18,947 research outputs found

    Bounding right-arm rotation distances

    Full text link
    Rotation distance measures the difference in shape between binary trees of the same size by counting the minimum number of rotations needed to transform one tree to the other. We describe several types of rotation distance where restrictions are put on the locations where rotations are permitted, and provide upper bounds on distances between trees with a fixed number of nodes with respect to several families of these restrictions. These bounds are sharp in a certain asymptotic sense and are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.Comment: 30 pages, 11 figures. This revised version corrects some typos and has some clearer proofs of the results for the lower bounds and better figure

    On a Subposet of the Tamari Lattice

    Get PDF
    We explore some of the properties of a subposet of the Tamari lattice introduced by Pallo, which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman.Comment: 21 page

    Subtree weight ratios for optimal binary search trees

    Get PDF
    For an optimal binary search tree T with a subtree S(d) at a distance d from the root of T, we study the ratio of the weight of S(d) to the weight of T. The maximum possible value, which we call ρ(d), of the ratio of weights, is found to have an upper bound of 2/F_d+3 where F_i is the ith Fibonacci number. For d = 1, 2, 3, and 4, the bound is shown to be tight. For larger d, the Fibonacci bound gives ρ(d) = O(ϕ^d) where ϕ ~ .61803 is the golden ratio. By giving a particular set of optimal trees, we prove ρ(d) = Ω((.58578 ... )^d), and believe a similar proof follows for ρ(d) = Ω((.60179 ... )^d). If we include frequencies for unsuccessful searches in the optimal binary search trees, the Fibonacci bound is found to be tight

    Tamari Lattices and the symmetric Thompson monoid

    Full text link
    We investigate the connection between Tamari lattices and the Thompson group F, summarized in the fact that F is a group of fractions for a certain monoid F+sym whose Cayley graph includes all Tamari lattices. Under this correspondence, the Tamari lattice operations are the counterparts of the least common multiple and greatest common divisor operations in F+sym. As an application, we show that, for every n, there exists a length l chain in the nth Tamari lattice whose endpoints are at distance at most 12l/n.Comment: 35page

    On the rotation distance between binary trees

    Get PDF
    We develop combinatorial methods for computing the rotation distance between binary trees, i.e., equivalently, the flip distance between triangulations of a polygon. As an application, we prove that, for each n, there exist size n trees at distance 2n - O(sqrt(n))

    Polymer simulation by means of tree data-structures and a parsimonious Metropolis algorithm

    Full text link
    We show how a Monte Carlo method for generating self-avoiding walks on lattice geometries which employs a binary-tree data structure can be adapted for hard-sphere polymers with continuous degrees of freedom. Data suggests that the time per Monte Carlo move scales logarithmically with polymer size. We combine the method with a variant of the Metropolis algorithm and preserve this scaling for Lennard-Jones polymers with untruncated monomer-monomer interaction. We further show how the replica-exchange method can be adapted for the same purpose.Comment: 10 pages, 10 figure

    Weighted dynamic finger in binary search trees

    Full text link
    It is shown that the online binary search tree data structure GreedyASS performs asymptotically as well on a sufficiently long sequence of searches as any static binary search tree where each search begins from the previous search (rather than the root). This bound is known to be equivalent to assigning each item ii in the search tree a positive weight wiw_i and bounding the search cost of an item in the search sequence s1,,sms_1,\ldots,s_m by O(1+logmin(si1,si)xmax(si1,si)wxmin(wsi,wsi1))O\left(1+ \log \frac{\displaystyle \sum_{\min(s_{i-1},s_i) \leq x \leq \max(s_{i-1},s_i)}w_x}{\displaystyle \min(w_{s_i},w_{s_{i-1}})} \right) amortized. This result is the strongest finger-type bound to be proven for binary search trees. By setting the weights to be equal, one observes that our bound implies the dynamic finger bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our result is significantly shorter, stronger, simpler, and has reasonable constants.Comment: An earlier version of this work appeared in the Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithm
    corecore