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Summary. Looking for a theory of communication complexity for P systems, we con-
sider here so-called evolution-communication (EC for short) P systems, where objects
evolve by multiset rewriting rules without target commands and pass through mem-
branes by means of symport/antiport rules. (Actually, in most cases below we use only
symport rules.) We first propose a way to measure the communication costs by means
of “quanta of energy” (produced by evolution rules and) consumed by communication
rules. EC P systems with such costs are proved to be Turing complete in all three cases
with respect to the relation between evolution and communication operations: priority
of communication, mixing the rules without priority for any type, priority of evolution
(with the cost of communication increasing in this ordering in the universality proofs).

More appropriate measures of communication complexity are then defined, as dy-
namical parameters, counting the communication steps or the number (and the weight)
of communication rules used during a computation. Such parameters can be used in
three ways: as properties of P systems (considering the families of sets of numbers gen-
erated by systems with a given communication complexity), as conditions to be imposed
on computations (accepting only those computations with a communication complexity
bounded by a given threshold), and as standard complexity measures (defining the class
of problems which can be solved by P systems with a bounded complexity). Because
we ignore the evolution steps, in all three cases it makes sense to consider hierarchies
starting with finite complexity thresholds. We only give some preliminary results about
these hierarchies (for instance, proving that already their lower levels contain complex –
e.g., non-semilinear – sets), and we leave open many problems and research issues.
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1 Introduction

Although membrane computing can still be considered as young branch of natural
computing, [11], the theory of P systems is well developed (see details in [15] and
at the area website from [19]). In particular, many research efforts were devoted to
complexity issues related to P systems. First, all results dealing with the number
of membranes, with normal forms, with various static parameters (estimating the
size of P systems from various points of view) can be considered as contributing
to the descriptional complexity of P systems (this was a much investigated topic in
formal languages theory, see, e.g., [5]). Much more coherently developed, forming
an explicit theory, is the computational complexity of P systems, where the main
complexity parameter is time, the number of steps of a computation. In this frame-
work, several specific complexity classes were defined, elaborate relations with the
P 6= NP conjecture were found, as well as many other related results; we refer to
the recent survey [17] and to the corresponding chapter of [15] for details. Recently,
also a space complexity theory for P systems was initiated – see, e.g., [18].

What is still almost not at all considered is the communication complexity of P
systems, in spite of the fact that this was suggested as a research topic several times
(for instance, in [3] and [13], but without any hint about a possible definition). A
related measure is discussed in [4] for symport/antiport P systems, the so-called
“communication difference”, denoted Comdif , defined as the difference of numbers
of input and output objects in an antiport rule, but this is again a static measure,
defined for rules of a P system.

We address this issue here, with several basic proposals, but our preliminary
results indicate that this is a non-trivial research direction – especially if we want
to get close to the classic theory of communication complexity, as synthesized, e.g.,
in [7]. Roughly speaking, the classic framework deals with a distributed/parallel
computing device and complex problems which are split into subproblems and
the parts are distributed to separate “processors”, which cooperate in solving the
general problem; to this aim, the processors need to communicate and the num-
ber of bits used to this aim gives the communication complexity of the solution.
P systems are distributed and parallel devices, but we do not have an explicit
protocol for solving problems in a distributed manner, after introducing subprob-
lems of a problem in various subsystems; we have various tools for communication
among membranes, but the amount of communication was not yet explicitly and
systematically investigated.

The present paper mainly calls once again the attention to this research di-
rection, as we do not propose yet a way to solve problems in a distributed way
using a P system, so that a framework as that in [7] to be obtained. Instead, we
first go back to a sort of a descriptional complexity measure, defined for evolution-
communication (EC for short) P systems as introduced in [1] which was then inves-
tigated in a series of papers, e.g., in [8]. In these systems, the evolution of objects
is separated from their communication across membranes: the evolution is done
by means of multiset rewriting rules and the communication by symport/antiport
rules. In order to evaluate the communication effort, we consider a cost of using a
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communication rule, in the form of a quantity of “energy” consumed by that rule.
Specifically, we consider a special object, e, called “quantum of energy”; evolution
rules can produce amounts of energy, which is consumed by the communication
rules. Three types of EC P systems are investigated: with priority of communica-
tion on evolution, with steps where rules of the two types are non-deterministically
mixed, and with priority of evolution on communication. In all cases, universality
results are obtained (this was known only for the intermediate case, of no priority
among the two types of operations), but, interesting enough, the cost of commu-
nication increases in the order we have mentioned the three cases: one quantum
per rule, three quanta per rule, and five quanta per rule, respectively, are used in
the corresponding proofs.

We note that P systems with the use of rules controlled by energy were con-
sidered already, e.g., in [16], [9], [10], but in different frameworks (other types of
P systems, different goals).

