51 research outputs found

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    New Choice for Small Universal Devices: Symport/Antiport P Systems

    Full text link
    Symport/antiport P systems provide a very simple machinery inspired by corresponding operations in the living cell. It turns out that systems of small descriptional complexity are needed to achieve the universality by these systems. This makes them a good candidate for small universal devices replacing register machines for different simulations, especially when a simulating parallel machinery is involved. This article contains survey of these systems and presents different trade-offs between parameters

    P systems with minimal parallelism

    Get PDF
    A current research topic in membrane computing is to find more realistic P systems from a biological point of view, and one target in this respect is to relax the condition of using the rules in a maximally parallel way. We contribute in this paper to this issue by considering the minimal parallelism of using the rules: if at least a rule from a set of rules associated with a membrane or a region can be used, then at least one rule from that membrane or region must be used, without any other restriction (e.g., more rules can be used, but we do not care how many). Weak as it might look, this minimal parallelism still leads to universality. We first prove this for the case of symport/antiport rules. The result is obtained both for generating and accepting P systems, in the latter case also for systems working deterministically. Then, we consider P systems with active membranes, and again the usual results are obtained: universality and the possibility to solve NP-complete problems in polynomial time (by trading space for time)

    Communication in membrana Systems with symbol Objects.

    Get PDF
    Esta tesis está dedicada a los sistemas de membranas con objetos-símbolo como marco teórico de los sistemas paralelos y distribuidos de procesamiento de multiconjuntos.Una computación de parada puede aceptar, generar o procesar un número, un vector o una palabra; por tanto el sistema define globalmente (a través de los resultados de todas sus computaciones) un conjunto de números, de vectores, de palabras (es decir, un lenguaje), o bien una función. En esta tesis estudiamos la capacidad de estos sistemas para resolver problemas particulares, así como su potencia computacional. Por ejemplo, las familias de lenguajes definidas por diversas clases de estos sistemas se comparan con las familias clásicas, esto es, lenguajes regulares, independientes del contexto, generados por sistemas 0L tabulados extendidos, generados por gramáticas matriciales sin chequeo de apariciones, recursivamente enumerables, etc. Se prestará especial atención a la comunicación de objetos entre regiones y a las distintas formas de cooperación entre ellos.Se pretende (Sección 3.4) realizar una formalización los sistemas de membranas y construir una herramienta tipo software para la variante que usa cooperación no distribuida, el navegador de configuraciones, es decir, un simulador, en el cual el usuario selecciona la siguiente configuración entre todas las posibles, estando permitido volver hacia atrás. Se considerarán diversos modelos distribuidos. En el modelo de evolución y comunicación (Capítulo 4) separamos las reglas tipo-reescritura y las reglas de transporte (llamadas symport y antiport). Los sistemas de bombeo de protones (proton pumping, Secciones 4.8, 4.9) constituyen una variante de los sistemas de evolución y comunicación con un modo restrictivo de cooperación. Un modelo especial de computación con membranas es el modelo puramente comunicativo, en el cual los objetos traspasan juntos una membrana. Estudiamos la potencia computacional de las sistemas de membranas con symport/antiport de 2 o 3 objetos (Capítulo 5) y la potencia computacional de las sistemas de membranas con alfabeto limitado (Capítulo 6).El determinismo (Secciones 4.7, 5.5, etc.) es una característica especial (restrictiva) de los sistemas computacionales. Se pondrá especial énfasis en analizar si esta restricción reduce o no la potencia computacional de los mismos. Los resultados obtenidos para sistemas de bombeo del protones están transferidos (Sección 7.3) a sistemas con catalizadores bistabiles. Unos ejemplos de aplicación concreta de los sistemas de membranas (Secciones 7.1, 7.2) son la resolución de problemas NP-completos en tiempo polinomial y la resolución de problemas de ordenación.This thesis deals with membrane systems with symbol objects as a theoretical framework of distributed parallel multiset processing systems.A halting computation can accept, generate or process a number, a vector or a word, so the system globally defines (by the results of all its computations) a set of numbers or a set of vectors or a set of words, (i.e., a language), or a function. The ability of these systems to solve particular problems is investigated, as well as their computational power, e.g., the language families defined by different classes of these systems are compared to the classical ones, i.e., regular, context-free, languages generated by extended tabled 0L systems, languages generated by matrix grammars without appearance checking, recursively enumerable languages, etc. Special attention is paid to communication of objects between the regions and to the ways of cooperation between the objects.An attempt to formalize the membrane systems is made (Section 3.4), and a software tool is constructed for the non-distributed cooperative variant, the configuration browser, i.e., a simulator, where the user chooses the next configuration among the possible ones and can go back. Different distributed models are considered. In the evolution-communication model (Chapter 4) rewriting-like rules are separated from transport rules. Proton pumping systems (Sections 4.8, 4.9) are a variant of the evolution-communication systems with a restricted way of cooperation. A special membrane computing model is a purely communicative one: the objects are moved together through a membrane. We study the computational power of membrane systems with symport/antiport of 2 or 3 objects (Chapter 5) and the computational power of membrane systems with a limited alphabet (Chapter 6).Determinism (Sections 4.7, 5.5, etc.) is a special property of computational systems; the question of whether this restriction reduces the computational power is addressed. The results on proton pumping systems can be carried over (Section 7.3) to the systems with bi-stable catalysts. Some particular examples of membrane systems applications are solving NP-complete problems in polynomial time, and solving the sorting problem

