−γ1. We follow Cohen et al. [49]

for estimating p̂2, an upper bound of the probability of the second most-likely

class, who noticed nearly all probability mass on other classes is placed on

the second most-likely class and so use p̂2 = 1− p̂1.

3. Use p̂1, p̂2 and eq. (8.19) or eq. (8.20) to find a certified radius around x.

For all experiments we use n0 = 100,n1 = 100,000,γ{0,1} = 0.001,σ = 0.25

and certify 400 test set examples for both CIFAR-10 and ImageNet datasets 2. The-

oretically, this procedure can certify any classifier, however in practice, image clas-

sifiers are not stable under noise and so we found it necessary to train classifiers

with generalised Gaussian noise (using the same scale and shape parameters as is

used during certification). Note that this has the same complexity as standard data

augmentation during training and is less expensive than the Madry et al. [161] de-

fence.

2We perform experiments measuring the effect that various σ have on the certified radius in
appendix E.5.

8.5. Discussion & experiments 166

8.5.1 Comparison to related work

For both CIFAR-10 and ImageNet we certify inputs against perturbations in `1 and

`2 norms and compare against [49, 142, 146]. Figure 8.2 shows certified accuracy

as a function of the certified radius. In general, the largest certified regions come

against perturbations targeting the `1 norm. In appendix E.6, we show qualitative

examples of inputs smoothed with generalised Gaussian noise and the correspond-

ing robustness guarantees in the `1, `2, and `3 norms.

While the primary boon of our certification procedure is its ability to certify

inputs to adversarial perturbations beyond `1 and `2 norms, the method is not sub-

stantially weaker than related work in either norm. In fig. 8.2a and fig. 8.2b, we

compare with Lecuyer et al. [142] and Li et al. [146] for `1 norm certificates. Given

estimates p̂1 and p̂2, Lecuyer et al. [142] find a certified radius against `1 pertur-

bations given by σ

2 log(p̂1/ p̂2), while Li et al. [146] find a certified radius against

`1 perturbations given by σ log(1− p̂1 + p̂2). Li et al. [146] and Teng et al. [230]

show that this robustness guarantee is tight for the `1 norm. Our `1 certificates are

slightly weaker than Lecuyer et al. [142], and both are dominated by Li et al. [146]

who obtain the tightest possible certificates.

In fig. 8.2c and fig. 8.2d, we compare with Lecuyer et al. [142], Li et al. [146],

and Cohen et al. [49] for `2 norm certificates. Our `2 certificates strictly domi-

nate Lecuyer et al. [142], and are approximately equivalent to Li et al. [146]. This

equivalence is to be expected since our certificates are closely related to Li et al.

[146] certificates, which are based on the Rényi divergence between two Gaussians,

while ours are based on KL divergence. Clearly, we could improve upon this `2

guarantee if we used the chi-squared distance instead of KL divergence and a stan-

dard Gaussian smoothing measure, as proved by proposition 2. However, our aim

is to show the general capacity of the generalised Gaussian as a smoothing measure

for certification.

8.5.2 Robustness trade-offs between different `p norms.

As described by eq. (8.20), to obtain robustness guarantees in `p>2 norms we must

factor in required robustness guarantees in smaller `p norms. For example, to prove

8.5. Discussion & experiments 167

0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

CIFAR-10
ImageNet

(a) `3

0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

CIFAR-10
ImageNet

(b) `4

0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

CIFAR-10
ImageNet

(c) `5

Figure 8.4: Certified accuracy on 400 CIFAR-10 test set inputs and 400 ImageNet test set
inputs against perturbations targeting the `3, `4, and `5 norms. Given as a func-
tion of the certified radius, the radius around which an input is robust. In-
puts were smoothed under a generalised Gaussian distribution parameterised
by G N (0,0.25, p).

robustness up to
∥∥x− x′

∥∥
3 < ε3 and

∥∥x− x′
∥∥

1 < ε1 we find ε1 and ε3 satisfying

1
σ3 ε

3
3 +

3
σΓ(1

3)
ε1 ≤− log(2

√
p̂1 p̂2 +1− p̂1− p̂2)

∧

0 < ε3 ≤ ε1 ≤ d
2
3 ε3,

(8.25)

and to prove robustness up to
∥∥x− x′

∥∥
4 < ε4 and

∥∥x− x′
∥∥

2 < ε2 we find ε2 and

ε4 satisfying

1
σ4 ε

4
4 +

6Γ(3
4)

σ2Γ(1
4)

ε
2
2 ≤− log(2

√
p̂1 p̂2 +1− p̂1− p̂2)

∧

0 < ε4 ≤ ε2 ≤ d
1
4 ε4,

(8.26)

We visualise this trade-off in fig. 8.3 for `3 and `4 norms. That is, the trade-off

in certified robustness between those norms and certified robustness in `1 and `2,

respectively. We visualise the trade-off as we vary the noise scale σ , assuming a

robust classifier that classifies inputs correctly with p̂1 = 0.99 and p̂2 = 0.01. We

can smoothly exchange robustness in one norm for robustness in another norm. For

8.5. Discussion & experiments 168

example, given σ = 1 and a CIFAR-10 input, we can reduce the guaranteed robust-

ness in the `3 norm from an approximate certified radius of 0.86 to approximately 0,

and increase the guaranteed robustness in the `1 norm from a certified radius of 0.86

to 1.44. In fig. 8.4, we show certified accuracy as a function of certified radius in the

`3, `4, and `5 norms on the CIFAR-10 and ImageNet datasets. To find the maximum

ε3 we solve eq. (8.25) such that ε3 = ε1. Similarly for ε4 we solve eq. (8.26) such

that ε4 = ε2, and extend this line of reasoning to find ε5 = ε3 = ε1 for the `5 norm.

Clearly, we can find non-negligible certified radii in norms outside of `1 and `2.

8.5.3 Robustness guarantees as `p→∞.

An immediate question arises when observing our certification procedure, can we

find non-vacuous robustness guarantees for arbitrarily large `p norms, where p is

even 3 4? Given eq. (8.22), note that (p
k)(1+(−1)p−k)Γ(p−k+1

p)/2Γ(1
p) ≥ 1, ∀1 ≤ k ≤ p,

where k is even, and as p→ ∞, ∃k such that (p
k)(1+(−1)p−k)Γ(p−k+1

p)/2Γ(1
p)→ ∞. We

must therefore solve the problem given in eq. (8.21)-eq. (8.24), where eq. (8.22) is

given by

c2ε2
2

σ2 +
c4ε4

4
σ4 + ...+

cpε
p
p

σ p ≤− log(2
√

p1 p2 +1− p1− p2) (8.27)

where ck ∈ R>1,1≤ k ≤ p,k ≡ 0 (mod 2) (8.28)

To satisfy eq. (8.23), we can find ε2,ε4, ...,εp such that ε2 = ε4 = ... = εp; we

refer to this value as ε , and eq. (8.27) becomes

c2(
ε

σ
)2 + c4(

ε

σ
)4 + ...+ cp(

ε

σ
)p

≤− log(2
√

p1 p2 +1− p1− p2) (8.29)

where ck ∈ R>1,1≤ k ≤ p,k ≡ 0 (mod 2) (8.30)

3Equivalent results for this section can be found when p is not even.
4The subject of simultaneous robustness over every `p norm is expanded upon in appendix E.7.

8.5. Discussion & experiments 169

0 100 200 300 400
Inputs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ra
di

us

2×Certified
Certified
PGD

Figure 8.5: The certified radius and size of adversarial perturbations for 400 CIFAR-10 test
inputs using a PGD attack optimising the `2 norm. As a guide to assess how
close the certified radius is to adversarial perturbation size, we also display 2×
the certified radius of an input.

For a fixed p1, p2,σ , since ∀k,ck ≥ 1, and ∃k such that ck→∞ when p→∞, to

satisfy the inequality in eq. (8.29), we must have ε → 0. If we do not fix σ then we

require (ε

σ
)k→ 0 as ck→∞, and so to certify a non-negligible radius, ε , we require

σ → ∞. However, as σ → ∞, the randomised smoothing will cause the input to

become too noisy for any classifier to achieve low prediction error.

Clearly, as p grows the largest possible certified radius becomes smaller, be-

cause our bound requires this robustness guarantee holds for every norm smaller

than p. One may wonder if we can find an `p norm in which we can certify a non-

vacuous radius that approximates the `∞ norm arbitrarily well. The difference in

volume between a unit ball in the `p norm and `∞ norm is given by Γ(1+1/p)d/Γ(1+d/p),

where d is the data dimensionality. Unfortunately, the error in the approximation is

dependent on the data dimensionality. For example, for an ImageNet input where

d = 3× 224× 224, if we require the ratio of volumes between an `p unit ball and

`∞ unit ball to be larger than 0.99, we must take p = 9×3×224×224.

8.5. Discussion & experiments 170

8.5.4 How tight is the bound?

The difference between the certified area and the size of an adversarial perturbation

gives a tightness estimate. If the certified radius is close to the size of an adver-

sarial perturbation this implies the bound is close to optimal. To check how tight

our bound is we ran the PGD attack [161] minimising perturbations in the `2 norm.

Because the certification procedure requires the addition of generalised Gaussian

noise to the input, the gradient is highly stochastic, leading to extremely slow con-

vergence of the PGD attack. We circumvent this stochasticity by optimising using

the Expectation Over Transformation [14] – we use 1000 Monte Carlo samples to

estimate the gradient of an input during the attack. Figure 8.5 gives attack results

on CIFAR-10 along with the certified radius of 400 inputs. We find adversarial ex-

amples with norms within 2− 2.5× the certified radius. Unfortunately, this does

not inform us if our bound is loose or if the attack is sub-optimal. We leave a more

rigorous investigation of assessing the tightness of our bound for future work.

Chapter 9

Conclusions

Information security problems that can be reduced to pattern recognition problems

can benefit from machine learning. This dissertation presented results in network

traffic analysis and steganography that demonstrated the efficacy of applying ma-

chine learning to these problems. We went on to show that, although information

security problems can benefit from machine learning, in adversarial environments

it is not sufficient to apply them blindly. Malicious actors can reduce security and

privacy properties that a system claims to hold by introducing corrupted data both

during the training and evaluation of the machine learning model.

Firstly, in chapter 3, we introduced website fingerprinting; the problem of pre-

dicting which website a client visits by collecting encrypted network traffic. We

demonstrated that random forests [28] and k-NN [50] can be combined in order to

trade-off false positives and false negatives. We additionally showed that this clas-

sifier was robust to website fingerprinting defences, that aim to introduce packet

timing delays or dummy network traffic, in order to distort the patterns learnt by

the attack models. Secondly, in chapter 4, we studied how machine learning can

be applied to the task of information hiding. We considered three actors, the in-

formation hider, the information receiver, and the eavesdropping detector, where

the hider and receiver participate in a co-operative game and concurrently partic-

ipate in a zero-sum with the eavesdropper. We modelled each of these actors by

neural networks, and showed that these networks can be trained through first-order

optimisation techniques to reach parity with traditional steganographic algorithms.

172

In chapter 5, we showed that private information can leak in generative models.

Our attacks exploited overfitting in generative models to expose the inputs that made

up the training data. We then demonstrated how early stopping and private training

mechanisms can be used to reduce the threat of private information leakage. In-

ference of training set membership is an attack that is established after training has

completed. In chapter 5, we studied how in a multi-party setting, an attacker that can

corrupt inputs during the training process can cause the model to learn adversarial

properties that are unwanted and undetected by benign participants. By introduc-

ing the task of predicting the party who supplied an input, and modelling this as a

zero-sum game between this task and the original prediction task, we showed that

the threat of adversarial corruptions in training data is minimised, conditional on a

minority of parties being adversarial.