A natural step is then to pass from this kind of a static measure to some
dynamical ones, with natural definitions: count the communication steps, or the
communication rules, or all quanta of energy used during all steps of a halting
computation. An infinite cost (hence infinitely many communication rules used
during the computation) leads to universality, but also considering only a finite
number of communication steps (of communication rules used during a computa-
tion) makes sense. Actually, counting only the number of communication steps is
nothing else than the length of the computation (the time complexity) . . . ignoring
the evolution steps. This means that the computation can be arbitrarily complex
in terms of evolution steps (we however use here only non-cooperative evolution
rules), what is counted are the communication rules. Such a parameter can be in-
vestigated from three points of view: as a property of P systems, as a condition for
selecting only certain computations as acceptable, as the effort to solve (decision)
problems. In all cases, we can start with finite thresholds (no communication step,
one communication step, and so on), hence infinite hierarchies are expected. We
only give some hints about the possible proofs of the infinity of these hierarchies,
as well as examples showing that already the lower levels of the hierarchies con-
tain complex sets of numbers (e.g., non-semilinear). Thus, besides definitions and
preliminary results, we provide here mainly open problems and research topics.

2 Some Prerequisites

Before introducing the class of P systems we investigate in this paper, let us fix
some notation and terminology.

The free monoid generated by an alphabet V is denoted with V ∗ and its neutral
element (the empty string) is denoted by λ; the set V ∗−{λ} (of non-empty strings
over V ) is denoted by V +. For a ∈ V, x ∈ V ∗, |x| denotes the length of x, and |x|a
is the number of occurrences of symbol a in the string x.

The families of semilinear and of recursively enumerable sets of vectors of
dimension k ≥ 1 of natural numbers are denoted by SLINk and NkRE, respec-
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tively; if k = 1 (hence we deal with numbers, vectors of one dimension), then the
superscript is omitted.

In the proofs of our universality results we use the notion of a (non-
deterministic) register machine, which is a device M = (m,B, l0, lh, R), where
m ≥ 1 is the number of registers, B is the (finite) set of instruction labels, l0 is the
initial label, lh is the halting label, and R is the finite set of instructions labeled
(uniquely identified, with each label being associated with only one instruction)
by elements from B. The labeled instructions are of the following forms:

– li : (ADD(r), lj , lk), 1 ≤ r ≤ m (add 1 to register r and go nondeterministically
to one of the instructions with labels lj , lk),

– li : (SUB(r), lj , lk), 1 ≤ r ≤ m (if register r is not empty, then subtract 1 from
it and go to the instruction with label lj , otherwise go to the instruction with
label lk).

A register machine generates a set of natural numbers in the following manner:
we start computing with all m registers empty, with the instruction labeled l0; if
the label lh is reached, then the computation halts and the value of register 1 is the
number generated by the computation (without loss of generality, all other registers
can be assumed to be empty at that time). The set of all natural numbers generated
in this way by M is denoted by N(M). It is known that non-deterministic counter
machines (with three counters) can generate any set of Turing computable sets of
natural numbers. If the contents of several registers is taken into consideration in
the end of a computation, then vectors of natural numbers are generated.
Convention: When comparing two number generating devices, number 0 is omit-
ted.

3 Evolution-Communication P Systems

Although the notions we work with are introduced below, it would be useful if the
reader has some familiarity with basic facts of membrane computing.

The class of P systems which we investigate in this paper is that of EC P
systems introduced in [1]. Such a system is a construct of the form

Π = (O, µ,w1, . . . , wm, R1, R
′
1, . . . , Rm, R′m, iout),

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes, organized in a hierarchical manner, hence with the membrane structure
described by a tree, and given as an expression of labeled parentheses; in this def-
inition, like in most cases in the paper, the membranes are labeled with natural
numbers, but any alphabet of labels may also be used), w1, . . . , wm are (strings
over O representing) multisets of objects present in the m regions of µ at the begin-
ning of a computation, R1, . . . , Rm are finite sets of evolution rules associated with
the regions of µ, R′1, . . . , R

′
m are finite sets of symport/antiport rules associated
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with the membranes of µ, and iout is the label of the output membrane. (Note that
the evolution rules are associated with the regions and the communication rules
are associated with the membranes.) The number m of membranes in µ is called
the degree of Π. The evolution rules are of the form a → v, where a ∈ O, v ∈ O∗

(hence non-cooperative and without target indications in the right hand side, as
usual in transition P systems), while the symport/antiport rules are of the stan-
dard forms used in symport/antiport P systems ((u, in), (u, out) for symport rules
and (u, out; v, in) for antiport rules, where u, v ∈ O+; the length of u in a symport
rule and the maximum of |u|, |v| in an antiport rule is called the weight of the rule,
with the maximum degree over all rules being called the weight of the system).

The weight of symport and antiport rules gives already an indication on the
communication complexity of the system. Here we stress this, in the following way.
We allow only minimal symport and antiport rules, hence with the multisets u, v
above consisting of single objects in O, and, moreover, we add to the system a
special object, e, which does not belong to O and can appear in rules as follows.
The evolution rules can be of the form a → v, with a ∈ O, v ∈ (O∪{e})∗, and the
symport/antiport rules can be of the forms (aei, in), (aei, out), where a ∈ O, i ≥ 1,
and (aei, out; bej , in), where a, b ∈ O and i, j ≥ 0, i+j ≥ 1. Note that the “quantum
of energy” e can be produced by evolution rules and that no communication can be
done without involving an amount of “energy”. Actually, this energy is consumed
by the communication rules: after using a symport or antiport rule, the objects
of O are transported across the membrane with which the rule is associated and
the occurrences of object e are lost, they do not pass from a region to another
one. In the proofs from the next section we will discuss in some detail the way the
communication rules are applied, so we do not give here any example.