    Minimal Cooperation in Symport/Antiport P Systems with One Membrane

    Get PDF
    In this paper we consider symport/antiport P systems with one membrane and rules having at most two objects. Although it has been proved that only finite number sets can be generated by both OP1(sym2) (one-membrane systems with symport rules of weight at most 2) and OP1(sym1; anti1) (one-membrane systems with symport/antiport rules of weight 1), the exact characterization is still an open question. We give some lower bounds, consider a few extensions, and state some open questions

    Further Open Problems in Membrane Computing

    Get PDF
    A series of open problems and research topics in membrane com- puting are pointed out, most of them suggested by recent developments in this area. Many of these problems have several facets and branchings, and further facets and branchings can surely be found after addressing them in a more careful manner

    On Communication Complexity in Evolution-Communication P Systems

    Get PDF
    Looking for a theory of communication complexity for P systems, we consider here so-called evolution-communication (EC for short) P systems, where objects evolve by multiset rewriting rules without target commands and pass through membranes by means of symport/antiport rules. (Actually, in most cases below we use only symport rules.) We first propose a way to measure the communication costs by means of “quanta of energy” (produced by evolution rules and) consumed by communication rules. EC P systems with such costs are proved to be Turing complete in all three cases with respect to the relation between evolution and communication operations: priority of communication, mixing the rules without priority for any type, priority of evolution (with the cost of communication increasing in this ordering in the universality proofs). More appropriate measures of communication complexity are then defined, as dynamical parameters, counting the communication steps or the number (and the weight) of communication rules used during a computation. Such parameters can be used in three ways: as properties of P systems (considering the families of sets of numbers generated by systems with a given communication complexity), as conditions to be imposed on computations (accepting only those computations with a communication complexity bounded by a given threshold), and as standard complexity measures (defining the class of problems which can be solved by P systems with a bounded complexity). Because we ignore the evolution steps, in all three cases it makes sense to consider hierarchies starting with finite complexity thresholds. We only give some preliminary results about these hierarchies (for instance, proving that already their lower levels contain complex – e.g., non-semilinear – sets), and we leave open many problems and research issues.Junta de Andalucía P08 – TIC 0420

    Membrane systems with limited parallelism

    Get PDF
    Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell. This work is a continuation of the investigations aiming to bridge membrane computing (where in a compartmental cell-like structure the chemicals to evolve are placed in compartments defined by membranes) and brane calculi (where one considers again a compartmental cell-like structure with the chemicals/proteins placed on the membranes themselves). We use objects both in compartments and on membranes (the latter are called proteins), with the objects from membranes evolving under the control of the proteins. Several possibilities are considered (objects only moved across membranes or also changed during this operation, with the proteins only assisting the move/change or also changing themselves). Somewhat expected, computational universality is obtained for several combinations of such possibilities. We also present a method for solving the NP-complete SAT problem using P systems with proteins on membranes. The SAT problem is solved in O(nm) time, where n is the number of boolean variables and m is the number of clauses for an instance written in conjunctive normal form. Thus, we can say that the solution for each given instance is obtained in linear time. We succeeded in solving SAT by a uniform construction of a deterministic P system which uses rules involving objects in regions, proteins on membranes, and membrane division. Then, we investigate the computational power of P systems with proteins on membranes in some particular cases: when only one protein is placed on a membrane, when the systems have a minimal number of rules, when the computation evolves in accepting or computing mode, etc. This dissertation introduces also another new variant of membrane systems that uses context-free rewriting rules for the evolution of objects placed inside compartments of a cell, and symport rules for communication between membranes. The strings circulate across membranes depending on their membership to regular languages given by means of regular expressions. We prove that these rewriting-symport P systems generate all recursively enumerable languages. We investigate the computational power of these newly introduced P systems for three particular forms of the regular expressions that are used by the symport rules. A characterization of ET0L languages is obtained in this context

    Tissue-like P Systems with Channel-States

    Get PDF
    We consider tissue-like P systems with states associated with the links (we call them synapses) between cells, controlling the passage of objects across the links. We investigate the computing power of such devices for the case of using - in a sequential manner - antiport rules of small weights. Sys- tems with two cells are proven to be universal when having arbitrarily many states and minimal antiport rules, or two states, and antiport rules of weight two. Also the systems with arbitrarily many cells, three states, and minimal antiport rules are universal. In contrast, the systems with one cell and any number of states and rules of any weight only compute Parikh sets of ma- trix languages (generated by matrix grammars without appearance checking); characterizations of Parikh images of matrix languages are obtained for such one-cell systems with antiport rules of a reduced weight. A series of open problems are also formulated
    corecore