In part III, we demonstrated vulnerabilities in the trustworthiness of model

predictions. By introducing small perturbations, an attack can add these to seem-

ingly “easy to classify” inputs and cause dramatic misclassifications. In chapter 7,

we introduced the concept of a universal adversarial perturbation [173], adversarial

perturbations that generalise across an entire data distribution, rather than a single

input. This significantly reduces the effort of an attack, since the perturbation can be

applied blindly to any input from a target distribution, and the attacker has high con-

fidence the attack will succeed. We modelled the construction of universal adver-

sarial perturbations as a co-operative game between a target network and network

that learns to output adversarial perturbations. Through this design, we showed

that a neural network can learn to output perturbations that cause misclassifications

with high probability, can transfer across different models, and are somewhat resis-

tant to standard adversarial examples defences [161]. Following this, in chapter 8

we discussed the limitations of experimental defences against adversarial examples,

and introduced the concept of certified defences. We showed that by measuring in-

variance of prediction under noise addition, one can produce a certificate affirming

no adversarial examples exists within an ε-ball around an input [49, 142]. Unfor-

tunately, our research implies that such methods are sufficient to guarantee robust

173

classification under only a small number of `p norms.

The rate of adoption of machine learning in security and privacy sensitive en-

vironments is accelerating. This dissertation should serve as a cautionary tale and a

guide to the threats a practitioner can expect to face when launching machine learn-

ing in production. However, there are reasons to be optimistic, there is promising

progress in private training mechanism research [8, 17, 171, 217], and against data

poisoning attacks [214, 225]. Research into the causes of adversarial examples has

also started to move beyond limited settings, such as measuring robustness against

`p norm constrained attacks [70, 223]. However, it remains an open question if cur-

rent deep learning based approaches to artificial intelligence can approach human

levels of robustness to adversarial inputs, or if a new approach is required.

Bibliography

[1] Alexa — The Web Information Company, [Accessed August 2015]. URL

http://alexa.com.

[2] .gov.uk verify, [Accessed January 2020]. URL

https://www.gov.uk/government/publications/

introducing-govuk-verify/introducing-govuk-verify.

[3] The Nielsen Company. Technical report, [Accessed July 2015].

http://www.nielsen.com/us/en/insights/news/2010/

led-by-facebook-twitter-global-time-spent-on-social

-media-sites-up-82-year-over-year.html.

[4] Tor Proposal 254, [Accessed November 2015]. URL https://

gitweb.torproject.org/torspec.git/tree/proposals/

254-padding-negotiation.txt.

[5] Martín Abadi and David G Andersen. Learning to protect communications

with adversarial neural cryptography. In arXiv preprint arXiv:1610.06918,

2016.

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

et al. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. In arXiv preprint arXiv:1603.04467, 2016.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-

http://alexa.com
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt

BIBLIOGRAPHY 175

ard, et al. Tensorflow: A system for large-scale machine learning. In USENIX

OSDI, 2016.

[8] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential pri-

vacy. In ACM CCS, 2016.

[9] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against

autoregressive models. In AAAI, 2016.

[10] Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohri-

menko, and Sergey Yekhanin. An algorithmic framework for differentially

private data analysis on trusted processors. In Advances in Neural Informa-

tion Processing Systems, 2019.

[11] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-

preserving deep learning: Revisited and enhanced. In ATIS, 2017.

[12] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. In

arXiv 1701.07875, 2017.

[13] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani,

Domenico Vitali, and Giovanni Felici. Hacking smart machines with smarter

ones: How to extract meaningful data from machine learning classifiers. In

International Journal of Security and Networks, 2015.

[14] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesiz-

ing robust adversarial examples. In arXiv preprint arXiv:1707.07397, 2017.

[15] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial exam-

ples. In arXiv preprint arXiv:1802.00420, 2018.

[16] Michael Backes, Pascal Berrang, Mathias Humbert, and Praveen Manoharan.

Membership privacy in microrna-based studies. In ACM CCS, 2016.

BIBLIOGRAPHY 176

[17] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, San-

jeev P Bhavnani, James Brian Byrd, and Casey S Greene. Privacy-preserving

generative deep neural networks support clinical data sharing. In Circulation:

Cardiovascular Quality and Outcomes, 2019.

[18] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized

denoising auto-encoders as generative models. In Advances in Neural Infor-

mation Processing Systems, 2013.

[19] David Berthelot, Tom Schumm, and Luke Metz. BEGAN: Boundary Equi-

librium Generative Adversarial Networks. In arXiv 1703.10717, 2017.

[20] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-cnn: A

data-efficient website fingerprinting attack based on deep learning. In PETS,

2019.

[21] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against

support vector machines. In ICML, 2012.

[22] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino

Corona, Giorgio Giacinto, and Fabio Roli. Poisoning behavioral malware

clustering. In AISec, 2014.

[23] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil Levine.

Privacy vulnerabilities in encrypted http streams. In PETS, 2006.

[24] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth

Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes,

and Bernhard Seefeld. Prochlo: Strong privacy for analytics in the crowd. In

ACM SOSP, 2017.

[25] Avrim Blum, Travis Dick, Naren Manoj, and Hongyang Zhang. Random

smoothing might be unable to certify `∞ robustness for high-dimensional im-

ages. In arXiv preprint arXiv:2002.03517, 2020.

BIBLIOGRAPHY 177

[26] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.

Practical secure aggregation for privacy preserving machine learning. In

ACM CCS, 2017.

[27] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel.

Cnn-cert: An efficient framework for certifying robustness of convolutional

neural networks. In arXiv preprint arXiv:1811.12395, 2018.

[28] Leo Breiman. Random forests. In Machine learning, 2001.

[29] Anna L Buczak and Erhan Guven. A survey of data mining and machine

learning methods for cyber security intrusion detection. In IEEE Communi-

cations Surveys & Tutorials, 2016.

[30] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K

Mudigonda. A unified view of piecewise linear neural network verification.

In Advances in Neural Information Processing Systems, 2018.

[31] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching

from a distance: Website fingerprinting attacks and defenses. In ACM CCS,

2012.

[32] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-BuFLO: A Congestion

Sensitive Website Fingerprinting Defense. In WPES, 2014.

[33] Nicholas Carlini. Is ami (attacks meet interpretability) robust to adversarial

examples? In arXiv preprint arXiv:1902.02322, 2019.

[34] Nicholas Carlini and David Wagner. Adversarial examples are not easily

detected: Bypassing ten detection methods. In AISec, 2017.

[35] Nicholas Carlini and David Wagner. Towards evaluating the robustness of

neural networks. In IEEE S&P, 2017.

BIBLIOGRAPHY 178

[36] Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Prov-

ably minimally-distorted adversarial examples. In arXiv preprint

arXiv:1709.10207, 2017.

[37] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas

Rauber, Dimitris Tsipras, Ian Goodfellow, and Aleksander Madry. On eval-

uating adversarial robustness. In arXiv preprint arXiv:1902.06705, 2019.

[38] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song.

The secret sharer: Evaluating and testing unintended memorization in neural

networks. In USENIX Security, 2019.

[39] Licong Chen, Yun-Qing Shi, and Patchara Sutthiwan. Variable multi-

dimensional co-occurrence for steganalysis. In International Workshop on

Digital Watermarking, 2014.

[40] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.

ZOO: Zeroth order optimization based black-box attacks to deep neural net-

works without training substitute models. In AISec, 2017.

[41] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu,

and Bo Li. Automated poisoning attacks and defenses in malware detec-

tion systems: An adversarial machine learning approach. In Computers &

Security, 2018.

[42] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-Channel

Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. In

IEEE S&P, 2010.

[43] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted

backdoor attacks on deep learning systems using data poisoning. In arXiv

preprint arXiv:1712.05526, 2017.

[44] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum re-

BIBLIOGRAPHY 179

silience of artificial neural networks. In International Symposium on Auto-

mated Technology for Verification and Analysis, 2017.

[45] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted web brows-

ing. In URL citeseer. ist. psu. edu/656522. html, 1998.

[46] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. Website fingerprinting

defenses at the application layer. In PETS, 2017.

[47] Soumith Chintala, Emily Denton, Martin Arjovsky, and Michael Mathieu.

How to train a GAN? Tips and tricks to make GANs work, 2016. https:

//github.com/soumith/ganhacks.

[48] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating

Multi-label Discrete Electronic Health Records using Generative Adversarial

Networks. In Machine Learning for Healthcare, 2017.

[49] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial

robustness via randomized smoothing. In ICML, 2019.

[50] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. In

IEEE transactions on information theory, 1967.

[51] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and

Gianluca Bontempi. Credit card fraud detection and concept-drift adaptation

with delayed supervised information. In IJCNN, 2015.

[52] Katitza Rodriguez David Greene. Nsa mass surveillance programs

unnecessary and disproportionate. Technical report, EFF, 2014.

https://www.eff.org/files/2014/05/29/unnecessary_

and_disproportionate.pdf.

[53] Wladimir De la Cadena, Asya Mitseva, Jan Pennekamp, Jens Hiller, Fabian

Lanze, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. Poster: Traffic

splitting to counter website fingerprinting. In ACM CCS, 2019.

https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks
https://www.eff.org/files/2014/05/29/unnecessary_and_disproportionate.pdf
https://www.eff.org/files/2014/05/29/unnecessary_and_disproportionate.pdf

BIBLIOGRAPHY 180

[54] Ambra Demontis, Paolo Russu, Battista Biggio, Giorgio Fumera, and Fabio

Roli. On security and sparsity of linear classifiers for adversarial settings.

In Joint IAPR International Workshops on Statistical Techniques in Pattern

Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR),

2016.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR, 2009.

[56] Mariano Di Martino, Peter Quax, and Wim Lamotte. Realistically finger-

printing social media webpages in https traffic. In Proceedings of the 14th

International Conference on Availability, Reliability and Security, 2019.

[57] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. Technical report, Naval Research Lab Washington

DC, 2004.

[58] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908, 2016.

[59] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. In ICML, 2016.

[60] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving

multivariate statistical analysis: Linear regression and classification. In

ICDM, 2004.

[61] Krishnamurthy (Dj) Dvijotham, Sven Gowal, Robert Stanforth, Relja Arand-

jelovic, Brendan O’Donoghue, Jonathan Uesato, and Pushmeet Kohli.

Training verified learners with learned verifiers. In arXiv preprint

arXiv:1805.10265, 2018.

[62] Krishnamurthy (Dj) Dvijotham, Jamie Hayes, Borja Balle, Zico Kolter,

Chongli Qin, Andras Gyorgy, Kai Xiao, Sven Gowal, and Pushmeet Kohli.

BIBLIOGRAPHY 181

A framework for robustness certification of smoothed classifiers using f-

divergences. In ICLR, 2020.

[63] Cynthia Dwork. Differential privacy: A survey of results. In Theory and

Applications of Models of Computation, 2008.

[64] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrat-

ing noise to sensitivity in private data analysis. In Theory of cryptography

conference, 2006.

[65] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. Fairness through awareness. In ITCS, 2012.

[66] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold,

and Aaron Roth. Generalization in adaptive data analysis and holdout reuse.

In Advances in Neural Information Processing Systems, 2015.

[67] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton.

Peek-a-boo, I still see you: Why efficient traffic analysis countermeasures

fail. In IEEE S&P, 2012.

[68] Harrison Edwards and Amos Storkey. Censoring representations with an

adversary. In ICLR, 2016.

[69] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural

networks. In International Symposium on Automated Technology for Verifi-

cation and Analysis, 2017.

[70] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and

Aleksander Madry. Exploring the landscape of spatial robustness. In arXiv

preprint arXiv:1712.02779, 2017.

[71] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and un-

derstanding the robustness of adversarial logit pairing. In arXiv preprint

arXiv:1807.10272, 2018.

BIBLIOGRAPHY 182

[72] Tomáš Filler, Andrew D Ker, and Jessica Fridrich. The square root law of

steganographic capacity for markov covers. In Media Forensics and Security,

2009.

[73] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion at-

tacks that exploit confidence information and basic countermeasures. In ACM

CCS, 2015.

[74] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and

Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end case study

of personalized warfarin dosing. In USENIX Security, 2014.

[75] Jessica Fridrich, Miroslav Goljan, and Rui Du. Detecting LSB steganography

in color, and gray-scale images. In IEEE multimedia, 2001.

[76] Jerome H Friedman. Greedy function approximation: a gradient boosting

machine. In Annals of statistics, 2001.

[77] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdel-

hamid Bouchachia. A survey on concept drift adaptation. In ACM computing

surveys (CSUR), 2014.

[78] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,

Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certifi-

cation of neural networks with abstract interpretation. In IEEE S&P, 2018.