In a symport rule as above, the number i is called the energy of the rule, while
in an antiport rule as above the sum i + j is called the energy.

In [1] (and [8]), the rules of an EC P systems are used in a non-deterministic
maximally parallel way, without any separation of evolution and communication
operations. Here we consider three cases (we call them modes): (i) communication
has priority over evolution (indicated by CPE) – if a communication rule is ap-
plicable in any membrane of the system, then at this step only communication
rules are used (in the non-deterministic maximally parallel way), and no evolution
rule is applied in the system; (ii) communication and evolution rules are applied
together, mixed (indicated by CME), as in [1]; (iii) evolution has priority over
communication (indicated by EPC) – if any evolution rule can be used in the sys-
tem, then only such rules are used at that step, and no communication operation
is performed.

Using the rules in the non-deterministic maximally parallel way, in one of
the three modes suggested above, we obtain transitions among configurations of
the system, then computations and halting computations as usual in membrane
computing. In the next section we consider the set Nmode(Π) of numbers gen-
erated by a P system Π, by counting the objects of O present in region iout in
the halting configuration of computations in Π, performed in the in the mode
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mode ∈ {CPE, CME, EPC}. The family of sets of numbers Nmode(Π) generated
in this way by EC P systems with at most m ≥ 1 membranes, symport rules of
maximal energy p ≥ 0 and antiport rules of maximal energy q ≥ 0, is denoted by
NmodeECPm(symp, antiq); when one of the parameters m, p, q is not bounded, we
replace the respective subscript with ∗.

4 The Power of EC P Systems with Energy

We start by pointing out some inclusions which directly follow from the definitions:

Lemma 1. NmodeECPm(symp, antiq) ⊆ NmodeECPm′(symp′ , antiq′) ⊆ NRE,
for all 1 ≤ m ≤ m′, 0 ≤ p ≤ p′, 0 ≤ q ≤ q′, and mode ∈ {CPE, CME, EPC};
each of m′, p′, q′ can also be equal to ∗.

Actually, most of the inclusions above are equalities.

Theorem 1. NCPEECPm(symp, antiq) = NRE, for all m ≥ 4, p ≥ 1, q ≥ 0.

Proof. We only prove the inclusion NRE ⊆ NCPEECP4(sym1, anti0), and to
this aim we use the characterization of NRE by means of register machines with
three registers. Let M = (3, B, l0, lh, R) be such a machine. We construct an EC
P system

Π = (O, e, [0[1 ]1[2 ]2[3 ]3 ]0, w0, w1, w2, w3, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3, 1),

with

O = {l, l′, l′′, l′′′, l̄ | l ∈ B} ∪ {a, #},
w0 = l′0, w1 = w2 = w3 = λ,

and the sets of rules consist of the rules mentioned in the following tables, which
show the way the system Π simulates the instructions of M (note that initially
we have the primed version of the initial label of M present in the skin region and
nothing else in the whole system).

For any ADD instruction of the form li : (ADD(r), lj , lk) in R, we perform
the following five steps in Π (we indicate for each step the rules associated with
membranes/regions 0 and r):

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l̄iae –
4 – – (l̄ie, out)
5 l̄i → l′s, s = j, k – –
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We also add the rules
l̄i → #, # → #

to Rr (they are used in steps 5 and 6 (and then # → # forever) if in step 4 one
uses the rule (ae, out) which is present in R′r if there are SUB instructions for this
register – see below).

The simulation of the ADD rule is obvious – and the fact that the communi-
cation has priority over evolution plays no role here as only one (type of) rule can
be applied in any step.

The simulation of a SUB instruction li : (SUB(r), lj , lk) in R is more intricate.
We first indicate the rules present in sets R0, Rr, R

′
r:

R0 : l′i → lie,

l′′′i → l′j ,

l′′i → l′k,

Rr : li → l′ie,

l′i → l′′i ,

l′′i → l′′′i e,

R′r : (lie, in),
(ae, out),
(l′′′i e, out),
(l′′i e, out).

The way these rules are used for simulating the SUB instruction in the case when
the register r is non-empty is shown in the next table:

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l′ie –
4 – – (ae, out)
5 – l′i → l′′i –
6 – l′′i → l′′′i e –
7 – – (l′′′i e, out)
8 l′′′i → l′j – –

The simulation of the SUB instruction in the case of an empty register r is indicated
below:

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l′ie –
4 – l′i → l′′i –
5 – – (l′′i e, out)
6 l′′i → l′k – –
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The first three steps are identical. If register r is non-empty, hence membrane r
contains objects a, then, because the communication has priority, one copy of a
is removed from membrane r and the rule l′i → l′′i is used in the next step. If the
register is empty, then the rule l′i → l′′i is used already in step 3; because the copy
of e remained unused in membrane r, now l′′i can exit, and it introduces l′k in the
skin region. If e was consumed in step 3, then l′′i can evolve to l′′′i and only now it
can leave membrane r, introducing l′j in the skin region.

