15,764 research outputs found

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Parameterized Algorithms for Maximum Cut with Connectivity Constraints

    Get PDF
    We study two variants of Maximum Cut, which we call Connected Maximum Cut and Maximum Minimal Cut, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas Maximum Cut on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size

    Order Invariance on Decomposable Structures

    Full text link
    Order-invariant formulas access an ordering on a structure's universe, but the model relation is independent of the used ordering. Order invariance is frequently used for logic-based approaches in computer science. Order-invariant formulas capture unordered problems of complexity classes and they model the independence of the answer to a database query from low-level aspects of databases. We study the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on restricted classes of structures that admit certain forms of tree decompositions (not necessarily of bounded width). While order-invariant MSO is more expressive than MSO and, even, CMSO (MSO with modulo-counting predicates), we show that order-invariant MSO and CMSO are equally expressive on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to Courcelle. Moreover, we show that all properties definable in order-invariant FO are also definable in MSO on these classes. These results are applications of a theorem that shows how to lift up definability results for order-invariant logics from the bags of a graph's tree decomposition to the graph itself.Comment: Accepted for LICS 201

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a WĂ—HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Three ways to cover a graph

    Full text link
    We consider the problem of covering an input graph HH with graphs from a fixed covering class GG. The classical covering number of HH with respect to GG is the minimum number of graphs from GG needed to cover the edges of HH without covering non-edges of HH. We introduce a unifying notion of three covering parameters with respect to GG, two of which are novel concepts only considered in special cases before: the local and the folded covering number. Each parameter measures "how far'' HH is from GG in a different way. Whereas the folded covering number has been investigated thoroughly for some covering classes, e.g., interval graphs and planar graphs, the local covering number has received little attention. We provide new bounds on each covering number with respect to the following covering classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical graph parameters that result this way are interval number, track number, linear arboricity, star arboricity, and caterpillar arboricity. As input graphs we consider graphs of bounded degeneracy, bounded degree, bounded tree-width or bounded simple tree-width, as well as outerplanar, planar bipartite, and planar graphs. For several pairs of an input class and a covering class we determine exactly the maximum ordinary, local, and folded covering number of an input graph with respect to that covering class.Comment: 20 pages, 4 figure

    Boolean dimension and tree-width

    Full text link
    The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if PP has dimension dd, then to know whether x≤yx \leq y in PP it is enough to check whether x≤yx\leq y in each of the dd linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset PP has boolean dimension at most dd if it is possible to decide whether x≤yx \leq y in PP by looking at the relative position of xx and yy in only dd permutations of the elements of PP. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?Comment: one more reference added; paper revised along the suggestion of three reviewer
    • …
    corecore