[79] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. In ICML, 2016.

[80] Jiajun Gong and Tao Wang. Zero-delay lightweight defenses against website

fingerprinting. 2020.

[81] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in Neural Information Processing Systems, 2014.

BIBLIOGRAPHY 183

[82] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

[83] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In arXiv preprint arXiv:1412.6572, 2014.

[84] Sven Gowal, Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Rudy Bunel,

Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. On

the effectiveness of interval bound propagation for training verifiably robust

models. In arXiv preprint arXiv:1810.12715, 2018.

[85] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying

vulnerabilities in the machine learning model supply chain. In arXiv preprint

arXiv:1708.06733, 2017.

[86] Xiaodan Gu, Ming Yang, and Junzhou Luo. A novel Website Fingerprinting

attack against multi-tab browsing behavior. In IEEE CSCWD, 2015.

[87] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of Wasserstein GANs. In ICLR, 2018.

[88] David Ha. Generating large images from latent vectors,

2016. URL http://blog.otoro.net/2016/04/01/

generating-large-images-from-latent-vectors.

[89] Jihun Hamm. Minimax filter: Learning to preserve privacy from inference

attacks. In Journal of Machine Learning Research, 2017.

[90] Jihun Hamm and Akshay Mehra. Machine vs machine: Minimax-optimal

defense against adversarial examples. In arXiv preprint arXiv:1711.04368,

2017.

[91] Jihun Hamm, Paul Cao, and Mikhail Belkin. Learning privately from multi-

party data. In ICML, pages 555–563, 2016.

[92] M. Hayden. The price of privacy: Re-evaluating the nsa, 2014. URL

https://www.youtube.com/watch?v=kV2HDM86XgI&t=

17m50s.

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors
http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors
https://www.youtube.com/watch?v=kV2HDM86XgI&t=17m50s
https://www.youtube.com/watch?v=kV2HDM86XgI&t=17m50s

BIBLIOGRAPHY 184

[93] Jamie Hayes. Traffic confirmation attacks despite noise. In arXiv preprint

arXiv:1601.04893, 2016.

[94] Jamie Hayes. On visible adversarial perturbations & digital watermarking.

In CVPR Workshops, 2018.

[95] Jamie Hayes. Extensions and limitations of randomized smoothing for ro-

bustness guarantees. In CVPR Workshops, 2020.

[96] Jamie Hayes and George Danezis. Guard sets for onion routing. In PETS,

2015.

[97] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable web-

site fingerprinting technique. In USENIX Security, 2016.

[98] Jamie Hayes and George Danezis. Generating steganographic images via

adversarial training. In Advances in Neural Information Processing Systems,

2017.

[99] Jamie Hayes and George Danezis. Learning universal adversarial perturba-

tions with generative models. In IEEE S&P Workshops, 2018.

[100] Jamie Hayes and Olga Ohrimenko. Contamination attacks and mitigation in

multi-party machine learning. In Advances in Neural Information Processing

Systems, 2018.

[101] Jamie Hayes, Carmela Troncoso, and George Danezis. TASP: Towards

anonymity sets that persist. In WPES, 2016.

[102] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LO-

GAN: Membership inference attacks against generative models. In PETS,

2019.

[103] Jamie Hayes, Krishnamurthy (Dj) Dvijotham, Yutian Chen, Sander Diele-

man, Pushmeet Kohli, and Norman Casagrande. Provenance detec-

tion through learning transformation-resilient watermarking, 2020. URL

https://openreview.net/forum?id=S1gmvyHFDS.

https://openreview.net/forum?id=S1gmvyHFDS

BIBLIOGRAPHY 185

[104] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In CVPR, 2016.

[105] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song.

Adversarial example defense: Ensembles of weak defenses are not strong. In

USENIX WOOT, 2017.

[106] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website finger-

printing: attacking popular privacy enhancing technologies with the multino-

mial naïve-bayes classifier. In ACM workshop on Cloud computing security,

2009.

[107] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N Wright.

Privacy-preserving machine learning as a service. In PETS, 2018.

[108] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. In arXiv 1503.02531, 2015.

[109] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep Models

Under the GAN: Information Leakage from Collaborative Deep Learning. In

ACM CCS, 2017.

[110] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay

Phegade, and Juan del Cuvillo. Using innovative instructions to create trust-

worthy software solutions. In HASP, 2013.

[111] Vojtech Holub and Jessica Fridrich. Designing steganographic distortion us-

ing directional filters. In IEEE WIFS, 2012.

[112] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. Universal distortion

function for steganography in an arbitrary domain. In EURASIP Journal on

Information Security, 2014.

[113] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav

Tembe, Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nel-

son, and David W Craig. Resolving individuals contributing trace amounts

BIBLIOGRAPHY 186

of DNA to highly complex mixtures using high-density SNP genotyping mi-

croarrays. In PLoS Genet, 2008.

[114] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In CVPR, 2017.

[115] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. La-

beled Faces in the Wild: A Database for Studying Face Recognition in Un-

constrained Environments. Technical report, University of Massachusetts,

Amherst, 2007. http://vis-www.cs.umass.edu/lfw/lfw.pdf.

[116] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter

Abbeel. Adversarial attacks on neural network policies. In arXiv preprint

arXiv:1702.02284, 2017.

[117] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML, 2015.

[118] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-

Rotaru, and Bo Li. Manipulating machine learning: Poisoning attacks and

countermeasures for regression learning. In IEEE S&P, 2018.

[119] Shouling Ji, Weiqing Li, Neil Zhenqiang Gong, Prateek Mittal, and Ra-

heem A Beyah. On your social network de-anonymizablity: Quantification

and large scale evaluation with seed knowledge. In NDSS, 2015.

[120] Jinyuan Jia and Neil Zhenqiang Gong. Attriguard: A practical defense

against attribute inference attacks via adversarial machine learning. In

USENIX Security, 2018.

[121] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt.

A critical evaluation of website fingerprinting attacks. In ACM CCS, 2014.

[122] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.

Toward an efficient website fingerprinting defense. In ESORICS, 2016.

http://vis-www.cs.umass.edu/lfw/lfw.pdf

BIBLIOGRAPHY 187

[123] Kaggle.com. Diabetic Retinopathy Detection. https://www.kaggle.

com/c/diabetic-retinopathy-detection#references,

2015.

[124] Andrej Karpathy, Pieter Abbeel, Greg Brockman, Peter Chen, Vicki Che-

ung, Rocky Duan, Ian Goodfellow, Durk Kingma, Jonathan Ho, Rein

Houthooft, Tim Salimans, John Schulman, Ilya Sutskever, and Woj-

ciech Zaremba. Generative Models. https://blog.openai.com/

generative-models/, 2017.

[125] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-

fer. Reluplex: An efficient smt solver for verifying deep neural networks. In

International Conference on Computer Aided Verification, 2017.

[126] Marc Khoury and Dylan Hadfield-Menell. On the geometry of adversarial

examples. In arXiv preprint arXiv:1811.00525, 2018.

[127] Seung-Jean Kim and Stephen Boyd. A minimax theorem with applications

to machine learning, signal processing, and finance. In SIAM Journal on

Optimization, 2008.

[128] Yoon Kim. Convolutional neural networks for sentence classification. In

EMNLP, 2014.

[129] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In arXiv preprint arXiv:1412.6980, 2014.

[130] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In

arXiv preprint arXiv:1312.6114, 2013.

[131] Pang Wei Koh and Percy Liang. Understanding black-box predictions via

influence functions. In ICML, pages 1885–1894, 2017.

[132] Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative

models. In IEEE S&P Workshops, 2018.

https://www.kaggle.com/c/diabetic-retinopathy-detection#references
https://www.kaggle.com/c/diabetic-retinopathy-detection#references
https://blog.openai.com/generative-models/
https://blog.openai.com/generative-models/

BIBLIOGRAPHY 188

[133] Alex Krizhevsky and Geoffrey Hinton. Learning multiple lay-

ers of features from tiny images. Technical report, University

of Toronto, 2009. https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.

[134] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela Troncoso.

Evading classifiers in discrete domains with provable optimality guarantees.

In arXiv preprint arXiv:1810.10939, 2018.

[135] Aounon Kumar, Alexander Levine, Tom Goldstein, and Soheil Feizi. Curse

of dimensionality on randomized smoothing for certifiable robustness. In

arXiv preprint arXiv:2002.03239, 2020.

[136] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples

in the physical world. In arXiv preprint arXiv:1607.02533, 2016.

[137] Matt J Kusner, Jacob R Gardner, Roman Garnett, and Kilian Q Weinberger.

Differentially Private Bayesian Optimization. In ICML, 2015.

[138] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas

Devadas. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor

Hidden Services. In USENIX Security, 2015.

[139] Terran D Lane. Machine learning techniques for the computer security do-

main of anomaly detection. 2000.

[140] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and

Ole Winther. Autoencoding beyond pixels using a learned similarity metric.

In ICLM, 2016.

[141] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.

Efficient backprop. In Neural networks: Tricks of the trade. 2012.

[142] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and

Suman Jana. Certified robustness to adversarial examples with differential

privacy. In IEEE S&P, 2019.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

BIBLIOGRAPHY 189

[143] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-

ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,

Zehan Wang, et al. Photo-realistic single image super-resolution using a gen-

erative adversarial network. In arXiv preprint arXiv:1609.04802, 2016.

[144] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi S Jaakkola. A stratified

approach to robustness for randomly smoothed classifiers. In arXiv preprint

arXiv:1906.04948, 2019.

[145] Daniel Lerch-Hostalot and David Megías. Unsupervised steganalysis based

on artificial training sets. In Engineering Applications of Artificial Intelli-

gence, 2016.

[146] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified ad-

versarial robustness with additive noise. In Advances in Neural Information

Processing Systems, 2019.

[147] Kaiqi Liang, Gaopeng Gou, Cuicui Kang, Chang Liu, Min Yang, and

Yu Guo. A multi-view deep learning model for encrypted website service

classification. In IEEE GLOBECOM, 2019.

[148] A. Liaw and M. Wiener. Classification and Regression by randomForest. In

R News: The Newsletter of the R Project, 2002.

[149] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted

HTTP connections. In ACM CCS, 2006.

[150] Wei-Yang Lin, Ya-Han Hu, and Chih-Fong Tsai. Machine learning in finan-

cial crisis prediction: a survey. In IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 2012.

[151] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In

CRYPTO, 2000.

[152] Chen Liu, Ryota Tomioka, and Volkan Cevher. On certifying non-uniform

bound against adversarial attacks. In arXiv preprint arXiv:1903.06603, 2019.

BIBLIOGRAPHY 190

[153] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly

detection. In TKDD, 2012.

[154] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proceedings of the IEEE International Conference

on Computer Vision, 2015.

[155] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang,

Haixu Tang, Carl A Gunter, and Kai Chen. Understanding member-

ship inferences on well-generalized learning models. In arXiv preprint

arXiv:1802.04889, 2018.

[156] Gilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with

adversarial networks. In Advances in Neural Information Processing Sys-

tems, 2017.

[157] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. Website fingerprinting

and identification using ordered feature sequences. In ESORICS, 2010.

[158] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are GANs

Created Equal? A Large-Scale Study. In ArXiv 1711.10337, 2017.

[159] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.

Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with

browser-side obfuscation of encrypted flows. In NDSS, 2011.

[160] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In ICML, 2013.

[161] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial

attacks. In arXiv preprint arXiv:1706.06083, 2017.

[162] Vasilios Mavroudis and Jamie Hayes. Adaptive traffic fingerprint-

ing: Large-scale inference under realistic assumptions. arXiv preprint

arXiv:2010.10294, 2020.

BIBLIOGRAPHY 191

[163] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera

y Arcas. Federated learning of deep networks using model averaging. In

arXiv preprint arXiv:1602.05629, 2016.

[164] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.

Communication-efficient learning of deep networks from decentralized data.

In AISTATS, 2017.

[165] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learn-

ing differentially private recurrent language models. In ICLR, 2018.

[166] Frank McSherry. Statistical inference considered harmful. https:

//github.com/frankmcsherry/blog/blob/master/posts/

2016-06-14.md, 2016.