The simulation of the SUB instruction is correct. The simulation of ADD and
SUB instructions can continue until introducing the object l′h, which cannot evolve,
the computation stops. The contents of membrane 1 corresponds to the contents
of register 1, hence N(M) = NCPE(Π); the observation that we use only symport
rules with energy 1 completes the proof.

The priority of communication is a useful “programming tool”; in its absence,
the system has to use more energy quanta.

Theorem 2. NCMEECPm(symp, antiq) = NRE, for all m ≥ 4, p ≥ 3, q ≥ 0.

Proof. Consider a set Q ∈ NRE and take Q′ = {n − 1 | n ∈ Q}. If 1 /∈ Q,
then we proceed as follows. We take a register machines with three registers,
M = (3, B, l0, lh, R), generating the set Q′ and we construct the EC P system

Π = (O, e, [0[1 ]1[2 ]2[3 ]3 ]0, w0, w1, w2, w3, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3, 1),

with

O = {l, l′, l′′, l′′′, l̄ | l ∈ B} ∪ {a, #},
w0 = l′0, w1 = w2 = w3 = #,

and the sets of rules constructed as indicated below.
For any ADD instruction of M we use the same rules as in the proof of the

previous theorem.
For a SUB instruction li : (SUB(r), lj , lk) in R we consider the following rules:

R0 : l′i → lie,

l′′′i → l′j ,

l′′i → l′k,

# → #,

Rr : li → l′ie
2,

l′i → l′′i e,

l′′i → l′′′i ,

R′r : (lie, in),
(ae2, out),
(l′′i e3, out),
(l′′′i e, out),
(#e3, out).
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The simulation of the SUB instruction proceeds as follows. Object li enters
membrane r, produces here two quanta of energy and passes to l′i. Because of the
maximal parallelism, if register r is not empty, in the next step both rules l′i → l′′i e
and (ae2, out) are used, hence we have to pass further to l′′′i , which, in the next step,
exits to the skin membrane, where it introduces l′j . If the register r is empty, then
no rule can use the two quanta of energy introduced by the rule li → l′ie

2. By using
the rule l′i → l′′i e, in step 4 one further occurrence of e is introduced in membrane
r. In step 5, three rules can be used: l′′i → l′′′i , (l′′i e3, out), and (#e3, out); if the
first rule is used, then the trap-object # exits the membrane and the computation
never halts, because of the rule # → # from R0. Thus, the only continuation
which can lead to a halting computation is to use the rule (l′′i e3, out), and thus l′k is
introduced in the skin region. In both cases, the simulation of the SUB instruction
is correct, hence we obtain NCME(Π) = Q: in membrane 1, besides copies of
object a corresponding to the value of register 1 in the halting configuration of M ,
we also have a copy of object #.

If the set Q contains the number 1, then Q′ contains 0 instead, which is ignored
when considering a register machine for Q′. However, number 1 can be generated
separately: consider an additional object, b, present initially in the skin membrane,
and the rules b → λ and b → l′0. In the first case, the computation stops with only
one object in membrane 1, in the later case we start simulating the computations
in the register machine M which generates Q′.

We conclude the proof by observing that the system Π uses symport rules with
maximal energy equal to 3.

Somewhat surprising, the priority of the evolution rules over the communica-
tion rules seems to be a weaker feature than using the communication rules with
priority, and this can be “explained” by the fact that communication moves ob-
jects from a region to another one, hence changes the rules to be applied to the
moved objects; in general, the localization (of objects and of rules) is known to be
a powerful feature of P systems. As a consequence, a larger number of membranes
and amount of energy is needed in this case.

Theorem 3. NEPCECPm(symp, antiq) = NRE, for all m ≥ 7, p ≥ 5, q ≥ 0.

Proof. We start again from a register machine M = (3, B, l0, lh, R) and construct
an EC P system Π simulating it. This time, the components of Π are indicated
in a graphical form, in Figure 1. We explicitly mention the rules associated with
an ADD instruction and a SUB instruction operating on register r; specifically,
the rules of Π which simulate the ADD instruction are written in the left hand
of the figure, under the instruction ADD, and the rules which simulate the SUB
instruction are written in the right hand of the figure. The rules associated with the
other two registers – denoted in the figure with s and t (hence {r, s, t} = {1, 2, 3})
– are not mentioned.

