11 research outputs found

    Decidable structures between Church-style and Curry-style

    Get PDF
    It is well-known that the type-checking and type-inference problems are undecidable for second order lambda-calculus in Curry-style, although those for Church-style are decidable. What causes the differences in decidability and undecidability on the problems? We examine crucial conditions on terms for the (un)decidability property from the viewpoint of partially typed terms, and what kinds of type annotations are essential for (un)decidability of type-related problems. It is revealed that there exists an intermediate structure of second order lambda-terms, called a style of hole-application, between Church-style and Curry-style, such that the type-related problems are decidable under the structure. We also extend this idea to the omega-order polymorphic calculus F-omega, and show that the type-checking and type-inference problems then become undecidable

    The Undecidability of Type Related Problems in Type-free Style System F

    Get PDF

    Eta-Equivalence in Core Dependent Haskell

    Get PDF

    Constraint-based type inference for FreezeML

    Get PDF

    A Specification for Dependent Types in Haskell

    Get PDF
    We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler’s core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our results -- chiefly, type safety, along with theorems that relate these two languages -- have been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell’s term language does not correspond to a consistent logic

    A Specification for Dependent Types in Haskell

    Get PDF
    We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler’s core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our results -- chiefly, type safety, along with theorems that relate these two languages -- have been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell’s term language does not correspond to a consistent logic

    COCHIS: Stable and coherent implicits

    Get PDF

    Constructions, inductive types and strong normalization

    Get PDF
    This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and type-checking, based on the equality-as-judgement presentation. We present a set-theoretic notion of model, CC-structures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to non-algebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a non-trivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the..
    corecore