[167] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly

Shmatikov. Exploiting unintended feature leakage in collaborative learning.

In IEEE S&P, 2019.

[168] Jan Hendrik Metzen. Universality, robustness, and detectability of ad-

versarial perturbations under adversarial training, 2018. URL https:

//openreview.net/forum?id=SyjsLqxR-.

[169] Jarno Mielikainen. LSB matching revisited. In IEEE signal processing let-

ters, 2006.

[170] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract

interpretation for provably robust neural networks. In ICML, 2018.

[171] P. Mohassel and Y. Zhang. SecureML: A System for Scalable Privacy-

Preserving Machine Learning. In IEEE S&P, 2017.

[172] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

Deepfool: A simple and accurate method to fool deep neural networks. In

CVPR, pages 2574–2582, 2016.

https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://openreview.net/forum?id=SyjsLqxR-
https://openreview.net/forum?id=SyjsLqxR-

BIBLIOGRAPHY 192

[173] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. In CVPR, 2017.

[174] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. Fast feature fool:

A data independent approach to universal adversarial perturbations. In arXiv

preprint arXiv:1707.05572, 2017.

[175] Saralees Nadarajah. A generalized normal distribution. In Journal of Applied

Statistics, 2005.

[176] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, 2010.

[177] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks.

In IEEE S&P, 2009.

[178] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with

membership privacy using adversarial regularization. In ACM CCS, 2018.

[179] Dong Nie, Roger Trullo, Caroline Petitjean, Su Ruan, and Dinggang Shen.

Medical Image Synthesis with Context-Aware Generative Adversarial Net-

works. In MICCAI, 2017.

[180] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft,

and Dan Boneh. Privacy-preserving matrix factorization. In ACM CCS, 2013.

[181] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A Bespoke Website

Fingerprinting Defense. In WPES, 2014.

[182] Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future—big data,

machine learning, and clinical medicine. In The New England journal of

medicine, 2016.

[183] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine

learning on trusted processors. In USENIX Security, 2016.

BIBLIOGRAPHY 193

[184] A. Stolerman M. V. Ryan P. Brennan P. Juola, J. I. Noecker Jr and R. Green-

stadt. A Dataset for Active Linguistic Authentication. In International Con-

ference on Digital Forensics, 2013.

[185] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.

Website fingerprinting in onion routing based anonymization networks. In

WPES, 2011.

[186] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pen-

nekamp, Klaus Wehrle, , and Thomas Engel. Website Fingerprinting at In-

ternet Scale. In NDSS, 2016.

[187] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in

machine learning: from phenomena to black-box attacks using adversarial

samples. In arXiv preprint arXiv:1605.07277, 2016.

[188] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay

Celik, and Ananthram Swami. The limitations of deep learning in adversarial

settings. In IEEE EuroS&P, 2016.

[189] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep

neural networks. In IEEE Security and Privacy, 2016.

[190] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Ku-

nal Talwar. Semi-supervised knowledge transfer for deep learning from pri-

vate training data. In ICLR, 2017.

[191] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. Practical Black-Box Attacks against Machine

Learning. In AsiaCCS, 2017.

[192] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Úlfar Erlingsson. Scalable Private Learning with PATE. In ICLR,

2018.

BIBLIOGRAPHY 194

[193] Thrasyvoulos N Pappas and Robert J Safranek. Perceptual criteria for image

quality evaluation.

[194] Manas A. Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential

privacy via aggregation of locally trained classifiers. In Advances in Neural

Information Processing Systems, 2010.

[195] Mike Perry. Experimental defense website traffic fingerprinting.

Technical report. https://blog.torproject.org/blog/

experimental-defense-website-traffic-fingerprinting.

[196] Mike Perry. A critique of website traffic fingerprinting attacks. Technical re-

port, Accessed June 2015. https://blog.torproject.org/blog/

critique-website-traffic-fingerprinting-attacks.

[197] Tomáš Pevnỳ, Tomáš Filler, and Patrick Bas. Using high-dimensional im-

age models to perform highly undetectable steganography. In International

Workshop on Information Hiding, 2010.

[198] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. The loopix anonymity system. In USENIX Security, 2017.

[199] Ania M Piotrowska, Jamie Hayes, Nethanel Gelernter, George Danezis, and

Amir Herzberg. Annotify: a private notification service. In WPES, 2017.

[200] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Genera-

tive adversarial perturbations. In CVPR, 2018.

[201] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. What

Does The Crowd Say About You? Evaluating Aggregation-based Location

Privacy. In PETS, 2017.

[202] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. Knock

Knock, Who’s There? Membership Inference on Aggregate Location Data.

In NDSS, 2018.

https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks

BIBLIOGRAPHY 195

[203] Jianwei Qian, Xiang-Yang Li, Chunhong Zhang, and Linlin Chen. De-

anonymizing social networks and inferring private attributes using knowl-

edge graphs. In INFOCOM, 2016.

[204] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-

tation learning with deep convolutional generative adversarial networks. In

arXiv 1511.06434, 2015.

[205] Md Atiqur Rahman, Tanzila Rahman, Robert Laganiere, Noman Mo-

hammed, and Yang Wang. Membership Inference Attack against Differen-

tially Private Deep Learning Model. In Transactions on Data Privacy, 2018.

[206] Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gra-

dient descent algorithm for multiparty classification. In AISTATS, 2012.

[207] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R Venkatesh Babu.

Nag: Network for adversary generation. In CVPR, 2018.

[208] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and

Wouter Joosen. Automated website fingerprinting through deep learning.

In arXiv preprint arXiv:1708.06376, 2017.

[209] Edward Rosten and Tom Drummond. Machine learning for high-speed cor-

ner detection. In ECCV, 2006.

[210] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. In IJCV, 2015.

[211] Tim Salimans and Diederik P Kingma. Weight normalization: A simple repa-

rameterization to accelerate training of deep neural networks. In Advances

in Neural Information Processing Systems, 2016.

BIBLIOGRAPHY 196

[212] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, Xi Chen, and Xi Chen. Improved Techniques for Training GANs. In

Advances in Neural Information Processing Systems, 2016.

[213] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data

analytics in the cloud using SGX. In IEEE S&P, 2015.

[214] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against

poisoning attacks in collaborative deep learning systems. In ACSAC, 2016.

[215] Margaret A Shipp, Ken N Ross, Pablo Tamayo, Andrew P Weng, Jeffery L

Kutok, Ricardo CT Aguiar, Michelle Gaasenbeek, Michael Angelo, Michael

Reich, Geraldine S Pinkus, et al. Diffuse large b-cell lymphoma outcome

prediction by gene-expression profiling and supervised machine learning. In

Nature medicine, 2002.

[216] Vitaly Shmatikov and Ming-Hsiu Wang. Timing Analysis in Low-Latency

Mix Networks: Attacks and Defenses. In ESORICS, 2006.

[217] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In

ACM CCS, 2015.

[218] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In IEEE S&P,

2017.

[219] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In arXiv preprint arXiv:1409.1556, 2014.

[220] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep fin-

gerprinting: Undermining website fingerprinting defenses with deep learn-

ing. In ACM CCS, 2018.

BIBLIOGRAPHY 197

[221] Sayanan Sivaraman and Mohan M Trivedi. Active learning for on-road ve-

hicle detection: A comparative study. In Machine vision and applications,

2014.

[222] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learn-

ing models that remember too much. In ACM CCS, 2017.

[223] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unre-

stricted adversarial examples with generative models. In Advances in Neural

Information Processing Systems, 2018.

[224] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. In Journal of machine learning research, 2014.

[225] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses

for data poisoning attacks. In Advances in neural information processing

systems, 2017.

[226] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N Pad-

manabhan, and Lili Qiu. Statistical identification of encrypted web browsing

traffic. In IEEE S&P, 2002.

[227] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. In arXiv preprint arXiv:1312.6199, 2013.

[228] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In CVPR, 2015.

[229] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. In

CVPR, 2016.

BIBLIOGRAPHY 198

[230] Jiaye Teng, Guang-He Lee, and Yang Yuan. `1 adversarial robustness

certificates: a randomized smoothing approach, 2020. URL https://

openreview.net/forum?id=H1lQIgrFDS.

[231] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy

image compression with compressive autoencoders. In ICLR, 2017.

[232] Theodore B Trafalis and Huseyin Ince. Support vector machine for regression

and applications to financial forecasting. In IJCNN, 2000.

[233] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-

tenpart. Stealing machine learning models via prediction apis. In USENIX

Security, 2016.

[234] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick

McDaniel. The space of transferable adversarial examples. In arXiv preprint

arXiv:1704.03453, 2017.

[235] Aleksei Triastcyn and Boi Faltings. Generating differentially private datasets

using gans. In arXiv preprint arXiv:1803.03148, 2018.

[236] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. To-

wards Demystifying Membership Inference Attacks. In arXiv:1807.09173,

2018.

[237] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and

Aleksander Madry. There is no free lunch in adversarial robustness (but there

are unexpected benefits). In arXiv preprint arXiv:1805.12152, 2018.

[238] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin train-

ing: Scalable certification of perturbation invariance for deep neural net-

works. In Advances in Neural Information Processing Systems, 2018.

[239] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet

Kohli. Adversarial risk and the dangers of evaluating against weak attacks.

In arXiv preprint arXiv:1802.05666, 2018.

https://openreview.net/forum?id=H1lQIgrFDS
https://openreview.net/forum?id=H1lQIgrFDS

BIBLIOGRAPHY 199

[240] James Vincent. https://www.theverge.com/2016/7/5/

12095830/google-deepmind-nhs-eye-disease-detection,

2016.

[241] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 Protocol. In

USENIX Workshop on Electronic Commerce, 1996.

[242] Martin J Wainwright, Michael I Jordan, and John C Duchi. Privacy aware

learning. In Advances in Neural Information Processing Systems, 2012.

[243] T. Wang and I. Goldberg. Walkie-Talkie: An Effective and Efficient Defense

against Website Fingerprinting. Technical Report, 2015.

[244] Tao Wang. High precision open-world website fingerprinting. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 152–167. IEEE, 2020.

[245] Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In

WPES, 2013.

[246] Tao Wang and Ian Goldberg. Comparing website fingerprinting attacks

and defenses. Technical report, Technical Report 2013-30, CACR, 2013.

http://cacr. uwaterloo. ca/techreports . . . , 2014.

[247] Tao Wang and Ian Goldberg. On realistically attacking tor with website fin-

gerprinting. In PETS, 2016.

[248] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-

berg. Effective attacks and provable defenses for website fingerprinting. In

USENIX Security, 2014.

[249] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? a

new look at signal fidelity measures. In IEEE signal processing magazine,

2009.

[250] Xuezhi Wen, Ling Shao, Yu Xue, and Wei Fang. A rapid learning algorithm

for vehicle classification. In Information Sciences, 2015.

https://www.theverge.com/2016/7/5/12095830/google-deepmind-nhs-eye-disease-detection
https://www.theverge.com/2016/7/5/12095830/google-deepmind-nhs-eye-disease-detection

BIBLIOGRAPHY 200

[251] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh,

Duane Boning, Inderjit S Dhillon, and Luca Daniel. Towards fast com-

putation of certified robustness for relu networks. In arXiv preprint

arXiv:1804.09699, 2018.

[252] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing: An

efficient defense against statistical traffic analysis. In NDSS, 2009.

[253] Xi Wu, Matthew Fredrikson, Wentao Wu, Somesh Jha, and Jeffrey F

Naughton. Revisiting differentially private regression: Lessons from learning

theory and their consequences. In arXiv 1512.06388, 2015.

[254] Xiaolin Wu and Xi Zhang. Automated Inference on Criminality using Face

Images. In arXiv 1611.04135, 2016.

[255] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the

Quantitative Analysis of Decoder-Based Generative Models. In ICLR, 2017.

[256] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert,

and Fabio Roli. Is feature selection secure against training data poisoning?

In ICML, 2015.

[257] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and

Fabio Roli. Support vector machines under adversarial label contamination.

In Neurocomputing, 2015.

[258] Greg Yang, Tony Duan, Edward Hu, Hadi Salman, Ilya Razenshteyn, and

Jerry Li. Randomized smoothing of all shapes and sizes. In arXiv preprint

arXiv:2002.08118, 2020.