The simulation of the ADD instruction is obvious, so we only explain the way
a SUB instruction is simulated. Object li “guesses” whether or not register r is
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li : (ADD(r), lj , lk)

l′i → lie

l̄i → l′j

l̄i → l′k

(lie, in)

(l̄ie, out)

li → l̄iae

li : (SUB(r), lj , lk)

l′i → l+i e

l′i → l0i e

l̄i → l′j
l′′i → l′′′i e

(l+i e, in)

(l0i e, in)

(l̄ie
2, out)

(ae3, out)

(l′′i e, out)

(l′′′i e, in)

(l′ke2, out)

l+i → l̄ie
5

l0i → l′′i e2

l′′′i → l′ke

(#e3, in)

(ae, in)

# → #

a → #

Fig. 1. The P system from the proof of Theorem 3

empty, that is it non-deterministically passes to one of l+i and l0i . Any of these
objects enters membrane r. If l+i was produced and the register was empty, then
the computation will enter an infinite cycle. Similarly, if object l0i was produced
and the register is not empty the computation will never stop.

Let us assume that we have object l+i in membrane r. It produces here five
quanta of energy and passes to l̄i (remember that li uniquely labels an instruc-
tion, hence there is no ambiguity in using the bar notation, as in the simulation
of the ADD instruction). No evolution rule can be used in the system, hence
we are allowed (and we have) to apply communication rules. If any of the rules
(#e3, in), (ae, in) from R′r′ are used, then the trap object # will evolve forever
in membrane r′. This can be avoided only if the rules (l̄ie2, out), (ae3, out) of R′r
are used, and this is possible if the register is non-empty; otherwise, no object
a is present in membrane r, hence, because of the maximal parallelism, the rule
(#e3, in) will bring the trap-object in membrane r′ and the computation never
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halts. If l̄i arrives in the skin region, then it introduces here l′j , which is the correct
continuation of the computation in M .

Assume now that object l0i was produced and introduced in membrane r. By
rule l0i → l′′i e2 we introduce two quanta of energy. One of them can be used by the
rule (l′′i e, out) from R′r. If the membrane contains no copy of a, hence the “guess”
made in the first step was correct, i.e., the register is empty, then the rule (ae, in)
from R′r′ cannot be used, otherwise the computation never stops (because of the
maximal parallelism, this rule must be used in parallel with (l′′i e, out); of course,
the rule (ae, in) can be used even twice, with the same result, the infinite run of
the computation). The copy of e waits inside membrane r until l′′i evolves in the
skin region to l′′′i and this object enters membrane r. It produces here one further
copy of e and exits in the form of l′k, thus completing this branch of the simulation.

In both cases, the simulation of the instruction SUB is correct (the computation
in Π never ends if an incorrect guess is made or a “wrong” rule is used). The system
Π generates the same set of numbers as the register machine M , always augmented
by 1: the object # remains in membrane 1 in the end of the computation. Like in
the proof of Theorem 2, we can now make sure that we generate the set Q ∈ NRE
we want, number 1 included if it belongs to Q, and this completes the proof.

Several open problems can be formulated with respect to these three results,
concerning the parameters involved in them: Can the number of membranes be
decreased? Can the energy of rules in Theorems 2, 3 be decreased? Does the use
of antiport rules help in this respect? (P systems with minimal symport/antiport
rules are already universal – sometimes with some “garbage” objects remaining in
the output membrane, see, e.g., the corresponding chapter from [15] – hence the
energy can be completely removed if powerful enough communication rules are
used.)

5 Dynamical Communication Complexity Measures

Let us now proceed to defining communication complexity parameters starting
from computations, not from the (rules of the) system. There are (at least) three
basic possibilities: (i) to count the number of steps of a computation when com-
munication operations are done, (ii) to count the total number of communication
rules used during a computation, and (iii) to consider the sum of the weights of all
communication rules used during a computation (or the energy involved in these
rules, in the case of EC P systems with a cost of communication, as considered in
the previous sections).

More formally, let δ : w0 =⇒ w1 =⇒ . . . =⇒ wh be a halting computation
in a given EC P system Π, with w0 being the initial configuration. We inter-
pret/represent the configurations as strings, specifying the multisets of objects
placed in the regions of a membrane structure written as a string of labeled match-
ing parentheses, hence we can speak about the number of occurrences of a symbol
in such a string/configuration. Then, for each i = 0, 1, . . . , h− 1 we can write:
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ComN(wi =⇒ wi+1) =
{

1, if a communication rule is used in this transition,
0, otherwise

ComR(wi =⇒ wi+1) = the number of communication rules used
in this transition,

ComW (wi =⇒ wi+1) = the total energy of the communication rules used
in this transition.

These parameters can then be extended in the natural way to computations,
results of computations, systems, sets of numbers: for ComX ∈ {ComN, ComR,
ComW} we define

ComX(δ) =
h−1∑

i=0

ComX(wi =⇒ wi+1), for δ : w0 =⇒ w1 =⇒ . . . =⇒ wh

a halting computation,
ComX(n, Π) = min{ComX(δ) | δ : w0 =⇒ w1 =⇒ . . . =⇒ wh

is a halting computation in Π with the result n},
ComX(Π) = max{ComX(n,Π) | n ∈ N(Π)},
ComX(Q) = min{ComX(Π) | Q = N(Π)}.

In this way, we have the possibility to assess the communication complexity
of sets of numbers with respect to EC P systems; actually, the class of systems
can be changed, as communication plays an important role in many classes of P
systems, so that we can write ComXCL(Q), where CL is a particular class of P
systems, and in this way, we can compare the complexity of a set of numbers with
respect to various types of systems generating it.

