research

Weighted dynamic finger in binary search trees

Abstract

It is shown that the online binary search tree data structure GreedyASS performs asymptotically as well on a sufficiently long sequence of searches as any static binary search tree where each search begins from the previous search (rather than the root). This bound is known to be equivalent to assigning each item ii in the search tree a positive weight wiw_i and bounding the search cost of an item in the search sequence s1,,sms_1,\ldots,s_m by O(1+logmin(si1,si)xmax(si1,si)wxmin(wsi,wsi1))O\left(1+ \log \frac{\displaystyle \sum_{\min(s_{i-1},s_i) \leq x \leq \max(s_{i-1},s_i)}w_x}{\displaystyle \min(w_{s_i},w_{s_{i-1}})} \right) amortized. This result is the strongest finger-type bound to be proven for binary search trees. By setting the weights to be equal, one observes that our bound implies the dynamic finger bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our result is significantly shorter, stronger, simpler, and has reasonable constants.Comment: An earlier version of this work appeared in the Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithm

    Similar works

    Full text

    thumbnail-image

    Available Versions