[259] Qing-Hai Ye, Lun-Xiu Qin, Marshonna Forgues, Ping He, Jin Woo Kim,

Amy C Peng, Richard Simon, Yan Li, Ana I Robles, Yidong Chen, et al.

Predicting hepatitis b virus-positive metastatic hepatocellular carcinomas us-

ing gene expression profiling and supervised machine learning. In Nature

medicine, 2003.

BIBLIOGRAPHY 201

[260] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and

Minh N Do. Semantic Image Inpainting with Perceptual and Contextual

Losses. In arXiv 1607.07539, 2016.

[261] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy

risk in machine learning: Analyzing the connection to overfitting. In IEEE

CSF, 2018.

[262] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Kr-

ishna P. Gummadi. Fairness constraints: Mechanisms for fair classification.

In AISTATS, 2017.

[263] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia

Dwork. Learning fair representations. In ICML, pages 325–333, 2013.

[264] Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S Yeung, and Fabio

Roli. Adversarial feature selection against evasion attacks. In IEEE transac-

tions on cybernetics, 2016.

[265] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.

Efficient neural network robustness certification with general activation func-

tions. In Advances in Neural Information Processing Systems, 2018.

Appendix A

Robust & scalable website

fingerprinting

A.1 Total feature importance

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141
Feature rank

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fe
a
tu

re
 i
m

p
o
rt

a
n
ce

 s
co

re

№ Feature Description

131 - 150 . Packet concentration list features.

Figure A.1: Feature importance score for all 150 features in order. The table gives the
description for the 20 least important features.

A.2. Closed World Error Rates 203

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

Predicted

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

A
ct

ua
l

Figure A.2: Confusion matrix for closed-world attack on Tor using DSNorm. F1 score =
0.913, Accuracy: 0.915, 550 items.

A.2 Closed World Error Rates
Figure A.2 shows the confusion matrix in our closed-world setting, that is, it shows

the 49 misclassifications (out of 550). We see that some persistent misclassification

patterns of web pages appear, for example web page 54 is classified correctly four

times but is misclassified as web page 0 six times. The misclassification rate in

fig. A.2 is 0.09 but this is the average error rate across all web pages.

Figure A.2 shows that the classification error is not uniform across all web

pages. Some pages are misclassified many times, and confused with many others,

while others are never misclassified. An attacker can leverage this information to

estimate the misclassification rate of each web page instead of using the global

average misclassification rate.

As in section 3.9, an attacker can use their training set of web pages to es-

timate the misclassification rate of each web page, by splitting the training set in

A.2. Closed World Error Rates 204

0 20 40 60 80 100
Number of monitored pages (ordered)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

G
lo

b
a
l
m

is
cl

a
ss

if
ic

a
ti

o
n
 r

a
te

Misclassification rate with
 training set (10 repeats)
Misclassification rate with
 training + test set (10 repeats)

Figure A.3: The global misclassification rate when considering different numbers of mon-
itored pages from the Wang et al. [248] dataset. The monitored pages are
ordered in terms of smallest misclassification rate to largest.

to a smaller training set and validation set. Since both sets are from the original

training set the attacker has access to the true labels. The attacker then computes

the misclassification rate of each web page, which they can use as an estimation for

the misclassification rate when training on the entire training set and testing on new

traffic instances.

Figure A.3 and fig. A.4 show the global misclassification rate for a varying

number of monitored pages. Monitored pages are first ordered in terms of the mis-

classification rate they have, ordered from smallest to largest. From fig. A.3, using

the Wang et al. [248] dataset, we see that if the attacker considers only the top 50%

on web pages in terms of per page misclassification rate, the true global misclassi-

fication rate and global misclassification rate estimated by the attacker drop by over

70%. Similarly from fig. A.4, using DSNorm, if the attacker considers only the top

50% on web pages in terms of per page misclassification rate, the true global mis-

classification rate and global misclassification rate estimated by the attacker drop

by over 80%. This allows an attacker to train on monitored pages and then cull the

pages that have too high an error rate, allowing for more confidence in the classifi-

A.3. Attack on larger world size of DSNorm 205

0 10 20 30 40 50 60
Number of monitored pages (ordered)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

G
lo

b
a
l
m

is
cl

a
ss

if
ic

a
ti

o
n
 r

a
te

Misclassification rate with
 training set (10 repeats)
Misclassification rate with
 training + test set (10 repeats)

Figure A.4: The global misclassification rate when considering different numbers of mon-
itored pages from DSNorm. The monitored pages are ordered in terms of small-
est misclassification rate to largest.

cation of the rest of the monitored pages.

The gap between the attacker’s estimate and the misclassification rate of the

test set is largely due to the size of the dataset. Figure A.3 has a smaller error of

estimate than fig. A.4 because the Wang et al. [248] dataset has 60 instances per

monitored page, in comparison DSNorm has 20 instances per monitored page. In

practice, an attacker cannot expect perfect alignment; they are generated from two

different sets of data, the training and training + test set. Nevertheless the attacker

can expect this difference to decrease with the collection of more training instances.

A.3 Attack on larger world size of DSNorm

We run k-fingerprinting on DSNorm with the same number of monitored sites but

increase the numbered of unmonitored sites to 17,000. We evaluate when we have

both time and size features available.

Figure A.5 shows the results of k-fingerprinting while varying the number of

fingerprints (k) used for classification, from between 1 and 10, for various experi-

ments trained with different numbers of unmonitored pages. We see that the attack

A.3. Attack on larger world size of DSNorm 206

0.000 0.005 0.010 0.015 0.020 0.025
False positive

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
ru

e
 p

o
si

ti
v
e

1000
3000
5000
7000
9000
11000
13000
15000

Figure A.5: Attack accuracy for 17,000 unmonitored web pages. Each line represents a
different number of unmonitored web pages that were trained, while varying
k, the number of fingerprints used for classification.

0 5 10 15 20 25 30
Number of monitored training pages

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Maximum oob score
Minimum oob score

Figure A.6: Attack out-of-bag score while varying the number of monitored training pages.

results are comparable to the attack on 7000 unmonitored pages, meaning there

is no degradation in attack accuracy when we increase the world size by 10,000

web pages. Training on approximately 30% of the 7000 unmonitored web pages

A.3. Attack on larger world size of DSNorm 207

k-fingerprinting gives a TPR of over 0.90 and a FPR of 0.01 for k=1. Training on

approximately 30% of the 17,000 unmonitored web pages k-fingerprinting gives a

TPR of 0.90 and a FPR of 0.006 for k=1.

The fraction of unmonitored pages that were incorrectly classified as a moni-

tored page decreased as we increased our world size. In other words, out of 12,000

unmonitored pages only 72 were classified as a monitored page, with this Figure

dropping to 24 if we use k=10 for classification. This provides a strong indica-

tion that k-fingerprinting can scale to a real-world attack in which a client is free to

browse the entire internet, with no decrease in attack accuracy.

Number of monitored training pages in closed-world. Figure A.6 shows the out-

of-bag score as we change the number of monitored pages we train. We found that

training on any more than a third of the data gives roughly the same accuracy.

Appendix B

Membership inference attacks

against generative models

B.1 Unsuccessful attacks
We now report a few additional results, not included in the main body of the paper to

ease presentation. In fig. B.1, we report the results of the Euclidean attack presented

in section 5.7. This attack was performed on a target model (DCGAN) trained on a

random 10% subset of CIFAR-10 and a random 10% subset of LFW, but we found

that the attack did not perform much better than a random guess.

We also report on the results of a black-box setting where 10% of training

set samples from LFW are used to train a shadow model – see fig. B.2. Samples

generated by this model are then injected into the attacker model together with the

samples generated by the target model. More specifically, at training time, each

mini-batch is composed of synthetic samples generated either by the target model

or by the shadow model. However, this attack, inspired by the approach proposed

by Shokri et al. [218], only yields around 18% of accuracy, with no improvements

during training.

B.2 Additional samples
In fig. B.3–fig. B.10, we report additional examples of samples deferred from sec-

tion 5.6. Specifically, real and generated samples are shown in fig. B.3 for LFW

and in fig. B.4 for the diabetic retinopathy (DR) dataset. Then, fig. B.5 shows real

B.2. Additional samples 209

200 400 600 800 1000 1200 1400 1600

Cloud queries

0.06

0.08

0.10

0.12

0.14

A
cc

ur
ac

y

CIFAR-10
LFW
random

Figure B.1: Euclidean attack results for DCGAN target model trained on
a random 10% subset of CIFAR-10 and LFW.

0 5000 10000 15000 20000 25000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

DCGAN

random

Figure B.2: Black-box attack results with 10% auxiliary attacker training
set knowledge used to train a DCGAN shadow model for
DCGAN target model trained on a random 10% subset of
LFW.

samples from LFW and CIFAR-10, while fig. B.6–fig. B.9 depict samples generated

by various target models on LFW. Finally, samples generated by the attacker model

on LFW are reported in fig. B.10.

B.2. Additional samples 210

(a) Real samples (b) Target samples (c) Attacker model samples

Figure B.3: Various samples from the real dataset, target model, and black-box attack using
the DCGAN target model on LFW, top ten classes.

(a) Real sample with no
presence of diabetic
retinopathy

(b) Real sample with high
presence of diabetic
retinopathy

(c) Selection of target gen-
erated samples classi-
fied with high confi-
dence as belonging to
the training set by both
white-box and black-
box attacks

Figure B.4: Real and generated diabetic retinopathy dataset samples.

(a) LFW, top ten classes (b) LFW, random 10%
subset

(c) CIFAR-10, random
10% subset

Figure B.5: Real samples.

B.2. Additional samples 211

(a) LFW, top ten classes (b) LFW, random 10%
subset

(c) CIFAR-10, random
10% subset

Figure B.6: Samples generated by DCGAN target model.

(a) LFW, top ten classes (b) LFW, random 10%
subset

(c) CIFAR-10, random
10% subset

Figure B.7: Samples generated by DCGAN+VAE target model.

Figure B.8: Samples generated by BEGAN target model on LFW, top ten classes.

Figure B.9: Samples generated by BEGAN target model on LFW, random 10% subset.

B.2. Additional samples 212

(a) LFW, top ten classes (b) LFW, random 10% subset

Figure B.10: Samples generated by attacker model trained on samples from DCGAN target
model on (a) LFW, top ten classes and (b) LFW, random 10% subset.

Appendix C

Contamination attacks

C.1 Additional ADULT dataset experiments

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

0.0 0.02 0.04 0.06 0.08 0.1
Fraction of contaminated records in training set

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

Figure C.1: Contamination and validation accuracy for the ADULT dataset as the number of
contaminated records increases, for a contamination label of “high education
level”.

Figure C.1 shows results for a contamination attack, and the corresponding

adversarial training defence, when the contamination label is chosen to be “high

education level”, and fixed the contamination attribute as described in section 6.2.

Similar to fig. 6.2b, adversarial training mitigates the contamination attack, reduc-

ing contamination accuracy to a baseline local model level while retaining superior

C.2. Alternative mitigation strategies 214

0.0 0.02 0.04 0.06 0.08 0.1
Fraction of contaminated records in training set

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
Pr

ec
isi

on

Low (Contaminated Label)
Medium-Low
Medium-High
High

Figure C.2: Validation precision for each class label for the ADULT dataset.

validation accuracy over both a local and contaminated multi-party model. The ad-

versarially trained multi-party model learns the connection with similar levels of

accuracy to experiments with the “low education level” label and so the contamina-

tion attack is not dependent on the choice of class label.

C.2 Alternative mitigation strategies

Here, we outline several methods to defend against contamination attacks and their

drawbacks.

Depending on the number of contaminated records used in the contamination

attack, detection may be relatively straightforward. For example, if an attacker

inserts a large number of contaminated records into the training set, the validation

precision on the contaminated label may be significantly worse than on other labels.

Figure C.2 shows this effect for the ADULT dataset, with the number of contami-

nated records set to 10% of the training set. However, we observed that for smaller

numbers of contaminated records, the signal provided by the per label validation

precision diminishes. Furthermore, this detection method does not provide infor-

mation about the contaminated attribute, and we observed for prediction tasks with

C.2. Alternative mitigation strategies 215

a larger number of classes, such as the NEWS20 dataset, the per label validation pre-

cision is not a reliable detection method, as there was a high variance of precision

per label.