Now, we can also consider families of sets of numbers of a given maximal
complexity:

NFComX(k) = {Q ⊆ N | ComX(Q) ≤ k},
for given k ≥ 0, with NFComX(fin) being the union of all these families, and
NFComX(∞) the family of all sets of numbers computed by P systems of a given
type. As in most cases, this family is equal to NRE, while non-cooperative P
systems without communication generate only semilinear sets, [12], hence we can
write

SLIN ⊆ NFComX(0) ⊆ NFComX(1) ⊆ . . .

. . . ⊆ NFComX(fin) ⊆ NFComX(∞) = NRE.

Many open problems and research topics arise in this context. First, the previ-
ous definition refers to EC P systems (hence to symport/antiport communication
rules), but not to the way of using the rules, in the sense of the relation between
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evolution and communication operations – remember that in the previous sections
we distinguished three possibilities in this respect.

This can be very important for the results we obtain: let us consider the system
Π whose initial configuration is indicated in Figure 2, and define transitions in
the mode CPE, hence with priority of communication over evolution (the output
membrane is the skin one).

'

&

$

%

'

&

$

%

1

cb2

c → bbcc

c → e

2

c → c(ce, in)

Fig. 2. An EC P system generating a non-semilinear set of numbers

Using the rule c → bbcc, the number of copies of b and c increases exponentially.
The number of objects b will always be twice the number of objects c in membrane
1. If in a given step we use both the rule c → bbcc and the rule c → e, then we
have at the same time both objects c and e in membrane 1. Hence the rule (ce, in)
can be used, with priority. In this case, the computation never stop, since the rule
c → c can be used forever in membrane 2. Therefore, we either use only the rule
c → bbcc or only the rule c → e. After n finite number of steps, the computation
will stop with 3 ·2n objects in region 1, for some n ≥ 0 (the value n = 0 is obtained
if we use the rule c → e in the first step). This means that the system generates a
non-semilinear set of numbers.

If we go back to our definition, we can extend it to other classes of P systems. A
direct passage is via P systems with active membranes, where we have in and out
rules much similar to the symport rules (but used in a sequential way, one in each
membrane). Also transition P systems have communication commands, which can
be counted when defining communication complexity parameters as above.

Then, more technically, we ask the folowing: is the previous hierarchy of com-
plexity classes infinite? We conjecture that for many types of P systems (we believe
that this is the case for EC P systems, with or without energy associated with com-
munication rules, without a priority relation between evolution and communication
operations) we have the following relations:

SLIN = NFComX(k) = NFComX(fin) ⊂ NFComX(∞) = NRE,
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for all k ≥ 0. Interesting enough intrinsically, such a result would make non-
interesting (showing that they are not sensitive enough) the complexity measures
themselves. Since only two complexity classes are distinguished, sets of finite com-
plexity and sets of infinite complexity. (This should be contrasted, for instance,
with the results related to the index of context-free languages – see details in [5]
– which have a somewhat similar definition, but leads to an infinite hierarchy of
languages.)

A natural extension is from sets of numbers to sets of vectors of numbers.
Sometimes this makes differences between families generated.

An interesting idea is also to relate the communication complexity, defined in
any given way, with the number computed, i.e., to consider measures of the form

ComX ′(n) =
ComX(n,Π)

n
,

where n ∈ N(Π). Such “relativized” measures are not at all frequent in membrane
computing, although the relation with (the length of) the result of a computation
looks appealing.

From our definitions, it directly follows that we have the relations ComN(α) ≤
ComR(α) ≤ ComW (α), for all possible α – step of a computation, computation,
system, etc. It would be interesting to study, e.g., the family of numbers generated
by systems Π for which the previous relations are equalities.

6 Communication Complexity as a Computation Regulator

In the previous section, we have considered the “amount of communication” as a
property of computations and computing devices. An attractive idea would be to
change the perspective and consider (the value of) this parameter as a condition
to be imposed to computations in a given system. Instead of considering the set
of numbers computed by all computations, we consider only a subset of all such
numbers which can be obtained in the end of computations with a bounded com-
munication complexity. Specifically, we can define Nmode(Π,ComX ≤ k) to be
the set of numbers which can be generated by an EC P system Π (with energy
associated with the communication rules) by means of computations δ such that
ComX(δ) ≤ k, for k ≥ 0.

In what follows, we consider only the measure ComN (the number of steps
when communication rules are used). Like in the previous section, an example is
given proving that, at least for modes CPE,CME, systems with a small com-
munication complexity can generate already non-semilinear sets. The example is
given in Figure 3. For this system Π, we have

Nmode(Π, ComN ≤ 1) = {2n | n ≥ 1},

for mode ∈ {CPE, CME} (the output membrane is the internal one).
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Fig. 3. An EC P systems with restricted communication complexity

It is clear from Figure 3 that the computation can stop only after using the rule
a → ee, and without using the rule (#e, in). If any copy of e is introduced, then a
communication must be done, irrespective whether communication has priority or
not (in the CME case, because of the maximal parallelism, the rule (#e, in) must
be used if the rule (ae, in) is not used). This means that after a number n ≥ 0 of
steps, where only the rule a → aa is used (hence 2n+1 copies of a are produced),
then we use the rule a → ee.