If one knows the attribute likely to be contaminated, or if there are a small num-

ber of attributes in the dataset, independence tests could detect if a party’s dataset

contains contaminated records. Given n > 1 parties and an attribute, each possi-

ble pair of parties can test the hypothesis “the distribution of an attribute between

the two parties is independent of one another”. This can be measured by a simple

chi-square independence test. For the ADULT dataset, we performed an indepen-

dence test on all possible pairs for the two cases: (1) when one of the parties was

the attacker party and, (2) when both were victim parties. We found that when the

attacker only modifies 1% of their data, the p-values are similar, both cases report

p-values in 0.30-0.40 range and so reject the hypothesis of independence. However,

if the attacker training set contains more than 5% contaminated records, the p-value

in much lower than 0.05, and so the null hypothesis is accepted for case (1). If all

data is expected to come from a similar distribution this could indicate the presence

of contaminated records. However, the assumption of similar training data is un-

likely to hold for a large number of use-cases. Moreover, this test is not applicable

for text classification due to the sparsity of the feature set.

Finally, one may consider leave-one-party-out cross validation techniques to

measure the utility of including a party’s training data. Let there be n > 1 parties

with one attacker party. To discover if a party is adversarial, a model is trained on

n− 1 parties data, and evaluated on the training set of the left out party. If the left

out party contains contaminated records, this should be discovered, since the model

will report low accuracy on the left out party’s data, having been trained on only

clean records. Experimentally we found that if the amount of contaminated records

is small, in the order of 1-8% of the size of the training set, the difference between

accuracy on an attacker and victim training set is negligible. This method also

requires training a new model for each party, which may be prohibitively expensive

for a large dataset or larger numbers of parties.

C.3. Lemma 1 proof 216

C.3 Lemma 1 proof
Lemma 1. For any random variables U, V and W, if H(U |V) = 0 then H(W |V)≤

H(W |U).

Proof. Using the definition of conditional entropy:

H(W |V) = H(V |W)+H(W)−H(V)

H(W |U) = H(U |W)+H(W)−H(U).

Combining the two we obtain H(W |V)−H(W |U) = H(V |W)−H(U |W)+H(U)−

H(V). Note that H(V |U) = H(V)−H(U) since H(U |V) = 0 from the assumption

of the lemma. Hence, we need to show that H(V |W)−H(U |W)−H(V |U)≤ 0 or,

equivalently, H(V |W)≤ H(U |W)+H(V |U) to prove the statement.

Let U ′ be a random variable that is independent of U , s.t., H(V) = H(U)+

H(U ′). Hence, H(V |U) = H(U ′) and H(V |U ′) = H(U). Then

H(V |W) = H(U |W)+H(U ′|W)≤ H(U |W)+H(U ′) = H(U |W)+H(V |U).

C.4 Multi-party attacker experiments on NEWS20

dataset
Due to the small size of the NEWS20 dataset, we found there was high variance

between successive experiments with random partitions of the dataset into distinct

parties. To counter this high variance, we introduce a nuisance word into the dataset

that does not have predictive links with any labels and was not already present in

the dataset. We split the dataset into five parties, and one validation dataset, and

introduce the new word such that it covers 5% of each parties data (and covers 10%

of the attacker controlled data). We introduce the word into 50% of data points in

the validation set so we can accurately capture the effect of the attack. Figure C.3

models this attack as we increase the number of attacker controlled parties. Note

C.4. Multi-party attacker experiments on NEWS20 dataset 217

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy Multi-Party Model (No Adversarial Training)
Multi-Party Model (Adversarial Training)
Local Model

1 2 3 4
Number of attacker-controlled parties (out of 5)

0.00

0.25

0.50

0.75

1.00

Co
nt

am
in

at
io

n
Ac

cu
ra

cy

Figure C.3: Contamination and validation accuracy for the NEWS20 dataset as the number
of contaminated records increases.

we use the f ′′ method during training.

Appendix D

Learning universal adversarial

perturbations with generative models

D.1 A note on recent concurrent work
We are unaware of any previous work that studies the relationship between gener-

ative models and universal adversarial perturbations. However, we note that two

recent studies [200, 207] also craft perturbations using generative models. Pour-

saeed et al. [200] have a similar set-up to our attack, optimising under both `2 and

`∞ metrics, however, they did not include a distance minimisation term within the

objective function, instead relying a scaling factor before applying the perturbation

to an image. The Mopuri et al. [207] attack is only optimised using the `∞ met-

ric. They also eschew a distance minimisation term, and instead include a diversity

term within the objective function, so that the objective does not get stuck in a local

minima resulting in a limited number of effective perturbations. We were unable to

obtain source code for Mopuri et al.’s [207] attack and were unsuccessful in repli-

cating results, and so we report comparison in results only on the target models that

were shared in both pre-prints, on ImageNet (since other works only report results

on this dataset for the task of generating UAPs) using the `∞ metric (see table D.1).

D.1. A note on recent concurrent work 219

(a) Inception-V3: Fire engine (54.6%), δ ′, Wrecker (79.4%)

(b) ResNet-152: Table lamp (87.2%), δ ′, Tabby cat (41.9%)

(c) VGG-19: Radio telescope (97.5%), δ ′, Great Pyrenees (36.7%)

Figure D.1: Selection of successful adversarial examples (with target model confidence)
from non-targeted `∞ attacks on ImageNet. From left to right: Source image,
UAP, adversarial image.

Table D.1: Error rates for non-targeted `∞ attacks on ImageNet.

VGG-19 INCEPTION-V1 [228]

UAN 0.846 0.809
Poursaeed et al. [200] 0.801 0.792
Mopuri et al. [207] 0.838 0.904

D.1. A note on recent concurrent work 220

0 20 40 60 80 100 120 140
0

100

200

300

400

500

M
ea

n
sq

ua
re

d
er

ro
r

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 si

m
ila

rit
y

in
de

x

Figure D.2: MSE and SSIM scores of UAPs throughout training a UAN against VGG-19
for the CIFAR-10 dataset.

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Figure D.3: Our `∞ attack against a VGG-19 target model on the CIFAR-10 dataset, for
every source/target pair. Displayed images were selected at random.

D.1. A note on recent concurrent work 221

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Figure D.4: Our `∞ attack against a ResNet-101 target model on the CIFAR-10 dataset, for
every source/target pair. Displayed images were selected at random.

D.1. A note on recent concurrent work 222

(a) Inception-V3: American egret (95.0%), δ ′, Golf ball (98.8%). Overall target model
error rate: 0.654

(b) ResNet-152: Binoculars (99.9%), δ ′, Golf ball (62.9%). Overall target model error rate:
0.734

(c) VGG-19: Indian cobra (99.9%), δ ′, Golf ball (99.7%). Overall target model error rate:
0.514

Figure D.5: Selection of successful adversarial examples (with target model confidence)
for targeted `∞ attacks on ImageNet. The target class was randomly chosen to
be Golf ball. From left to right: Source image, UAP, adversarial image.

D.1. A note on recent concurrent work 223

(a) Inception-V3: Pedestal (98.4%), δ ′, Broccoli (88.7%). Overall target model error rate:
0.598

(b) ResNet-152: Tibetan mastiff (88.4%), δ ′, Broccoli (98.1%). Overall target model error
rate: 0.691

(c) VGG-19: Marmot (95.4%), δ ′, Broccoli (48.4%). Overall target model error rate: 0.480

Figure D.6: Selection of successful adversarial examples (with target model confidence)
for targeted `∞ attacks on ImageNet. The target class was randomly chosen to
be Broccoli. From left to right: Source image, UAP, adversarial image.

D.1. A note on recent concurrent work 224

(a) Inception-V3: Lionfish (89.7%), δ ′, Stone wall (54.0%). Overall target model error rate:
0.533

(b) ResNet-152: Pinwheel (99.9%), δ ′, Stone wall (47.0%). Overall target model error rate:
0.587

(c) VGG-19: Golf ball (99.9%), δ ′, Stone wall (23.7%). Overall target model error rate:
0.447

Figure D.7: Selection of successful adversarial examples (with target model confidence)
for targeted `∞ attacks on ImageNet. The target class was randomly chosen to
be Stone wall. From left to right: Source image, UAP, adversarial image.

Appendix E

Randomised smoothing: A provable

defence against adversarial examples

E.1 Lower bounds for common divergences between

multinomial distributions

Firstly, we present the statement of the Rényi divergence bound given in Li et al.

[146], and provide a full proof.

Theorem 2. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set {1, ...,k}. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dα(Q,P)≥− log
(

1− p1− p2 +
(1

2
(p1−α

1 + p1−α

2)
) 1

1−α

)
(E.1)

where p1 and p2 are the first and second largest probabilities in P.

Proof. We can think of this problem as finding the distribution Q that minimises

dα(Q,P) such that argmaxi pi 6= argmax j q j for a fixed P = (p1, ..., pk). Without

loss of generality, assume p1 ≥ p2 ≥ ...≥ pk.

This is equivalent to solving

E.1. Lower bounds for common divergences between multinomial distributions226

min
∑qi,argmaxqi 6=1

1
1−α

log
(k

∑
1

pi

(qi

pi

)α
)

(E.2)

As the logarithm is a monotonically increasing function, we only focus on the

quantity s(Q,P) = ∑
k
1 pi(

qi
pi
)α for a fixed α .

We first show for the Q that minimises s(Q,P), it must have q1 = q2 ≥ q3 ≥

... ≥ qk. Note here we allow a tie, because we can always let q1 = q1− κ and

q2 = q2+κ for some small κ to satisfy argmaxqi 6= 1 while not changing the Rényi

divergence too much by the continuity of s(Q,P).

If q j > qi for some j ≥ i, we can define Q′ by mutating qi and q j, that is

Q′ = (q1, ...,qi−1,q j,qi+1, ...,q j−1,qi,q j+1, ...,qk), then

S(Q,P)−S(Q′,P) = pi

(qα
i −qα

j

pα
i

)
+ p j

(qα
j −qα

i

pα
j

)
(E.3)

= (p1−α

i − p1−α

j)(qα
i −qα

j)> 0 (E.4)

which conflicts with the assumption that Q minimises s(Q,P). Thus qi ≥ q j

for j ≥ i. Since q1 cannot be the largest, we have q1 = q2 ≥ q3 ≥ ...≥ qk.

Then we are able to assume Q = (q0,q0,q3, ...,qk), and the problem can be

formulated as

min
q0,q3,...,qk

p1(
q0

p1
)α + p2(

q0

p2
)α +

k

∑
i=3

pi(
qi

pi
)α (E.5)

such that 2q0 +
k

∑
i=3

qi = 1 (E.6)

such that qi−q0 ≤ 0 i≥ 3 (E.7)

such that −qi ≤ 0 i≥ 0 (E.8)

which forms a set of KKT conditions. Let L denote the Lagrangian formulation

E.1. Lower bounds for common divergences between multinomial distributions227

of the problem

p1(
q0

p1
)α + p2(

q0

p2
)α +

k

∑
i=3

pi(
qi

pi
)α +λ (2q0 +

k

∑
i=3

qi−1)+
k

∑
i=3

µi(qi−q0)−
k

∑
i=3

βiqi

(E.9)

Setting slack variables to zero and differentiating gives

∂L
∂q0

= αqα−1
0 (p1−α

1 + p1−α

2)+2λ = 0 (E.10)

∂L
∂qi

= α(
qi

pi
)α−1 +λ = 0 i≥ 3 (E.11)

Equation (E.10) and eq. (E.11) imply

q0 =

(
−2λ

α(p1−α

1 + p1−α

2)

) 1
α−1

(E.12)

qi =

(
− λ

α

) 1
α−1

pi i≥ 3 (E.13)

From the restriction that 2q0 +∑
k
i=3 qi = 1 it follows that

λ =
−α(

2
(

1
2(p1−α

1 + p1−α

2)
) 1

1−α

+1− p1− p2

)α−1 (E.14)

Let η =
(

p1−α

1 +p1−α

2
2

) 1
1−α . Then it follows that

q0 =
a

2η +1− p1− p2
(E.15)

qi =
pi

2η−1− p1− p2
i≥ 3 (E.16)

E.1. Lower bounds for common divergences between multinomial distributions228

Using eq. (E.15) and eq. (E.16), Rényi divergence is minimised at

1
1−α

log
(

p1(
q0

p1
)α + p2(

q0

p2
)α +

k

∑
i=3

pi(
qi

pi
)α

)
(E.17)

=
1

1−α
log
(

2η1−αηα

(2η +1− p1− p2)α
+

1− p1− p2

(2η +1− p1− p2)α

)
(E.18)

=− log(2η +1− p1− p2) (E.19)

To find the certified area of robustness of an input using the KL divergence of

the generalised Gaussian, we can make use of the following theorem.