If we have the same number of copies of a and of e, then all these objects are
used by the rule (ae, in), and the computation stops – with only one communica-
tion step. The number generated is of the form 2m, for some m ≥ 1. If we have
more copies of e than that of a, then the rule (#e, in) must be used. In this case,
the computation never stops. If we have more copies of a than that of e, then
either we use the rule (#e, in) or the rule (ae, in). Using rule (#e, in) will result
to a computation that never ends. While all copies of e will be consumed by the
application of the rule (ae, in). The remaining copies of a should evolve further.
Thus, in a subsequent step we have to use again the communication rules. This
means, the computation will have more than one communication steps, hence it is
not accepted. Thus, (halting) computations with at most one communication step
generate all and only the powers of 2.

Like before, a more systematic study of using the communication complexity as
a tool to regulate computations remains to be done. We could ask several questions
which are similar to those formulated in the previous section: Which is the power
of finite communication? Does the communication thresholds induce an infinite
hierarchy? What about other complexity measures, what about the mode EPC?

7 Communication Complexity of Solving Problems

In this section, let us consider our communication complexity measure as a stan-
dard complexity measure in solving problems. As we have already noticed, the
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measure ComN is nothing else but the parameter time (number of computation
steps) when we ignore the evolution steps and counting only the steps when at
least one communication rule is used. This implies that the whole range of ques-
tions dealt within the theory of time complexity, [17], can be adopted for the new
measure. Whether or not anything of interest can be obtained in this way remains
to be explored. On the other hand, we could start with what it means to solve
a problem Q using a class CL of P systems, and take “for free” the definition of
complexity classes with a given communication effort.

In this context, we may start by having a problem Q, characterized by a size
parameter size taking values from the natural numbers, and the set of instances
IQ taking Boolean values (true and false). We say that a family Π(n), n ≥ 1,
solves (uniformly) the problem Q if (i) each system Π(n) is constructed starting
from Q and n (hence not from the instances of size n of the problem), and (ii)
introducing a code cod(iQ) of an instance iQ of size n as a multiset in the skin
region of system Π(n), the computation halts if and only if iQ is true (hence the
family Π(n), n ≥ 1, is sound and complete with respect to Q).

Note that we have said nothing here about the complexity of solving the prob-
lem, that is why we have said nothing about the complexity of constructing the
systems Π(n), n ≥ 1, starting from Q and n, neither on the complexity of comput-
ing cod(iQ) starting from iQ, nor on the complexity of the halting computation in
Π(n). All these have natural definitions in the case of time complexity, especially
when dealing with complexity classes at least polynomial: all these computations
should be performed in at most polynomial time.

Here we have a problem: we want also to investigate complexity classes defined
according to finite thresholds: such a class contains all problems which can be
decided making use of a given number of communication steps, a natural number
k ≥ 0. The construction of the systems Π(n), n ≥ 1, and the computation of
cod(iQ) are done by a Turing machine, and for Turing machines we do not know
what communication complexity means.

Therefore, we will ask, as usual questions in time complexity area, to have the
systems Π(n), n ≥ 1, constructed by a Turing machine in a polynomial time. The
polynomial restriction, however, seems to be too permissive for the computation
of the code of the problem instance: in a polynomial time, we can already solve the
problem, hence cod(iQ) can be a single bit, 1 if the instance is true and 0 otherwise.
This is not acceptable, and we do not have a general solution to this issue, that
is why below we only consider problems whose true instances are described by
numerical relations.

For instance, for a relation relk ⊆ Nk, for some k ≥ 2, we consider the problem
Qrelk whose instances are of the form iQrelk = (n1, n2, . . . , nk), where ni ∈ N,
1 ≤ i ≤ k, with

iQrelk(n1, . . . , nk) = true iff (n1, n2, . . . , nk) ∈ relk.
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In such a case, for an instance of size k we input in the skin region a multiset
of the form an1

1 an2
2 . . . ank

k , and we expect that the system Π(k) halts if and only
if the instance has the value true.

Another issue appears here, concerning the way the system is working: de-
terministically, non-deterministically, confluently. In the previous definition, the
system is supposed non-deterministic, the instance of the problem is decided to be
true if there is a computation which halts, irrespective of how many computations
starting in the initial configuration do not halt. Of course, this can be changed,
working only with deterministic systems.

In this setup, we say that the problem Q belongs to the complexity class
FComX(s), s ≥ 0, if each instance of size k of Q which is true leads to a halting
computation δ of Π(k) which has ComX(δ) ≤ s, for each X ∈ {N, R,W} (as in
Section 5). Note that in Section 5 we have considered families of sets of numbers
which can be generated by EC P systems with the communication complexity
bounded – more precisely, with at least one computation having the communica-
tion complexity bounded – while here we consider classes of problems associated
with numerical relations, with the relation itself “recognized” by the system by
means of computations with a bounded communication complexity. Of course, the
classes FComX(s) should also indicate the class of P systems used, but here we
always consider EC P systems with quanta of energy, as in the previous sections
(in particular, with minimal symport and antiport rules, moving only one object
in a direction, with the help/consumption of a quantum of energy).