Theorem 3. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set 1, ...,k. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dKL(Q,P)≥− log(2
√

p1 p2 +1− p1− p2) (E.20)

where p1 and p2 are the first and second largest probabilities in P.

Proof. Using the same terminology as Theorem 2, the problem can be stated as a

set of KKT conditions given by

min
q0,q3,...,qk

q0 log(
q0

p1
)+q0 log(

q0

p2
)+

k

∑
i=3

qi log(
qi

pi
) (E.21)

such that 2q0 +
k

∑
i=3

qi = 1 (E.22)

such that qi−q0 ≤ 0 i≥ 3 (E.23)

such that −qi ≤ 0 i≥ 0 (E.24)

Let L denote

E.1. Lower bounds for common divergences between multinomial distributions229

p1 log(
q0

p1
)+ p2 log(

q0

p2
)+

k

∑
i=3

pi log(
qi

pi
)+ (E.25)

λ (2q0 +
k

∑
i=3

qi−1)+
k

∑
i=3

µi(qi−q0)−
k

∑
i=3

βiqi (E.26)

Setting slack variables to zero and differentiating gives

∂L
∂q0

= log(
q0

p1
)+ log(

q0

p2
)+2λ +2 = 0 (E.27)

∂L
∂qi

= log(
qi

pi
)+λ +1 = 0 i≥ 3 (E.28)

Combining eq. (E.27) and eq. (E.28) with the KKT conditions and solving for

λ gives

q0 =

√
p1 p2

η
(E.29)

qi =
pi

η
i≥ 3 (E.30)

(E.31)

where η = 2
√

p1 p2 +1− p1− p2. The minimised KL divergence is therefore

− logη .

Theorem 4. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set 1, ...,k. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dH2(Q,P)≥ 1−
√

2− (
√

p1−
√

p2)2

2
(E.32)

E.1. Lower bounds for common divergences between multinomial distributions230

where p1 and p2 are the first and second largest probabilities in P.

Proof. Using the same technique and terminology as in Theorem 2, we find that

q0 =
(
√

p1 +
√

p2)
2

2η
(E.33)

qi =
2pi

η
i≥ 3, (E.34)

(E.35)

where η = 2− (
√

p1−
√

p2)
2. The minimised Hellinger distance is therefore

1−
√

η

2 .

Theorem 5. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set 1, ...,k. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dχ2(Q,P)≥ (p1− p2)
2

(p1 + p2)− (p1− p2)2 (E.36)

where p1 and p2 are the first and second largest probabilities in P.

Proof. Using the same technique and terminology as in Theorem 2, we find that

q0 =
2p1 p2

η
(E.37)

qi =
p1 + p2

η
pi i≥ 3, (E.38)

(E.39)

where η = (p1 + p2)− (p1− p2)
2. The minimised chi-squared distance is

therefore (p1−p2)
2

η
.

E.1. Lower bounds for common divergences between multinomial distributions231

Theorem 6. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set 1, ...,k. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dB(Q,P)≥− log(

√
2
√

p1 p2− p1− p2 +2
2

) (E.40)

where p1 and p2 are the first and second largest probabilities in P.

Proof. Using the same technique and terminology as in Theorem 2, we find that

q0 =
(
√

p1 +
√

p2)
2

2η
(E.41)

qi =
2pi

η
i≥ 3, (E.42)

(E.43)

where η = 2
√

p1 p2− p1− p2 + 2. The minimised Bhattacharyya distance is

therefore −log(
√

η

2).

Theorem 7. Let P = (p1, ..., pk) and Q = (q1, ...,qk) be two multinomial distribu-

tions over the same index set 1, ...,k. If the indexes of the largest probabilities do

not match on P and Q, that is argmaxi pi 6= argmax j q j, then

dTV (Q,P)≥ |p1− p2|
2

(E.44)

where p1 and p2 are the first and second largest probabilities in P.

Proof. It is easy to see that dTV (Q,P) is minimised when q1 = q2 = |p1+p2|
2 and

qi = pi for i >= 3. This leads to the stated lower bound.

E.1. Lower bounds for common divergences between multinomial distributions232

Interestingly, dTV appears naturally in the certificates found via randomised

smoothing, as a consequences of being a special case of the hockey-stick diver-

gence. Indeed, consider a binary classification task, with a given probabilistic clas-

sifier, f , and an input x. Let fc denote the classifier’s output at label c, which is

the true label of x. Let µ = µ(x) denote the smoothing measure on input x, and

ν = µ(x′) denote the smoothing measure on input x′, with a defined distance metric

d such that d(µ,ν) < ε . Then we can guarantee f outputs the same prediction on

x′ as on x if the following is larger than 1/2

min
fc

E
X∼ν

[fc(X)] subject to E
X∼µ

[fc(X)] = p1,0≤ fc(x)≤ 1 (E.45)

The dual relaxation of this problem is given by

max
λ

λ p1 + min
0≤ fc≤1

E
X∼ν

[fc(X)]−λ E
X∼µ

[fc(X)] (E.46)

The inner minimisation term is commonly referred to as the hockey-stick di-

vergence. Since any λ gives a valid lower bound bound to the primal problem,

setting λ = 1 gives

p1− max
0≤ fc≤1

E
X∼µ

[fc(X)]− E
X∼ν

[fc(X)] (E.47)

≥ p1− max
0≤ fc≤1

|
∫
X

fcd(µ−ν)| (E.48)

≥ p1− max
0≤ fc≤1

∫
X
| fc|d|µ−ν | (E.49)

≥ p1−
∫
X

d|µ−ν | (E.50)

≥ p1−dTV (µ,ν) (E.51)

Thus, the classifier predicts the same label on x′ as on x if p1−dTV (µ,ν)> 1/2.

E.2. Visualisation of certified radius (for `2 perturbations) found by dα and dχ2233

0.5 0.6 0.7 0.8 0.9 1.0
p1

0.0

0.5

1.0

1.5

2.0

2.5

Ce
rti

fie
d

Ra
di

us

d (Li et al., 2019)
d 2

Figure E.1: Comparison of the certified radius against perturbations targeting the `2 norm,
for Rényi divergence (dα) and the chi-squared distance (dχ2), as a function of
the top predicted probability, p1, with σ = 1.

E.2 Visualisation of certified radius (for `2 perturba-

tions) found by dα and dχ2

Figure E.1 visualises the trade-off in certified radius around an input for a hypothet-

ical binary classification task as a function of the classifier’s top output probability,

p1. The certified radii are found using the Rényi divergence and chi-squared dis-

tance. The difference between these two certified radii is small; for p1 ≤ 0.99, the

largest difference between the two radii is 0.1.

E.3 Proof of proposition 2

Proof. We prove this for the binary case where p2 = 1− p1.

E.3. Proof of proposition 2 234

1. Let us fix α ∈ (1,∞). Then εdα
> εd

χ2 when

√
−2σ2

α
log
(

2
(1

2
(p1−α

1 +(1− p1)1−α)
) 1

1−α

)
>

√
σ2 log(

1
4p1(1− p1)

)

(E.52)

⇐⇒ − 2
α

log
(

2
(1

2
(p1−α

1 +(1− p1)
1−α)

) 1
1−α

)
> log(

1
4p1(1− p1)

) (E.53)

⇐⇒ 4
(1

2
(p1−α

1 +(1− p1)
1−α)

) 2
1−α

< (4p1(1− p1))
α (E.54)

This holds ∀p1 ∈ (1
2 ,1) for example when α = 1.1 and so automatically holds for

α ∈ (1,∞) that maximises the expression.

2. If εd
χ2 > εdKL , then

√
σ2 log(

1
4p1(1− p1)

)>

√
−σ2 log(2

√
p1(1− p1)) (E.55)

⇐⇒ 1
4p1(1− p1)

>
1

2
√

p1(1− p1)
(E.56)

⇐⇒ (p1−
1
2
)2 > 0 (E.57)

=⇒ p1 >
1
2

(E.58)

3. If εd
χ2 > εdH2 , then

√
σ2 log(

1
4p1(1− p1)

)>

√√√√−8σ2 log(

√
2−
√

p1(1− p1)

2
) (E.59)

⇐⇒ 1
4p1(1− p1)

>
24

(1+2
√

p1(1− p1))4
(E.60)

⇐⇒ (1+2
√

p1(1− p1))
4 > 26 p1(1− p1) (E.61)

=⇒ p1 >
1
2

(E.62)

(E.63)

4. We show the inner logarithmic terms in εdH2 and εdB are equal, which suffices to

E.3. Proof of proposition 2 235

prove equality in general. The inner logarithmic term of εdH2 is

√
1+2

√
p1(1− p1)

2
(E.64)

=
1+2

√
p1(1− p1)√

2(1+2
√

p1(1− p1))
(E.65)

=
(
√

p1 +
√

1− p1)
2√

2(1+2
√

p1(1− p1))
(E.66)

The last term is equal to inner logarithmic term in εdB and so we have εdH2 = εdB .

5. If εdH2 > εdKL , then

√√√√−8σ2 log(

√
2−
√

p1(1− p1)

2
)>

√
σ2 log(2

√
p1(1− p1)) (E.67)

⇐⇒ 25
√

p1(1− p1)> (1+2
√

p1(1− p1))
4 (E.68)

(E.69)

This last term has solutions in p1 ∈ (1
2 ,0.998).

6. Let us fix β ∈ (0,min(1, 1
2 log(p1

1−p1
))], then εdKL > εLecuyer et al. [142] when

√
−σ2 log(2

√
p1(1− p1))>

σβ√
2log(1.25(1+eβ)

p1(1+e2β)−e2β)
)

(E.70)

⇐⇒ β
2 +2log(

1.25(1+ eβ)

p1(1+ e2β)− e2β)
) log(2

√
p1(1− p1))< 0 (E.71)

(E.72)

This last term holds for any p ∈ (1
2 ,1).

E.4. KL divergence of the generalised Gaussian distribution 236

E.4 KL divergence of the generalised Gaussian dis-

tribution

Here, we give a proof of the claim stated in eq. (8.13).