In what follows, we only briefly investigate the measure ComN , i.e., the number
of steps when a communication rule is used.

According to the definitions, we have the inclusion FComN(s) ⊆ FComN(s+
1), for all s ≥ 0, and it is expected that these inclusions are strict.

We can prove this for the first inclusion, making use of the problem associated
with the equality relation,

eqk = {(n, n, . . . , n) | n ≥ 0} ⊂ Nk,

for k ≥ 2.
Actually, we believe that this problem can be used in order to prove that

the hierarchy FComN(s), s ≥ 0, is infinite. The constructive part is easy. We
start by giving the system which decides Qeq2, in order to make clear the general
construction.

The system Π(2) is given in Figure 4. The system contains only one object, d;
the computation starts by introducing an1

1 an2
2 in the skin region. Immediately, all

objects a1 are transformed into quanta of energy and all a2 are primed. If n1 > n2,
then at least one copy of e remains unused by the rule (a′2e, in), hence the rule
(de, in) must be used and the computation never stops, because of the rule d → d
in R2. If n2 > n1, then, after consuming the n1 copies of e, at least one a′2 remains
to evolve forever by means of the rule a′2 → a′2 in R1. If we have n1 = n2, then the
computation can stop after two steps, with all copies of e consumed, all copies of
a′2 introduced in membrane 2, and object d remaining idle in the skin region.
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Fig. 4. An EC P system which decides Qeq2

Thus, Qeq2 ∈ FComN(1). Note that the previous reasoning is valid for both
modes CPE and CME, and below we will also work in these modes (with this
semantics of our systems).

The fact that Qeq2 /∈ FComN(0) is obvious: the evolution rules we use in
our systems are non-cooperative, they cannot compare numbers, hence we need at
least one communication step.

The relation Qeqk ∈ FComN(k − 1) can be proved in general. The system
Π(k) used to this aim is given in Figure 5.
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Fig. 5. An EC P system deciding Qeqk
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This system halts if and only if n1 = n2 = . . . = nk, and this is done by means
of a computation which has k− 1 communication steps. In a sequence, one checks
whether or not n1 = n2, n1 = n3, and so on until n1 = nk, and each of these
subproblems is solved in the way already shown in the case of k = 2 in Figure 4:
rules associated with a1 generate continuously copies of e; if their number is equal
to the number of copies of a

(j)
i produced at the same time, then the computation

can continue without producing the trap object # and without introducing the
object d in membrane 2 (in both cases, the computation would continue forever).
This means that for each comparison we have a communication step, in total k−1,
which shows that Qeqk ∈ FComN(k − 1).

We conjecture that Qeqk /∈ FComN(k − 2), hence that the hierarchy
FComN(k), k ≥ 0, is infinite.

A more systematic investigation of classes FComN(k), k ≥ 0, remains to be
carried out, maybe starting with further decision problems based on relations
among numbers (hopefully, for one of them the strictness of the hierarchy will be
obtained). Which problems can be decided in finite time? Which is the relation
between usual complexity classes, with the time/space related by a function to the
size of the input problem, and classes defined in a similar way for communication
complexity measures?

What about considering other parameters than ComN , for instance, ComR?
In some sense, counting the rules used in each communication step corresponds to
the definition of so-called Sevilla carpet, see [2], [6]. Can this connection be made
more precise?

These and many other questions remain to be answered. Then, all these prob-
lems – as well as those formulated in the previous sections – can be extended to
other classes of P systems, as communication rules/tools appear in all of them.

8 Closing Remarks

Communication plays an essential role in P systems, so that it is rather natu-
ral to investigate this feature more carefully, in particular, to define parameters
measuring the communication efforts of a computation, hence of a system. This
question is also motivated in view of the fact that P systems are distributed par-
allel computing devices, hence a classic theory of communication complexity [7]
is plausible in this framework. The present paper contributes only preliminarily
to this research direction, by considering the effort of communication in EC P
systems (in the form of quanta of energy consumed by the communication rules),
and by proposing some dynamical communication complexity measures (and some
problems and conjectures about them). In some sense, the main aim of this paper
was to call the attention to this research area, almost untouched in membrane
computing, and we hope that the reader will take this challenge and fill in this
gap.
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A direct continuation of the present paper is [14], where so-called dP systems
are introduced and dP automata are briefly investigated; they are a natural frame-
work for investigating communication complexity issues, thus proposing an answer
to this question formulated in the present paper.
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WMC 2002, Curtea de Argeş (Gh. Păun et al., eds.), LNCS 2597, Springer, Berlin,
2003, 134–145.
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11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).
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16. Gh. Păun, Y. Suzuki, H. Tanaka: P systems with energy accounting. Int. J. Computer
Math., 78, 3 (2001), 343–364.
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