Theorem 8. Let p1 and p2 be the pdf’s of two generalised Gaussians with param-

eters (µ1, σ , s) and (µ2, σ , s) where s is a positive integer, respectively. Then

dKL(p1, p2) is given by

s

∑
k=1

(
s
k

)
(1+(−1)s−k)Γ(s−k+1

s)(µ1−µ2)
k

2σ kΓ(1
s)

(E.73)

Proof.

dKL(p1, p2) = ∑ p1 log
(

p1

p2

)
(E.74)

= ∑k1e−|
x−µ1

σ
|s log

(
k1e−|

x−µ1
σ
|s

k2e−|
x−µ2

σ
|s

)
(E.75)

Where k1 = k2 =
s

2σΓ(1
s)

. Thus eq. (E.75) is equal to

∑k1e−|
x−µ1

σ
|s log

(
e−|

x−µ1
σ
|s

e−|
x−µ2

σ
|s

)
(E.76)

= Ep1

[(
x−µ2

σ

)s

−
(

x−µ1

σ

)s
]

(E.77)

=
1

σ sEp1

[
(x−µ2)

s− (x−µ1)
s
]

(E.78)

Note that (x−µ2)
s = ∑

s
k=0
(s

k

)
xs−k(−µ2)

k. Thus eq. (E.78) is equal to

E.4. KL divergence of the generalised Gaussian distribution 237

1
σ s

[(s

∑
k=0

(
s
k

)
µ1

s−k(−µ2)
k

s−k

∑
i=0

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

)

−
(s

∑
k=0

(
s
k

)
µ1

s−k(−µ1)
k

s−k

∑
i=0

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

)] (E.79)

=
1

σ s

[
(

s

∑
k=0

(
s
k

)
µ1

s−k(−µ2)
k

−
s

∑
k=0

(
s
k

)
µ1

s−k(−µ2)
k

s−k

∑
i=1

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

−
s

∑
k=0

(
s
k

)
µ1

s−k(−µ1)
k

−
s

∑
k=0

(
s
k

)
µ1

s−k(−µ1)
k

s−k

∑
i=1

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

]
(E.80)

=
1

σ s

[
(µ1−µ2)

s

+
s

∑
k=0

(
s
k

)
µ1

s−k(−µ2)
k

s−k

∑
i=1

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

−
s

∑
k=0

(
s
k

)
µ1

s−k(−µ1)
k

s−k

∑
i=1

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

] (E.81)

Note that only even indices contribute to the summand in eq. (E.81) because

of the (1+(−1)i) term and so can be written as

1
σ s (µ1−µ2)

s

+
1

σ s

(s

∑
k=1

(
s
k

)
(µ1

s−k(−µ2)
k−µ1

s−k(−µ1)
k)

s−k

∑
i>0

(
s− k

i

)
(

σ

µ1
)i(1+(−1)i)

Γ(i+1
s)

2Γ(1
s)

)
(E.82)

Note, k = 0 =⇒ (µ1
s−k(−µ2)

k− µ1
s−k(−µ1)

k) = 0, and so eq. (E.82) be-

comes

E.5. How does σ affect the certification radius? 238

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d

Ac
cu

ra
cy

= 0.25
= 0.50
= 1.00

Figure E.2: Certified accuracy against perturbations targeting the `2 norm for CIFAR-10.
Given as a function of the certified radius, the radius around which an input is
robust.

s

∑
k=1

(
s
k

)
(1+(−1)s−k)Γ(s−k+1

s)(µ1−µ2)
k

2σ kΓ(1
s)

(E.83)

E.5 How does σ affect the certification radius?
For 400 CIFAR-10 test set inputs, we certify inputs against `2 perturbations while

varying the noise scale parameter σ 1. Figure E.2 shows certified accuracy as a

function of the certified area for σ = 0.25,0.5,1.0. This is the guaranteed classi-

fication accuracy under any perturbation smaller than the specified bound. Larger

σ results in a larger certified area but suffers from lower standard classification ac-

curacy – this corresponds to accuracy under a certified radius of 0. This mirrors

the findings of Cohen et al. [49] and Tsipras et al. [237] who showed a trade-off

between robustness and standard accuracy.

1Note, sampling from a generalised Gaussian distribution with scale σ and shape s = 2, is equiv-
alent to sampling from a Gaussian distribution with scale σ/

√
2.

E.6. Samples smoothed with different forms of generalised Gaussian noise 239

(a) Goldfinch (b) ε = 0.98 (`1) (c) ε = 0.44 (`2) (d) ε = 0.29 (`3)

(e) Dog (f) ε = 0.95 (`1) (g) ε = 0.48 (`2) (h) ε = 0.32 (`3)

Figure E.3: Two randomly chosen images from ImageNet (Top) and CIFAR-10 (Bottom).
We give examples of noise from a generalised Gaussian distribution with s =
1,2, and 3, and the maximum perturbation size, ε , for which the classifier is
certified to predict the correct class under `1, `2, and `3 based attacks.

E.6 Samples smoothed with different forms of gener-

alised Gaussian noise

In fig. E.3, we visualise the smoothing of a generalised Gaussian over two ran-

dom inputs from CIFAR-10 and ImageNet test sets. Figures E.3a and E.3e cor-

respond to the non-smoothed versions of these two inputs, figs. E.3b and E.3f

correspond to the inputs smoothed with generalised Gaussian noise sampled from

G N (0,0.25,1). Similarly, figs. E.3c and E.3g correspond to the inputs smoothed

with generalised Gaussian noise sampled from G N (0,0.25,2), and figs. E.3d

and E.3h correspond to the inputs smoothed with generalised Gaussian noise sam-

pled from G N (0,0.25,3). For each smoothed input, we state the size of the certi-

fied radius, ε – up to this value the input is robust to adversarial perturbations in the

specified `p norm.

E.7. An example of separability of optimal decision boundaries for different `p norms240

E.7 An example of separability of optimal decision

boundaries for different `p norms
Khoury and Hadfield-Menell [126] hypothesise that, in general, it is impossible for

a classifier to be robust against all `p norm attacks. They consider a toy example

to demonstrate this: consider two n-dimensional spheres, X1 and X2, both centred

at the origin with radii r1 and r2, respectively. They show that the optimal decision

boundary between points on the spheres are distinct under the `2 and `∞ norms.

We extend this to arbitrary norms through Appendix E.7. First, we define what we

mean by an optimal decision boundary, state the conjecture and then give a draft of

a proof that decision boundary separability extends to other norms.

Let ∆ be a set of points in Rn. We say ∆ separates X1 and X2 if any continuous

function f that passes through X1 and X2 also passes through ∆.

Let ∆ be any separator of X1 and X2. Choose a point x ∈ ∆ and consider the

ball Bε,p(x) := {z|ε ≥‖z− x‖p}. We call ∆ a maximum separator if ∀x ∈ ∆ the

following holds: ∀ε > 0,∃m1,m2 ∈Bε,p(x), and points y1,y2 ∈ X1
⋃

X2, such that

if y1 is the point that minimises ‖m1− y‖p (where y ∈ X1
⋃

X2), then y1 ∈ X1, and

equivalently if y2 is the point that minimises‖m2− y‖p then y2 ∈ X2.

An example of a separator that is not maximal. Let ∆ = X1. Then ∃x ∈ X1 and

ε > 0 such that ∀z ∈Bε(x), the points y ∈X1
⋃

X2 that minimise‖z− y‖p all lie on

X1 (i.e. y ∈ X1 and y /∈ X2).

Let two concentric spheres X1,X2 ∈ Rn have radii r1,r2, respectively. Then

∀p,q ≥ 1 with p 6= q, ∆p 6= ∆q, where ∆p denotes the maximal separator in the `p

norm.

We give a ‘proof by example’ in two dimensions, showing that ∆1 6= ∆2 6= ∆4 6=

∆∞, and prove that ∆1 6= ∆2 6= ∆∞ in n-dimensions. First, consider concentric circles

X1,X2 ∈ R2 with radii 1,4, respectively.

∆2 defines a circle of radius 5
2 . In particular for p = (x,y), when x = 0, p ∈ ∆2

has y-coordinate 5
2 . For ∆∞, when x = 0, p has y-coordinate 3+

√
79

5 . To see this,

Bε,∞(m) with centre m = (0,1+κ) touches X2 at q = (κ,1+ 2κ). At q we have

κ2 +(1+2κ)2 = 42, and so κ = −2+
√

79
5 . Hence, at x = 0, q ∈ ∆∞ has y-coordinate

E.7. An example of separability of optimal decision boundaries for different `p norms241

3+
√

79
5 .

To find y-coordinate when x = 0 for a point q ∈ ∆4, we must solve

x2 + y2 = 42 (E.84)

x4 +(y− (1+κ))4 = κ
4 (E.85)

Since ∆4 is tangential to X2, we must find the root of the determinant of (42−

y2)2 +(y− (1+κ))4−κ4 = 0. This an order 12 polynomial,

28κ
12 +96κ

11 +176κ
9−4540κ

8−19528κ
7+

15916κ
6 +403800κ

5 +495735κ
4−3757020κ

3+

3592350κ
2 +16024500κ−24350625 = 0.

(E.86)

This has no solution in the radicals and is approximately 1.4755 and so q ∈ ∆4

has y-coordinate 2.4755.

To find ∆p in general we must solve high order polynomials that may not fac-

tor. However, we can find ∆1 in n dimensions. Consider the diamond `1 ball cen-

tred at m = (r1
2 + κ

2 ,
r1
2 + κ

2 , ...,
r1
2 + κ

2), and q ∈ ∆1 has coordinate (r1
2 + κ

2 +κ, r1
2 +

κ

2 , ...,
r1
2 + κ

2). Then (n−1)(r1
2 + κ

2)
2 +(r1

2 + κ

2 +κ)2 = r2
2. Thus,

κ =−n+2
n+8

√
2r1 +

2
n+8

√
(n+8)r2

2−2(n−1)r2
1. (E.87)

Thus, similarly to Khoury and Hadfield-Menell [126], for constant r1 and r2,

∆1 scales like O(1√
n), and for a classifier trained to learn ∆1, an adversary can

construct an adversarial perturbation in the `2 norm as small as O(1√
n).

	Introduction
	Thesis Contributions
	Thesis Structure
	Publications & contributions in joint work
	Further contributions
	Experience

	Background
	Machine learning
	Random forests
	Neural networks
	Generative models

	Security of machine learning
	Membership inference attacks
	Membership inference defences
	Multi-party machine learning
	Adversarial examples

	Website fingerprinting
	Steganography

	I Machine learning applications to information security
	Robust & scalable website fingerprinting
	k-fingerprints from random forests
	The k-fingerprinting attack
	Experimental set-up
	Information leakage from network traffic features
	Attack on hardened defences
	Attack on the Wang2014Effective dataset
	Attack evaluation on DSTor
	Alexa web pages monitored set
	Hidden services monitored set

	Attack evaluation on DSNorm
	Attack on encrypted browsing sessions
	Attack without packet size features

	Fine grained open-world false positives on Alexa monitored set of DSTor
	Attack summary & discussion
	Has k-fingerprinting withstood the test of time?

	Steganography guided by machine learning
	Learning objectives
	Architecture
	Evaluation of the steganographic scheme
	celebA dataset
	BOSS dataset
	Comparison with related work
	Evaluating robust decryption

	Discussion

	II Privacy and security in machine learning
	Privacy in machine learning
	Membership inference attacks against generative models
	Roadmap

	Threat model
	White-box attack
	Black-box attack with no auxiliary knowledge
	Black-box attack with limited auxiliary knowledge
	Experimental setup
	Euclidean approaches
	White-box attack
	Black-box attack with no auxiliary knowledge
	Black-box attack with limited auxiliary knowledge
	Training performance
	Evaluation on Diabetic Retinopathy dataset
	Summary of results

	Sensitivity to training set size and prediction ordering
	Defences
	Cost of the attacks
	Summary

	Contamination attacks & mitigation in multi-party machine learning
	Contamination attack
	Datasets, pre-processing & models
	Contamination attack experiments
	Defences
	Theoretical results
	Evaluation of adversarial training
	Conclusion

	III Robustness in machine learning
	Learning universal adversarial perturbations with generative models
	Threat model
	Datasets
	Attack description
	Comparison with previous work
	Transferability
	Generalisability
	Targeted attacks
	Importance of training set size
	Attacking adversarial training
	Summary

	Randomised smoothing: A provable defense against adversarial examples
	Background on certified defenses
	Certification via randomised smoothing
	Certification guarantees against 2 perturbations for common divergences
	Certification guarantees beyond 2 based perturbations
	Discussion & experiments
	Comparison to related work
	Robustness trade-offs between different p norms.
	Robustness guarantees as p.
	How tight is the bound?

	Conclusions
	Bibliography
	Appendices
	Robust & scalable website fingerprinting
	Total feature importance
	Closed World Error Rates
	Attack on larger world size of DSNorm

	Membership inference attacks against generative models
	Unsuccessful attacks
	Additional samples

	Contamination attacks
	Additional Adult dataset experiments
	Alternative mitigation strategies
	lemma:subvar proof
	Multi-party attacker experiments on News20 dataset

	Learning universal adversarial perturbations with generative models
	A note on recent concurrent work

	Randomised smoothing: A provable defence against adversarial examples
	Lower bounds for common divergences between multinomial distributions
	Visualisation of certified radius (for 2 perturbations) found by d and d2
	Proof of propmain
	KL divergence of the generalised Gaussian distribution
	How does affect the certification radius?
	Samples smoothed with different forms of generalised Gaussian noise
	An example of separability of optimal decision boundaries for different p norms

